End of training
Browse files- .gitattributes +1 -0
- README.md +71 -0
- added_tokens.json +24 -0
- all_results.json +8 -0
- config.json +28 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +345 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +208 -0
- train_results.json +8 -0
- trainer_state.json +518 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Gensyn/Qwen2.5-1.5B-Instruct
|
3 |
+
library_name: transformers
|
4 |
+
model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-sizable_arctic_rabbit
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- rl-swarm
|
8 |
+
- grpo
|
9 |
+
- gensyn
|
10 |
+
- I am sizable arctic rabbit
|
11 |
+
- trl
|
12 |
+
licence: license
|
13 |
+
---
|
14 |
+
|
15 |
+
# Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-sizable_arctic_rabbit
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct).
|
18 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
19 |
+
|
20 |
+
## Quick start
|
21 |
+
|
22 |
+
```python
|
23 |
+
from transformers import pipeline
|
24 |
+
|
25 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
26 |
+
generator = pipeline("text-generation", model="wyceee/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-sizable_arctic_rabbit", device="cuda")
|
27 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
28 |
+
print(output["generated_text"])
|
29 |
+
```
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
|
37 |
+
|
38 |
+
### Framework versions
|
39 |
+
|
40 |
+
- TRL: 0.15.2
|
41 |
+
- Transformers: 4.51.3
|
42 |
+
- Pytorch: 2.5.1
|
43 |
+
- Datasets: 3.5.0
|
44 |
+
- Tokenizers: 0.21.1
|
45 |
+
|
46 |
+
## Citations
|
47 |
+
|
48 |
+
Cite GRPO as:
|
49 |
+
|
50 |
+
```bibtex
|
51 |
+
@article{zhihong2024deepseekmath,
|
52 |
+
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
|
53 |
+
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
|
54 |
+
year = 2024,
|
55 |
+
eprint = {arXiv:2402.03300},
|
56 |
+
}
|
57 |
+
|
58 |
+
```
|
59 |
+
|
60 |
+
Cite TRL as:
|
61 |
+
|
62 |
+
```bibtex
|
63 |
+
@misc{vonwerra2022trl,
|
64 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
65 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
66 |
+
year = 2020,
|
67 |
+
journal = {GitHub repository},
|
68 |
+
publisher = {GitHub},
|
69 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
70 |
+
}
|
71 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 1.7840415239334106e-06,
|
4 |
+
"train_runtime": 2109.4102,
|
5 |
+
"train_samples": 83,
|
6 |
+
"train_samples_per_second": 0.379,
|
7 |
+
"train_steps_per_second": 0.024
|
8 |
+
}
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 1536,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 8960,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 21,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": 32768,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.51.3",
|
25 |
+
"use_cache": true,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.51.3"
|
14 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2213e422599afd54cca8a28b0880482b84f2cfdbc6880860ccc85311dceda3d8
|
3 |
+
size 4996670464
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4760a67c860e7f99af1ac485f871698cfdf02adf01f1d6671d7c50778796716
|
3 |
+
size 1178224960
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6174857216
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
199 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
203 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
204 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
211 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
212 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
215 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
216 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
223 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
224 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
235 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
247 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
248 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
251 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
252 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
259 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
273 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
279 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
281 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
297 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
298 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
299 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
300 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
302 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
303 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
305 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
307 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
308 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
309 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
310 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
311 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
312 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
314 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
315 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
317 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
319 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
320 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
321 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
322 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
323 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
324 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
326 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
327 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
329 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
331 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
332 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
333 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
334 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
335 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
336 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
338 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
339 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
341 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
343 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
344 |
+
}
|
345 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
|
3 |
+
size 11422063
|
tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 1.7840415239334106e-06,
|
4 |
+
"train_runtime": 2109.4102,
|
5 |
+
"train_samples": 83,
|
6 |
+
"train_samples_per_second": 0.379,
|
7 |
+
"train_steps_per_second": 0.024
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 4.578313253012048,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 50,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"completion_length": 293.5625,
|
14 |
+
"epoch": 0.1927710843373494,
|
15 |
+
"grad_norm": 3.7080421447753906,
|
16 |
+
"kl": 0.0,
|
17 |
+
"learning_rate": 2.5e-07,
|
18 |
+
"loss": -0.0,
|
19 |
+
"reward": 1.8257965166121721,
|
20 |
+
"reward_std": 1.000890223775059,
|
21 |
+
"rewards/concensus_correctness_reward_func": 0.0,
|
22 |
+
"rewards/consensus_reward_func": 0.5625,
|
23 |
+
"rewards/cumulative_reward_2": 0.0,
|
24 |
+
"rewards/final_correctness_reward_func": 0.1875,
|
25 |
+
"rewards/question_recreation_reward_func": 0.6542652640491724,
|
26 |
+
"rewards/soft_format_reward_func": 0.0,
|
27 |
+
"rewards/strict_format_reward_func": 0.03125,
|
28 |
+
"rewards/xmlcount_reward_func": 0.39028126024641097,
|
29 |
+
"step": 2
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"completion_length": 246.03125,
|
33 |
+
"epoch": 0.3855421686746988,
|
34 |
+
"grad_norm": 2.66080641746521,
|
35 |
+
"kl": 0.0006009535491102724,
|
36 |
+
"learning_rate": 4.994647308096508e-07,
|
37 |
+
"loss": 0.0,
|
38 |
+
"reward": 1.6951422225683928,
|
39 |
+
"reward_std": 0.9737690501497127,
|
40 |
+
"rewards/concensus_correctness_reward_func": 0.0,
|
41 |
+
"rewards/consensus_reward_func": 0.4375,
|
42 |
+
"rewards/cumulative_reward_2": 0.0,
|
43 |
+
"rewards/final_correctness_reward_func": 0.3125,
|
44 |
+
"rewards/question_recreation_reward_func": 0.5022359997965395,
|
45 |
+
"rewards/soft_format_reward_func": 0.0,
|
46 |
+
"rewards/strict_format_reward_func": 0.0,
|
47 |
+
"rewards/xmlcount_reward_func": 0.44290625443682075,
|
48 |
+
"step": 4
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"completion_length": 298.40625,
|
52 |
+
"epoch": 0.5783132530120482,
|
53 |
+
"grad_norm": 3.271430492401123,
|
54 |
+
"kl": 0.000654349065371207,
|
55 |
+
"learning_rate": 4.951963201008075e-07,
|
56 |
+
"loss": 0.0,
|
57 |
+
"reward": 1.6003534942865372,
|
58 |
+
"reward_std": 1.5241622067987919,
|
59 |
+
"rewards/concensus_correctness_reward_func": 0.20612499862909317,
|
60 |
+
"rewards/consensus_reward_func": 0.4375,
|
61 |
+
"rewards/cumulative_reward_2": 0.0,
|
62 |
+
"rewards/final_correctness_reward_func": 0.25,
|
63 |
+
"rewards/question_recreation_reward_func": 0.5164160148706287,
|
64 |
+
"rewards/soft_format_reward_func": 0.0,
|
65 |
+
"rewards/strict_format_reward_func": 0.015625,
|
66 |
+
"rewards/xmlcount_reward_func": 0.1746875026728958,
|
67 |
+
"step": 6
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"completion_length": 273.875,
|
71 |
+
"epoch": 0.7710843373493976,
|
72 |
+
"grad_norm": 2.2464993000030518,
|
73 |
+
"kl": 0.0006539181722473586,
|
74 |
+
"learning_rate": 4.867325323737765e-07,
|
75 |
+
"loss": 0.0,
|
76 |
+
"reward": 1.50193399656564,
|
77 |
+
"reward_std": 0.7935051892418414,
|
78 |
+
"rewards/concensus_correctness_reward_func": 0.0,
|
79 |
+
"rewards/consensus_reward_func": 0.5,
|
80 |
+
"rewards/cumulative_reward_2": 0.0,
|
81 |
+
"rewards/final_correctness_reward_func": 0.25,
|
82 |
+
"rewards/question_recreation_reward_func": 0.4940277439309284,
|
83 |
+
"rewards/soft_format_reward_func": 0.0,
|
84 |
+
"rewards/strict_format_reward_func": 0.0,
|
85 |
+
"rewards/xmlcount_reward_func": 0.25790624460205436,
|
86 |
+
"step": 8
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"completion_length": 259.6875,
|
90 |
+
"epoch": 0.963855421686747,
|
91 |
+
"grad_norm": 2.9284844398498535,
|
92 |
+
"kl": 0.0007433948940160917,
|
93 |
+
"learning_rate": 4.7421818538317203e-07,
|
94 |
+
"loss": 0.0,
|
95 |
+
"reward": 2.0758356750011444,
|
96 |
+
"reward_std": 0.816689261700958,
|
97 |
+
"rewards/concensus_correctness_reward_func": 0.23362500686198473,
|
98 |
+
"rewards/consensus_reward_func": 0.4375,
|
99 |
+
"rewards/cumulative_reward_2": 0.0,
|
100 |
+
"rewards/final_correctness_reward_func": 0.375,
|
101 |
+
"rewards/question_recreation_reward_func": 0.507179425098002,
|
102 |
+
"rewards/soft_format_reward_func": 0.0,
|
103 |
+
"rewards/strict_format_reward_func": 0.0625,
|
104 |
+
"rewards/xmlcount_reward_func": 0.4600312542170286,
|
105 |
+
"step": 10
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"completion_length": 271.8181818181818,
|
109 |
+
"epoch": 1.0963855421686748,
|
110 |
+
"grad_norm": 2.1030430793762207,
|
111 |
+
"kl": 0.0007565484239338813,
|
112 |
+
"learning_rate": 4.578674030756363e-07,
|
113 |
+
"loss": 0.0,
|
114 |
+
"reward": 2.2041860060258345,
|
115 |
+
"reward_std": 0.9817750467495485,
|
116 |
+
"rewards/concensus_correctness_reward_func": 0.0,
|
117 |
+
"rewards/consensus_reward_func": 0.9090909090909091,
|
118 |
+
"rewards/cumulative_reward_2": 0.0,
|
119 |
+
"rewards/final_correctness_reward_func": 0.5454545454545454,
|
120 |
+
"rewards/question_recreation_reward_func": 0.5468678203496066,
|
121 |
+
"rewards/soft_format_reward_func": 0.0,
|
122 |
+
"rewards/strict_format_reward_func": 0.0,
|
123 |
+
"rewards/xmlcount_reward_func": 0.20277272029356522,
|
124 |
+
"step": 12
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"completion_length": 296.40625,
|
128 |
+
"epoch": 1.2891566265060241,
|
129 |
+
"grad_norm": 2.7400403022766113,
|
130 |
+
"kl": 0.0008834112413751427,
|
131 |
+
"learning_rate": 4.379599518697443e-07,
|
132 |
+
"loss": 0.0,
|
133 |
+
"reward": 1.602970253676176,
|
134 |
+
"reward_std": 0.6430366199929267,
|
135 |
+
"rewards/concensus_correctness_reward_func": 0.0,
|
136 |
+
"rewards/consensus_reward_func": 0.4375,
|
137 |
+
"rewards/cumulative_reward_2": 0.0,
|
138 |
+
"rewards/final_correctness_reward_func": 0.1875,
|
139 |
+
"rewards/question_recreation_reward_func": 0.5899390205740929,
|
140 |
+
"rewards/soft_format_reward_func": 0.015625,
|
141 |
+
"rewards/strict_format_reward_func": 0.03125,
|
142 |
+
"rewards/xmlcount_reward_func": 0.34115625312551856,
|
143 |
+
"step": 14
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"completion_length": 307.15625,
|
147 |
+
"epoch": 1.4819277108433735,
|
148 |
+
"grad_norm": 3.173682451248169,
|
149 |
+
"kl": 0.0012512937537394464,
|
150 |
+
"learning_rate": 4.1483645377501717e-07,
|
151 |
+
"loss": 0.0,
|
152 |
+
"reward": 1.579680111259222,
|
153 |
+
"reward_std": 1.1775264623574913,
|
154 |
+
"rewards/concensus_correctness_reward_func": 0.0078125,
|
155 |
+
"rewards/consensus_reward_func": 0.375,
|
156 |
+
"rewards/cumulative_reward_2": 0.0,
|
157 |
+
"rewards/final_correctness_reward_func": 0.3125,
|
158 |
+
"rewards/question_recreation_reward_func": 0.636680121999234,
|
159 |
+
"rewards/soft_format_reward_func": 0.0,
|
160 |
+
"rewards/strict_format_reward_func": 0.0,
|
161 |
+
"rewards/xmlcount_reward_func": 0.24768749857321382,
|
162 |
+
"step": 16
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"completion_length": 309.90625,
|
166 |
+
"epoch": 1.6746987951807228,
|
167 |
+
"grad_norm": 2.8525588512420654,
|
168 |
+
"kl": 0.0010261074639856815,
|
169 |
+
"learning_rate": 3.8889255825490053e-07,
|
170 |
+
"loss": 0.0,
|
171 |
+
"reward": 1.8407622892409563,
|
172 |
+
"reward_std": 0.8188407723791897,
|
173 |
+
"rewards/concensus_correctness_reward_func": 0.08743750117719173,
|
174 |
+
"rewards/consensus_reward_func": 0.5,
|
175 |
+
"rewards/cumulative_reward_2": 0.0,
|
176 |
+
"rewards/final_correctness_reward_func": 0.4375,
|
177 |
+
"rewards/question_recreation_reward_func": 0.498824761249125,
|
178 |
+
"rewards/soft_format_reward_func": 0.0,
|
179 |
+
"rewards/strict_format_reward_func": 0.015625,
|
180 |
+
"rewards/xmlcount_reward_func": 0.30137500050477684,
|
181 |
+
"step": 18
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"completion_length": 262.8125,
|
185 |
+
"epoch": 1.8674698795180724,
|
186 |
+
"grad_norm": 2.4077212810516357,
|
187 |
+
"kl": 0.001561775898153428,
|
188 |
+
"learning_rate": 3.605721725547503e-07,
|
189 |
+
"loss": 0.0,
|
190 |
+
"reward": 1.6728804055601358,
|
191 |
+
"reward_std": 0.8806286598555744,
|
192 |
+
"rewards/concensus_correctness_reward_func": 0.05999999865889549,
|
193 |
+
"rewards/consensus_reward_func": 0.625,
|
194 |
+
"rewards/cumulative_reward_2": 0.0,
|
195 |
+
"rewards/final_correctness_reward_func": 0.25,
|
196 |
+
"rewards/question_recreation_reward_func": 0.4895679298788309,
|
197 |
+
"rewards/soft_format_reward_func": 0.0,
|
198 |
+
"rewards/strict_format_reward_func": 0.0,
|
199 |
+
"rewards/xmlcount_reward_func": 0.24831248936243355,
|
200 |
+
"step": 20
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"completion_length": 228.54545454545453,
|
204 |
+
"epoch": 2.0,
|
205 |
+
"grad_norm": 2.2836203575134277,
|
206 |
+
"kl": 0.0014746697746555913,
|
207 |
+
"learning_rate": 3.3035986632579036e-07,
|
208 |
+
"loss": 0.0,
|
209 |
+
"reward": 2.622945097359744,
|
210 |
+
"reward_std": 0.9989869905297052,
|
211 |
+
"rewards/concensus_correctness_reward_func": 0.1478181860663674,
|
212 |
+
"rewards/consensus_reward_func": 0.45454545454545453,
|
213 |
+
"rewards/cumulative_reward_2": 0.0,
|
214 |
+
"rewards/final_correctness_reward_func": 1.0909090909090908,
|
215 |
+
"rewards/question_recreation_reward_func": 0.49821786853400146,
|
216 |
+
"rewards/soft_format_reward_func": 0.0,
|
217 |
+
"rewards/strict_format_reward_func": 0.0,
|
218 |
+
"rewards/xmlcount_reward_func": 0.43145454878156836,
|
219 |
+
"step": 22
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"completion_length": 248.0625,
|
223 |
+
"epoch": 2.1927710843373496,
|
224 |
+
"grad_norm": 3.0871777534484863,
|
225 |
+
"kl": 0.0016215805007959716,
|
226 |
+
"learning_rate": 2.987725805040321e-07,
|
227 |
+
"loss": 0.0,
|
228 |
+
"reward": 1.969207415357232,
|
229 |
+
"reward_std": 0.9324391053523868,
|
230 |
+
"rewards/concensus_correctness_reward_func": 0.0,
|
231 |
+
"rewards/consensus_reward_func": 0.75,
|
232 |
+
"rewards/cumulative_reward_2": 0.0,
|
233 |
+
"rewards/final_correctness_reward_func": 0.1875,
|
234 |
+
"rewards/question_recreation_reward_func": 0.5020199288846925,
|
235 |
+
"rewards/soft_format_reward_func": 0.0,
|
236 |
+
"rewards/strict_format_reward_func": 0.046875,
|
237 |
+
"rewards/xmlcount_reward_func": 0.4828125089406967,
|
238 |
+
"step": 24
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"completion_length": 247.0,
|
242 |
+
"epoch": 2.3855421686746987,
|
243 |
+
"grad_norm": 3.7447381019592285,
|
244 |
+
"kl": 0.0020558440264721867,
|
245 |
+
"learning_rate": 2.663507823075358e-07,
|
246 |
+
"loss": 0.0,
|
247 |
+
"reward": 1.7711697462946177,
|
248 |
+
"reward_std": 1.108378098346293,
|
249 |
+
"rewards/concensus_correctness_reward_func": 0.014375000260770321,
|
250 |
+
"rewards/consensus_reward_func": 0.625,
|
251 |
+
"rewards/cumulative_reward_2": 0.0,
|
252 |
+
"rewards/final_correctness_reward_func": 0.125,
|
253 |
+
"rewards/question_recreation_reward_func": 0.4927010154351592,
|
254 |
+
"rewards/soft_format_reward_func": 0.0,
|
255 |
+
"rewards/strict_format_reward_func": 0.03125,
|
256 |
+
"rewards/xmlcount_reward_func": 0.4828437562100589,
|
257 |
+
"step": 26
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"completion_length": 303.65625,
|
261 |
+
"epoch": 2.5783132530120483,
|
262 |
+
"grad_norm": 2.560641288757324,
|
263 |
+
"kl": 0.0020316150366852526,
|
264 |
+
"learning_rate": 2.336492176924642e-07,
|
265 |
+
"loss": 0.0,
|
266 |
+
"reward": 1.899485131725669,
|
267 |
+
"reward_std": 1.287022078409791,
|
268 |
+
"rewards/concensus_correctness_reward_func": 0.12262500077486038,
|
269 |
+
"rewards/consensus_reward_func": 0.625,
|
270 |
+
"rewards/cumulative_reward_2": 0.0,
|
271 |
+
"rewards/final_correctness_reward_func": 0.5625,
|
272 |
+
"rewards/question_recreation_reward_func": 0.38086016196757555,
|
273 |
+
"rewards/soft_format_reward_func": 0.0,
|
274 |
+
"rewards/strict_format_reward_func": 0.03125,
|
275 |
+
"rewards/xmlcount_reward_func": 0.17724999878555536,
|
276 |
+
"step": 28
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"completion_length": 300.8125,
|
280 |
+
"epoch": 2.7710843373493974,
|
281 |
+
"grad_norm": 2.691561222076416,
|
282 |
+
"kl": 0.002065528642560821,
|
283 |
+
"learning_rate": 2.0122741949596793e-07,
|
284 |
+
"loss": 0.0,
|
285 |
+
"reward": 1.9733311794698238,
|
286 |
+
"reward_std": 0.8328747034538537,
|
287 |
+
"rewards/concensus_correctness_reward_func": 0.0,
|
288 |
+
"rewards/consensus_reward_func": 0.3125,
|
289 |
+
"rewards/cumulative_reward_2": 0.0,
|
290 |
+
"rewards/final_correctness_reward_func": 0.8125,
|
291 |
+
"rewards/question_recreation_reward_func": 0.5431749047711492,
|
292 |
+
"rewards/soft_format_reward_func": 0.0,
|
293 |
+
"rewards/strict_format_reward_func": 0.03125,
|
294 |
+
"rewards/xmlcount_reward_func": 0.2739062514156103,
|
295 |
+
"step": 30
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"completion_length": 324.65625,
|
299 |
+
"epoch": 2.963855421686747,
|
300 |
+
"grad_norm": 2.025137424468994,
|
301 |
+
"kl": 0.0021781581890536472,
|
302 |
+
"learning_rate": 1.6964013367420965e-07,
|
303 |
+
"loss": 0.0,
|
304 |
+
"reward": 1.492688411846757,
|
305 |
+
"reward_std": 0.6786639880156144,
|
306 |
+
"rewards/concensus_correctness_reward_func": 0.05999999865889549,
|
307 |
+
"rewards/consensus_reward_func": 0.25,
|
308 |
+
"rewards/cumulative_reward_2": 0.0,
|
309 |
+
"rewards/final_correctness_reward_func": 0.25,
|
310 |
+
"rewards/question_recreation_reward_func": 0.65237588994205,
|
311 |
+
"rewards/soft_format_reward_func": 0.0,
|
312 |
+
"rewards/strict_format_reward_func": 0.0,
|
313 |
+
"rewards/xmlcount_reward_func": 0.2803125036880374,
|
314 |
+
"step": 32
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"completion_length": 287.0,
|
318 |
+
"epoch": 3.0963855421686746,
|
319 |
+
"grad_norm": 2.490833282470703,
|
320 |
+
"kl": 0.0023614017144692216,
|
321 |
+
"learning_rate": 1.3942782744524973e-07,
|
322 |
+
"loss": 0.0,
|
323 |
+
"reward": 1.5256447304378857,
|
324 |
+
"reward_std": 0.8625654361464761,
|
325 |
+
"rewards/concensus_correctness_reward_func": 0.0,
|
326 |
+
"rewards/consensus_reward_func": 0.2727272727272727,
|
327 |
+
"rewards/cumulative_reward_2": 0.0,
|
328 |
+
"rewards/final_correctness_reward_func": 0.2727272727272727,
|
329 |
+
"rewards/question_recreation_reward_func": 0.6561447354880247,
|
330 |
+
"rewards/soft_format_reward_func": 0.0,
|
331 |
+
"rewards/strict_format_reward_func": 0.022727272727272728,
|
332 |
+
"rewards/xmlcount_reward_func": 0.3013181821866469,
|
333 |
+
"step": 34
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"completion_length": 206.09375,
|
337 |
+
"epoch": 3.289156626506024,
|
338 |
+
"grad_norm": 4.621415138244629,
|
339 |
+
"kl": 0.003534537725499831,
|
340 |
+
"learning_rate": 1.1110744174509951e-07,
|
341 |
+
"loss": 0.0,
|
342 |
+
"reward": 1.555755153298378,
|
343 |
+
"reward_std": 0.7309533283114433,
|
344 |
+
"rewards/concensus_correctness_reward_func": 0.0,
|
345 |
+
"rewards/consensus_reward_func": 0.4375,
|
346 |
+
"rewards/cumulative_reward_2": 0.0,
|
347 |
+
"rewards/final_correctness_reward_func": 0.125,
|
348 |
+
"rewards/question_recreation_reward_func": 0.3898801489267498,
|
349 |
+
"rewards/soft_format_reward_func": 0.0,
|
350 |
+
"rewards/strict_format_reward_func": 0.03125,
|
351 |
+
"rewards/xmlcount_reward_func": 0.5721249985508621,
|
352 |
+
"step": 36
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"completion_length": 288.0,
|
356 |
+
"epoch": 3.4819277108433733,
|
357 |
+
"grad_norm": 2.577589988708496,
|
358 |
+
"kl": 0.0031012510880827904,
|
359 |
+
"learning_rate": 8.516354622498278e-08,
|
360 |
+
"loss": 0.0,
|
361 |
+
"reward": 1.8646189728751779,
|
362 |
+
"reward_std": 1.192917919717729,
|
363 |
+
"rewards/concensus_correctness_reward_func": 0.0,
|
364 |
+
"rewards/consensus_reward_func": 0.8125,
|
365 |
+
"rewards/cumulative_reward_2": 0.0,
|
366 |
+
"rewards/final_correctness_reward_func": 0.3125,
|
367 |
+
"rewards/question_recreation_reward_func": 0.5160564561374485,
|
368 |
+
"rewards/soft_format_reward_func": 0.0,
|
369 |
+
"rewards/strict_format_reward_func": 0.015625,
|
370 |
+
"rewards/xmlcount_reward_func": 0.20793749950826168,
|
371 |
+
"step": 38
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"completion_length": 269.84375,
|
375 |
+
"epoch": 3.674698795180723,
|
376 |
+
"grad_norm": 2.385284900665283,
|
377 |
+
"kl": 0.002458000322803855,
|
378 |
+
"learning_rate": 6.204004813025567e-08,
|
379 |
+
"loss": 0.0,
|
380 |
+
"reward": 2.364677369594574,
|
381 |
+
"reward_std": 1.0049286521971226,
|
382 |
+
"rewards/concensus_correctness_reward_func": 0.21150000393390656,
|
383 |
+
"rewards/consensus_reward_func": 0.75,
|
384 |
+
"rewards/cumulative_reward_2": 0.0,
|
385 |
+
"rewards/final_correctness_reward_func": 0.4375,
|
386 |
+
"rewards/question_recreation_reward_func": 0.5537086240947247,
|
387 |
+
"rewards/soft_format_reward_func": 0.0,
|
388 |
+
"rewards/strict_format_reward_func": 0.0,
|
389 |
+
"rewards/xmlcount_reward_func": 0.4119687429629266,
|
390 |
+
"step": 40
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"completion_length": 308.25,
|
394 |
+
"epoch": 3.8674698795180724,
|
395 |
+
"grad_norm": 3.088296890258789,
|
396 |
+
"kl": 0.003366143471794203,
|
397 |
+
"learning_rate": 4.213259692436366e-08,
|
398 |
+
"loss": 0.0,
|
399 |
+
"reward": 1.6123395645990968,
|
400 |
+
"reward_std": 1.2035039197653532,
|
401 |
+
"rewards/concensus_correctness_reward_func": 0.12949999794363976,
|
402 |
+
"rewards/consensus_reward_func": 0.1875,
|
403 |
+
"rewards/cumulative_reward_2": 0.0,
|
404 |
+
"rewards/final_correctness_reward_func": 0.5625,
|
405 |
+
"rewards/question_recreation_reward_func": 0.5643083630129695,
|
406 |
+
"rewards/soft_format_reward_func": 0.0,
|
407 |
+
"rewards/strict_format_reward_func": 0.03125,
|
408 |
+
"rewards/xmlcount_reward_func": 0.1372812504414469,
|
409 |
+
"step": 42
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"completion_length": 349.3636363636364,
|
413 |
+
"epoch": 4.0,
|
414 |
+
"grad_norm": 1.0502175092697144,
|
415 |
+
"kl": 0.0029015154366127467,
|
416 |
+
"learning_rate": 2.5781814616827933e-08,
|
417 |
+
"loss": 0.0,
|
418 |
+
"reward": 1.4605782817710529,
|
419 |
+
"reward_std": 0.6098749813708392,
|
420 |
+
"rewards/concensus_correctness_reward_func": 0.0,
|
421 |
+
"rewards/consensus_reward_func": 0.45454545454545453,
|
422 |
+
"rewards/cumulative_reward_2": 0.0,
|
423 |
+
"rewards/final_correctness_reward_func": 0.18181818181818182,
|
424 |
+
"rewards/question_recreation_reward_func": 0.7712600827217102,
|
425 |
+
"rewards/soft_format_reward_func": 0.0,
|
426 |
+
"rewards/strict_format_reward_func": 0.022727272727272728,
|
427 |
+
"rewards/xmlcount_reward_func": 0.03022728995843367,
|
428 |
+
"step": 44
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"completion_length": 278.4375,
|
432 |
+
"epoch": 4.192771084337349,
|
433 |
+
"grad_norm": 2.8478996753692627,
|
434 |
+
"kl": 0.003356723260367289,
|
435 |
+
"learning_rate": 1.3267467626223605e-08,
|
436 |
+
"loss": 0.0,
|
437 |
+
"reward": 1.669695369899273,
|
438 |
+
"reward_std": 0.666682223090902,
|
439 |
+
"rewards/concensus_correctness_reward_func": 0.0,
|
440 |
+
"rewards/consensus_reward_func": 0.5625,
|
441 |
+
"rewards/cumulative_reward_2": 0.0,
|
442 |
+
"rewards/final_correctness_reward_func": 0.1875,
|
443 |
+
"rewards/question_recreation_reward_func": 0.5746015887707472,
|
444 |
+
"rewards/soft_format_reward_func": 0.0,
|
445 |
+
"rewards/strict_format_reward_func": 0.0,
|
446 |
+
"rewards/xmlcount_reward_func": 0.3450937527231872,
|
447 |
+
"step": 46
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"completion_length": 233.5625,
|
451 |
+
"epoch": 4.385542168674699,
|
452 |
+
"grad_norm": 2.994663953781128,
|
453 |
+
"kl": 0.0033554547262610868,
|
454 |
+
"learning_rate": 4.803679899192392e-09,
|
455 |
+
"loss": 0.0,
|
456 |
+
"reward": 1.8336391039192677,
|
457 |
+
"reward_std": 0.8866328973090276,
|
458 |
+
"rewards/concensus_correctness_reward_func": 0.0,
|
459 |
+
"rewards/consensus_reward_func": 0.5625,
|
460 |
+
"rewards/cumulative_reward_2": 0.0,
|
461 |
+
"rewards/final_correctness_reward_func": 0.3125,
|
462 |
+
"rewards/question_recreation_reward_func": 0.44042037427425385,
|
463 |
+
"rewards/soft_format_reward_func": 0.0,
|
464 |
+
"rewards/strict_format_reward_func": 0.0,
|
465 |
+
"rewards/xmlcount_reward_func": 0.5182187501341105,
|
466 |
+
"step": 48
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"completion_length": 249.34375,
|
470 |
+
"epoch": 4.578313253012048,
|
471 |
+
"grad_norm": 5.99478006362915,
|
472 |
+
"kl": 0.003048132966796402,
|
473 |
+
"learning_rate": 5.352691903491303e-10,
|
474 |
+
"loss": 0.0,
|
475 |
+
"reward": 2.0891320616938174,
|
476 |
+
"reward_std": 0.908447852358222,
|
477 |
+
"rewards/concensus_correctness_reward_func": 0.15499999932944775,
|
478 |
+
"rewards/consensus_reward_func": 0.75,
|
479 |
+
"rewards/cumulative_reward_2": 0.0,
|
480 |
+
"rewards/final_correctness_reward_func": 0.25,
|
481 |
+
"rewards/question_recreation_reward_func": 0.5645696111023426,
|
482 |
+
"rewards/soft_format_reward_func": 0.0,
|
483 |
+
"rewards/strict_format_reward_func": 0.046875,
|
484 |
+
"rewards/xmlcount_reward_func": 0.3226874979445711,
|
485 |
+
"step": 50
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 4.578313253012048,
|
489 |
+
"step": 50,
|
490 |
+
"total_flos": 0.0,
|
491 |
+
"train_loss": 1.7840415239334106e-06,
|
492 |
+
"train_runtime": 2109.4102,
|
493 |
+
"train_samples_per_second": 0.379,
|
494 |
+
"train_steps_per_second": 0.024
|
495 |
+
}
|
496 |
+
],
|
497 |
+
"logging_steps": 2,
|
498 |
+
"max_steps": 50,
|
499 |
+
"num_input_tokens_seen": 0,
|
500 |
+
"num_train_epochs": 5,
|
501 |
+
"save_steps": 25,
|
502 |
+
"stateful_callbacks": {
|
503 |
+
"TrainerControl": {
|
504 |
+
"args": {
|
505 |
+
"should_epoch_stop": false,
|
506 |
+
"should_evaluate": false,
|
507 |
+
"should_log": false,
|
508 |
+
"should_save": true,
|
509 |
+
"should_training_stop": true
|
510 |
+
},
|
511 |
+
"attributes": {}
|
512 |
+
}
|
513 |
+
},
|
514 |
+
"total_flos": 0.0,
|
515 |
+
"train_batch_size": 2,
|
516 |
+
"trial_name": null,
|
517 |
+
"trial_params": null
|
518 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8da45a0de36eda56cf0af1f55be940216a8637fa6aba3997a255dbd06042538
|
3 |
+
size 6008
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|