End of training
Browse files- .gitattributes +1 -0
- README.md +71 -0
- added_tokens.json +24 -0
- all_results.json +8 -0
- config.json +28 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +345 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +208 -0
- train_results.json +8 -0
- trainer_state.json +993 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Gensyn/Qwen2.5-1.5B-Instruct
|
3 |
+
library_name: transformers
|
4 |
+
model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-slithering_sneaky_chinchilla
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- rl-swarm
|
8 |
+
- grpo
|
9 |
+
- gensyn
|
10 |
+
- I am slithering sneaky chinchilla
|
11 |
+
- trl
|
12 |
+
licence: license
|
13 |
+
---
|
14 |
+
|
15 |
+
# Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-slithering_sneaky_chinchilla
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct).
|
18 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
19 |
+
|
20 |
+
## Quick start
|
21 |
+
|
22 |
+
```python
|
23 |
+
from transformers import pipeline
|
24 |
+
|
25 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
26 |
+
generator = pipeline("text-generation", model="wyceee/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-slithering_sneaky_chinchilla", device="cuda")
|
27 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
28 |
+
print(output["generated_text"])
|
29 |
+
```
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
|
37 |
+
|
38 |
+
### Framework versions
|
39 |
+
|
40 |
+
- TRL: 0.15.2
|
41 |
+
- Transformers: 4.51.3
|
42 |
+
- Pytorch: 2.5.1
|
43 |
+
- Datasets: 3.5.0
|
44 |
+
- Tokenizers: 0.21.1
|
45 |
+
|
46 |
+
## Citations
|
47 |
+
|
48 |
+
Cite GRPO as:
|
49 |
+
|
50 |
+
```bibtex
|
51 |
+
@article{zhihong2024deepseekmath,
|
52 |
+
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
|
53 |
+
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
|
54 |
+
year = 2024,
|
55 |
+
eprint = {arXiv:2402.03300},
|
56 |
+
}
|
57 |
+
|
58 |
+
```
|
59 |
+
|
60 |
+
Cite TRL as:
|
61 |
+
|
62 |
+
```bibtex
|
63 |
+
@misc{vonwerra2022trl,
|
64 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
65 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
66 |
+
year = 2020,
|
67 |
+
journal = {GitHub repository},
|
68 |
+
publisher = {GitHub},
|
69 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
70 |
+
}
|
71 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 5.14280412971857e-06,
|
4 |
+
"train_runtime": 2155.4049,
|
5 |
+
"train_samples": 140,
|
6 |
+
"train_samples_per_second": 0.742,
|
7 |
+
"train_steps_per_second": 0.046
|
8 |
+
}
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 1536,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 8960,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 21,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 28,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": 32768,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.51.3",
|
25 |
+
"use_cache": true,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.51.3"
|
14 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eaf4fcdefb7f362fdb7f02a78b98eb604363f6c7c50d3aeb3a683bdc0f851555
|
3 |
+
size 4996670464
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7d10e11ce64502f5270013311d5eb4c6a7e0de8af92fc6e0961226fae7a98a4
|
3 |
+
size 1178224960
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6174857216
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
176 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
180 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
188 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
191 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
192 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
199 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
200 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
203 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
204 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
211 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
212 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
215 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
216 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
223 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
224 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
235 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
247 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
248 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
251 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
252 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
259 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
273 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
279 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
281 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
297 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
298 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
299 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
300 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
302 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
303 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
305 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
307 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
308 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
309 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
310 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
311 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
312 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
314 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
315 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
317 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
319 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
320 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
321 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
322 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
323 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
324 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
326 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
327 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
329 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
331 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
332 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
333 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
334 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
335 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
336 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
338 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
339 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
341 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
343 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
344 |
+
}
|
345 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
|
3 |
+
size 11422063
|
tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 5.14280412971857e-06,
|
4 |
+
"train_runtime": 2155.4049,
|
5 |
+
"train_samples": 140,
|
6 |
+
"train_samples_per_second": 0.742,
|
7 |
+
"train_steps_per_second": 0.046
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,993 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 5.571428571428571,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 100,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"completion_length": 313.65625,
|
14 |
+
"epoch": 0.11428571428571428,
|
15 |
+
"grad_norm": 1.9183201789855957,
|
16 |
+
"kl": 0.0,
|
17 |
+
"learning_rate": 1.6666666666666665e-07,
|
18 |
+
"loss": 0.0,
|
19 |
+
"reward": 5.733217548578978,
|
20 |
+
"reward_std": 3.8726130831055343,
|
21 |
+
"rewards/concensus_correctness_reward_func": 3.3072499986737967,
|
22 |
+
"rewards/consensus_reward_func": 0.6875,
|
23 |
+
"rewards/cumulative_reward_2": 0.0,
|
24 |
+
"rewards/final_correctness_reward_func": 0.875,
|
25 |
+
"rewards/question_recreation_reward_func": 0.5423112083226442,
|
26 |
+
"rewards/soft_format_reward_func": 0.0,
|
27 |
+
"rewards/strict_format_reward_func": 0.0,
|
28 |
+
"rewards/xmlcount_reward_func": 0.3211562526412308,
|
29 |
+
"step": 2
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"completion_length": 302.6875,
|
33 |
+
"epoch": 0.22857142857142856,
|
34 |
+
"grad_norm": 2.035726308822632,
|
35 |
+
"kl": 0.0008348686824319884,
|
36 |
+
"learning_rate": 5e-07,
|
37 |
+
"loss": 0.0,
|
38 |
+
"reward": 3.6854598224163055,
|
39 |
+
"reward_std": 1.4634849466383457,
|
40 |
+
"rewards/concensus_correctness_reward_func": 1.4465625032316893,
|
41 |
+
"rewards/consensus_reward_func": 0.625,
|
42 |
+
"rewards/cumulative_reward_2": 0.0,
|
43 |
+
"rewards/final_correctness_reward_func": 0.4375,
|
44 |
+
"rewards/question_recreation_reward_func": 0.6805536039173603,
|
45 |
+
"rewards/soft_format_reward_func": 0.0,
|
46 |
+
"rewards/strict_format_reward_func": 0.015625,
|
47 |
+
"rewards/xmlcount_reward_func": 0.4802187574096024,
|
48 |
+
"step": 4
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"completion_length": 278.5,
|
52 |
+
"epoch": 0.34285714285714286,
|
53 |
+
"grad_norm": 2.9881222248077393,
|
54 |
+
"kl": 0.0006843123064754764,
|
55 |
+
"learning_rate": 4.994757065594279e-07,
|
56 |
+
"loss": 0.0,
|
57 |
+
"reward": 1.408921517431736,
|
58 |
+
"reward_std": 0.8394484423333779,
|
59 |
+
"rewards/concensus_correctness_reward_func": 0.07199999992735684,
|
60 |
+
"rewards/consensus_reward_func": 0.25,
|
61 |
+
"rewards/cumulative_reward_2": 0.0,
|
62 |
+
"rewards/final_correctness_reward_func": 0.125,
|
63 |
+
"rewards/question_recreation_reward_func": 0.5614215070381761,
|
64 |
+
"rewards/soft_format_reward_func": 0.0,
|
65 |
+
"rewards/strict_format_reward_func": 0.015625,
|
66 |
+
"rewards/xmlcount_reward_func": 0.3848750018514693,
|
67 |
+
"step": 6
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"completion_length": 308.09375,
|
71 |
+
"epoch": 0.45714285714285713,
|
72 |
+
"grad_norm": 2.3815231323242188,
|
73 |
+
"kl": 0.0008725040206627455,
|
74 |
+
"learning_rate": 4.979050253066063e-07,
|
75 |
+
"loss": 0.0,
|
76 |
+
"reward": 5.5596274845302105,
|
77 |
+
"reward_std": 2.3076624351087958,
|
78 |
+
"rewards/concensus_correctness_reward_func": 3.843499973183498,
|
79 |
+
"rewards/consensus_reward_func": 0.375,
|
80 |
+
"rewards/cumulative_reward_2": 0.0,
|
81 |
+
"rewards/final_correctness_reward_func": 0.5,
|
82 |
+
"rewards/question_recreation_reward_func": 0.5385024221614003,
|
83 |
+
"rewards/soft_format_reward_func": 0.0,
|
84 |
+
"rewards/strict_format_reward_func": 0.0,
|
85 |
+
"rewards/xmlcount_reward_func": 0.3026250071125105,
|
86 |
+
"step": 8
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"completion_length": 287.6875,
|
90 |
+
"epoch": 0.5714285714285714,
|
91 |
+
"grad_norm": 2.3809289932250977,
|
92 |
+
"kl": 0.0008873967562976759,
|
93 |
+
"learning_rate": 4.952945442245597e-07,
|
94 |
+
"loss": 0.0,
|
95 |
+
"reward": 4.663692280650139,
|
96 |
+
"reward_std": 3.257206997834146,
|
97 |
+
"rewards/concensus_correctness_reward_func": 2.7571874954737723,
|
98 |
+
"rewards/consensus_reward_func": 0.3125,
|
99 |
+
"rewards/cumulative_reward_2": 0.0,
|
100 |
+
"rewards/final_correctness_reward_func": 0.625,
|
101 |
+
"rewards/question_recreation_reward_func": 0.5873797507956624,
|
102 |
+
"rewards/soft_format_reward_func": 0.0,
|
103 |
+
"rewards/strict_format_reward_func": 0.0,
|
104 |
+
"rewards/xmlcount_reward_func": 0.3816250069066882,
|
105 |
+
"step": 10
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"completion_length": 267.8125,
|
109 |
+
"epoch": 0.6857142857142857,
|
110 |
+
"grad_norm": 2.1084818840026855,
|
111 |
+
"kl": 0.001183122909424128,
|
112 |
+
"learning_rate": 4.916552125781528e-07,
|
113 |
+
"loss": 0.0,
|
114 |
+
"reward": 5.68206575140357,
|
115 |
+
"reward_std": 5.3108197445981205,
|
116 |
+
"rewards/concensus_correctness_reward_func": 3.338500021956861,
|
117 |
+
"rewards/consensus_reward_func": 0.5625,
|
118 |
+
"rewards/cumulative_reward_2": 0.0,
|
119 |
+
"rewards/final_correctness_reward_func": 0.625,
|
120 |
+
"rewards/question_recreation_reward_func": 0.5143157998099923,
|
121 |
+
"rewards/soft_format_reward_func": 0.0,
|
122 |
+
"rewards/strict_format_reward_func": 0.03125,
|
123 |
+
"rewards/xmlcount_reward_func": 0.6105000090319663,
|
124 |
+
"step": 12
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"completion_length": 306.0625,
|
128 |
+
"epoch": 0.8,
|
129 |
+
"grad_norm": 2.397752523422241,
|
130 |
+
"kl": 0.0014343660077429377,
|
131 |
+
"learning_rate": 4.870022949890676e-07,
|
132 |
+
"loss": 0.0,
|
133 |
+
"reward": 4.247058918699622,
|
134 |
+
"reward_std": 1.4322406734863762,
|
135 |
+
"rewards/concensus_correctness_reward_func": 2.0690625309944153,
|
136 |
+
"rewards/consensus_reward_func": 0.3125,
|
137 |
+
"rewards/cumulative_reward_2": 0.0,
|
138 |
+
"rewards/final_correctness_reward_func": 0.875,
|
139 |
+
"rewards/question_recreation_reward_func": 0.4255589717067778,
|
140 |
+
"rewards/soft_format_reward_func": 0.0,
|
141 |
+
"rewards/strict_format_reward_func": 0.0,
|
142 |
+
"rewards/xmlcount_reward_func": 0.5649375049397349,
|
143 |
+
"step": 14
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"completion_length": 331.75,
|
147 |
+
"epoch": 0.9142857142857143,
|
148 |
+
"grad_norm": 2.2839765548706055,
|
149 |
+
"kl": 0.001408537311363034,
|
150 |
+
"learning_rate": 4.81355307410676e-07,
|
151 |
+
"loss": 0.0,
|
152 |
+
"reward": 2.6294993720948696,
|
153 |
+
"reward_std": 2.1304319854825735,
|
154 |
+
"rewards/concensus_correctness_reward_func": 0.8625625013373792,
|
155 |
+
"rewards/consensus_reward_func": 0.5,
|
156 |
+
"rewards/cumulative_reward_2": 0.0,
|
157 |
+
"rewards/final_correctness_reward_func": 0.3125,
|
158 |
+
"rewards/question_recreation_reward_func": 0.652124403975904,
|
159 |
+
"rewards/soft_format_reward_func": 0.0,
|
160 |
+
"rewards/strict_format_reward_func": 0.0,
|
161 |
+
"rewards/xmlcount_reward_func": 0.3023125068284571,
|
162 |
+
"step": 16
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"completion_length": 254.75,
|
166 |
+
"epoch": 1.0,
|
167 |
+
"grad_norm": 1.293320894241333,
|
168 |
+
"kl": 0.001520198837776358,
|
169 |
+
"learning_rate": 4.747379352713488e-07,
|
170 |
+
"loss": 0.0,
|
171 |
+
"reward": 4.4054756959279375,
|
172 |
+
"reward_std": 0.8638230375945568,
|
173 |
+
"rewards/concensus_correctness_reward_func": 2.0449999949584403,
|
174 |
+
"rewards/consensus_reward_func": 0.75,
|
175 |
+
"rewards/cumulative_reward_2": 0.0,
|
176 |
+
"rewards/final_correctness_reward_func": 0.5,
|
177 |
+
"rewards/question_recreation_reward_func": 0.5937257781624794,
|
178 |
+
"rewards/soft_format_reward_func": 0.0,
|
179 |
+
"rewards/strict_format_reward_func": 0.0,
|
180 |
+
"rewards/xmlcount_reward_func": 0.5167499954501787,
|
181 |
+
"step": 18
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"completion_length": 325.9375,
|
185 |
+
"epoch": 1.1142857142857143,
|
186 |
+
"grad_norm": 1.9340304136276245,
|
187 |
+
"kl": 0.0019464795368548948,
|
188 |
+
"learning_rate": 4.6717793412953776e-07,
|
189 |
+
"loss": 0.0,
|
190 |
+
"reward": 5.210880044847727,
|
191 |
+
"reward_std": 1.6739974903757684,
|
192 |
+
"rewards/concensus_correctness_reward_func": 3.3118124761313084,
|
193 |
+
"rewards/consensus_reward_func": 0.5625,
|
194 |
+
"rewards/cumulative_reward_2": 0.0,
|
195 |
+
"rewards/final_correctness_reward_func": 0.5,
|
196 |
+
"rewards/question_recreation_reward_func": 0.5269739665091038,
|
197 |
+
"rewards/soft_format_reward_func": 0.015625,
|
198 |
+
"rewards/strict_format_reward_func": 0.0,
|
199 |
+
"rewards/xmlcount_reward_func": 0.29396875062957406,
|
200 |
+
"step": 20
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"completion_length": 272.71875,
|
204 |
+
"epoch": 1.2285714285714286,
|
205 |
+
"grad_norm": 2.2866125106811523,
|
206 |
+
"kl": 0.002068110006803181,
|
207 |
+
"learning_rate": 4.5870701325731773e-07,
|
208 |
+
"loss": 0.0,
|
209 |
+
"reward": 3.6153114959597588,
|
210 |
+
"reward_std": 2.5713650833349675,
|
211 |
+
"rewards/concensus_correctness_reward_func": 1.5542500228621066,
|
212 |
+
"rewards/consensus_reward_func": 0.4375,
|
213 |
+
"rewards/cumulative_reward_2": 0.0,
|
214 |
+
"rewards/final_correctness_reward_func": 0.5625,
|
215 |
+
"rewards/question_recreation_reward_func": 0.5716865402646363,
|
216 |
+
"rewards/soft_format_reward_func": 0.0,
|
217 |
+
"rewards/strict_format_reward_func": 0.0,
|
218 |
+
"rewards/xmlcount_reward_func": 0.48937500920146704,
|
219 |
+
"step": 22
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"completion_length": 302.375,
|
223 |
+
"epoch": 1.342857142857143,
|
224 |
+
"grad_norm": 6.6668572425842285,
|
225 |
+
"kl": 0.0021221214192337357,
|
226 |
+
"learning_rate": 4.4936070264068016e-07,
|
227 |
+
"loss": 0.0,
|
228 |
+
"reward": 1.9632033314555883,
|
229 |
+
"reward_std": 0.8504583928734064,
|
230 |
+
"rewards/concensus_correctness_reward_func": 0.20187499769963324,
|
231 |
+
"rewards/consensus_reward_func": 0.3125,
|
232 |
+
"rewards/cumulative_reward_2": 0.0,
|
233 |
+
"rewards/final_correctness_reward_func": 0.5,
|
234 |
+
"rewards/question_recreation_reward_func": 0.45967210712842643,
|
235 |
+
"rewards/soft_format_reward_func": 0.0,
|
236 |
+
"rewards/strict_format_reward_func": 0.03125,
|
237 |
+
"rewards/xmlcount_reward_func": 0.4579062513075769,
|
238 |
+
"step": 24
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"completion_length": 284.8125,
|
242 |
+
"epoch": 1.457142857142857,
|
243 |
+
"grad_norm": 2.070162534713745,
|
244 |
+
"kl": 0.0021677847471437417,
|
245 |
+
"learning_rate": 4.391782039544238e-07,
|
246 |
+
"loss": 0.0,
|
247 |
+
"reward": 1.9739556834101677,
|
248 |
+
"reward_std": 0.8432966666496213,
|
249 |
+
"rewards/concensus_correctness_reward_func": 0.17362499982118607,
|
250 |
+
"rewards/consensus_reward_func": 0.125,
|
251 |
+
"rewards/cumulative_reward_2": 0.0,
|
252 |
+
"rewards/final_correctness_reward_func": 0.5,
|
253 |
+
"rewards/question_recreation_reward_func": 0.5859243981540203,
|
254 |
+
"rewards/soft_format_reward_func": 0.0,
|
255 |
+
"rewards/strict_format_reward_func": 0.0,
|
256 |
+
"rewards/xmlcount_reward_func": 0.5894062593579292,
|
257 |
+
"step": 26
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"completion_length": 314.625,
|
261 |
+
"epoch": 1.5714285714285714,
|
262 |
+
"grad_norm": 2.243846893310547,
|
263 |
+
"kl": 0.002329640177777037,
|
264 |
+
"learning_rate": 4.282022261367073e-07,
|
265 |
+
"loss": 0.0,
|
266 |
+
"reward": 2.3326709028333426,
|
267 |
+
"reward_std": 1.4158438248559833,
|
268 |
+
"rewards/concensus_correctness_reward_func": 0.09337499784305692,
|
269 |
+
"rewards/consensus_reward_func": 0.6875,
|
270 |
+
"rewards/cumulative_reward_2": 0.0,
|
271 |
+
"rewards/final_correctness_reward_func": 0.4375,
|
272 |
+
"rewards/question_recreation_reward_func": 0.6531084361486137,
|
273 |
+
"rewards/soft_format_reward_func": 0.0,
|
274 |
+
"rewards/strict_format_reward_func": 0.015625,
|
275 |
+
"rewards/xmlcount_reward_func": 0.44556250888854265,
|
276 |
+
"step": 28
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"completion_length": 304.75,
|
280 |
+
"epoch": 1.6857142857142857,
|
281 |
+
"grad_norm": 2.563140869140625,
|
282 |
+
"kl": 0.002116368035785854,
|
283 |
+
"learning_rate": 4.1647880625292027e-07,
|
284 |
+
"loss": 0.0,
|
285 |
+
"reward": 3.5053839487954974,
|
286 |
+
"reward_std": 2.4146184872370213,
|
287 |
+
"rewards/concensus_correctness_reward_func": 1.5751250311732292,
|
288 |
+
"rewards/consensus_reward_func": 0.125,
|
289 |
+
"rewards/cumulative_reward_2": 0.0,
|
290 |
+
"rewards/final_correctness_reward_func": 0.8125,
|
291 |
+
"rewards/question_recreation_reward_func": 0.4747902047820389,
|
292 |
+
"rewards/soft_format_reward_func": 0.0,
|
293 |
+
"rewards/strict_format_reward_func": 0.0,
|
294 |
+
"rewards/xmlcount_reward_func": 0.517968756146729,
|
295 |
+
"step": 30
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"completion_length": 281.3125,
|
299 |
+
"epoch": 1.8,
|
300 |
+
"grad_norm": 2.0132243633270264,
|
301 |
+
"kl": 0.002754501736490056,
|
302 |
+
"learning_rate": 4.040571164002318e-07,
|
303 |
+
"loss": 0.0,
|
304 |
+
"reward": 4.006643671542406,
|
305 |
+
"reward_std": 1.8082885849289596,
|
306 |
+
"rewards/concensus_correctness_reward_func": 2.0200000014156103,
|
307 |
+
"rewards/consensus_reward_func": 0.3125,
|
308 |
+
"rewards/cumulative_reward_2": 0.0,
|
309 |
+
"rewards/final_correctness_reward_func": 0.625,
|
310 |
+
"rewards/question_recreation_reward_func": 0.5669561615213752,
|
311 |
+
"rewards/soft_format_reward_func": 0.015625,
|
312 |
+
"rewards/strict_format_reward_func": 0.0,
|
313 |
+
"rewards/xmlcount_reward_func": 0.46656251489184797,
|
314 |
+
"step": 32
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"completion_length": 320.8125,
|
318 |
+
"epoch": 1.9142857142857141,
|
319 |
+
"grad_norm": 2.2226650714874268,
|
320 |
+
"kl": 0.0029091214746586047,
|
321 |
+
"learning_rate": 3.909892574627266e-07,
|
322 |
+
"loss": 0.0,
|
323 |
+
"reward": 4.280492004007101,
|
324 |
+
"reward_std": 2.970120156183839,
|
325 |
+
"rewards/concensus_correctness_reward_func": 1.7401250004768372,
|
326 |
+
"rewards/consensus_reward_func": 0.625,
|
327 |
+
"rewards/cumulative_reward_2": 0.0,
|
328 |
+
"rewards/final_correctness_reward_func": 0.8125,
|
329 |
+
"rewards/question_recreation_reward_func": 0.601523166289553,
|
330 |
+
"rewards/soft_format_reward_func": 0.0,
|
331 |
+
"rewards/strict_format_reward_func": 0.0,
|
332 |
+
"rewards/xmlcount_reward_func": 0.5013437522575259,
|
333 |
+
"step": 34
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"completion_length": 316.5,
|
337 |
+
"epoch": 2.0,
|
338 |
+
"grad_norm": 1.4613192081451416,
|
339 |
+
"kl": 0.002774594468064606,
|
340 |
+
"learning_rate": 3.773300405821908e-07,
|
341 |
+
"loss": 0.0,
|
342 |
+
"reward": 3.184830774863561,
|
343 |
+
"reward_std": 2.355151594034396,
|
344 |
+
"rewards/concensus_correctness_reward_func": 1.0445833352083962,
|
345 |
+
"rewards/consensus_reward_func": 0.5833333333333334,
|
346 |
+
"rewards/cumulative_reward_2": 0.0,
|
347 |
+
"rewards/final_correctness_reward_func": 0.3333333333333333,
|
348 |
+
"rewards/question_recreation_reward_func": 0.6418723997970422,
|
349 |
+
"rewards/soft_format_reward_func": 0.0,
|
350 |
+
"rewards/strict_format_reward_func": 0.020833333333333332,
|
351 |
+
"rewards/xmlcount_reward_func": 0.5608749911189079,
|
352 |
+
"step": 36
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"completion_length": 316.625,
|
356 |
+
"epoch": 2.1142857142857143,
|
357 |
+
"grad_norm": 1.8819042444229126,
|
358 |
+
"kl": 0.002866531016479712,
|
359 |
+
"learning_rate": 3.6313675726113475e-07,
|
360 |
+
"loss": 0.0,
|
361 |
+
"reward": 3.52888186275959,
|
362 |
+
"reward_std": 0.9872541772201657,
|
363 |
+
"rewards/concensus_correctness_reward_func": 1.5981874950230122,
|
364 |
+
"rewards/consensus_reward_func": 0.375,
|
365 |
+
"rewards/cumulative_reward_2": 0.0,
|
366 |
+
"rewards/final_correctness_reward_func": 0.6875,
|
367 |
+
"rewards/question_recreation_reward_func": 0.6021005599759519,
|
368 |
+
"rewards/soft_format_reward_func": 0.0,
|
369 |
+
"rewards/strict_format_reward_func": 0.0,
|
370 |
+
"rewards/xmlcount_reward_func": 0.2660937544424087,
|
371 |
+
"step": 38
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"completion_length": 283.75,
|
375 |
+
"epoch": 2.2285714285714286,
|
376 |
+
"grad_norm": 2.4403116703033447,
|
377 |
+
"kl": 0.003229207592085004,
|
378 |
+
"learning_rate": 3.484689390623218e-07,
|
379 |
+
"loss": 0.0,
|
380 |
+
"reward": 4.119999956339598,
|
381 |
+
"reward_std": 1.6003942100796849,
|
382 |
+
"rewards/concensus_correctness_reward_func": 2.0809374977834523,
|
383 |
+
"rewards/consensus_reward_func": 0.5,
|
384 |
+
"rewards/cumulative_reward_2": 0.0,
|
385 |
+
"rewards/final_correctness_reward_func": 0.375,
|
386 |
+
"rewards/question_recreation_reward_func": 0.556437520775944,
|
387 |
+
"rewards/soft_format_reward_func": 0.0,
|
388 |
+
"rewards/strict_format_reward_func": 0.03125,
|
389 |
+
"rewards/xmlcount_reward_func": 0.5763750001788139,
|
390 |
+
"step": 40
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"completion_length": 283.5625,
|
394 |
+
"epoch": 2.342857142857143,
|
395 |
+
"grad_norm": 2.141371250152588,
|
396 |
+
"kl": 0.003269614593591541,
|
397 |
+
"learning_rate": 3.3338810791270517e-07,
|
398 |
+
"loss": 0.0,
|
399 |
+
"reward": 2.2994888741523027,
|
400 |
+
"reward_std": 1.130831709713675,
|
401 |
+
"rewards/concensus_correctness_reward_func": 0.3513124962337315,
|
402 |
+
"rewards/consensus_reward_func": 0.375,
|
403 |
+
"rewards/cumulative_reward_2": 0.0,
|
404 |
+
"rewards/final_correctness_reward_func": 0.625,
|
405 |
+
"rewards/question_recreation_reward_func": 0.47858266485854983,
|
406 |
+
"rewards/soft_format_reward_func": 0.0,
|
407 |
+
"rewards/strict_format_reward_func": 0.0,
|
408 |
+
"rewards/xmlcount_reward_func": 0.46959375590085983,
|
409 |
+
"step": 42
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"completion_length": 258.0625,
|
413 |
+
"epoch": 2.4571428571428573,
|
414 |
+
"grad_norm": 3.21244215965271,
|
415 |
+
"kl": 0.005789920185634401,
|
416 |
+
"learning_rate": 3.179575180590857e-07,
|
417 |
+
"loss": 0.0,
|
418 |
+
"reward": 4.591513024177402,
|
419 |
+
"reward_std": 1.265730170533061,
|
420 |
+
"rewards/concensus_correctness_reward_func": 1.9743749988265336,
|
421 |
+
"rewards/consensus_reward_func": 0.75,
|
422 |
+
"rewards/cumulative_reward_2": 0.0,
|
423 |
+
"rewards/final_correctness_reward_func": 0.8125,
|
424 |
+
"rewards/question_recreation_reward_func": 0.5825754599645734,
|
425 |
+
"rewards/soft_format_reward_func": 0.0,
|
426 |
+
"rewards/strict_format_reward_func": 0.0,
|
427 |
+
"rewards/xmlcount_reward_func": 0.47206250205636024,
|
428 |
+
"step": 44
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"completion_length": 249.09375,
|
432 |
+
"epoch": 2.571428571428571,
|
433 |
+
"grad_norm": 2.6296839714050293,
|
434 |
+
"kl": 0.005435560931800865,
|
435 |
+
"learning_rate": 3.022418907578188e-07,
|
436 |
+
"loss": 0.0,
|
437 |
+
"reward": 4.408128134906292,
|
438 |
+
"reward_std": 2.0285469442605972,
|
439 |
+
"rewards/concensus_correctness_reward_func": 2.1132499971427023,
|
440 |
+
"rewards/consensus_reward_func": 0.6875,
|
441 |
+
"rewards/cumulative_reward_2": 0.0,
|
442 |
+
"rewards/final_correctness_reward_func": 0.5,
|
443 |
+
"rewards/question_recreation_reward_func": 0.5583155920030549,
|
444 |
+
"rewards/soft_format_reward_func": 0.0,
|
445 |
+
"rewards/strict_format_reward_func": 0.015625,
|
446 |
+
"rewards/xmlcount_reward_func": 0.5334375011734664,
|
447 |
+
"step": 46
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"completion_length": 308.3125,
|
451 |
+
"epoch": 2.685714285714286,
|
452 |
+
"grad_norm": 2.3870928287506104,
|
453 |
+
"kl": 0.003486459288978949,
|
454 |
+
"learning_rate": 2.863071428113726e-07,
|
455 |
+
"loss": 0.0,
|
456 |
+
"reward": 2.0714636370539665,
|
457 |
+
"reward_std": 1.128730148426257,
|
458 |
+
"rewards/concensus_correctness_reward_func": 0.17793750471173553,
|
459 |
+
"rewards/consensus_reward_func": 0.375,
|
460 |
+
"rewards/cumulative_reward_2": 0.0,
|
461 |
+
"rewards/final_correctness_reward_func": 0.5,
|
462 |
+
"rewards/question_recreation_reward_func": 0.5705886241048574,
|
463 |
+
"rewards/soft_format_reward_func": 0.0,
|
464 |
+
"rewards/strict_format_reward_func": 0.0,
|
465 |
+
"rewards/xmlcount_reward_func": 0.44793750811368227,
|
466 |
+
"step": 48
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"completion_length": 350.34375,
|
470 |
+
"epoch": 2.8,
|
471 |
+
"grad_norm": 2.112053632736206,
|
472 |
+
"kl": 0.0031924354407237843,
|
473 |
+
"learning_rate": 2.7022011009035107e-07,
|
474 |
+
"loss": 0.0,
|
475 |
+
"reward": 2.2104606479406357,
|
476 |
+
"reward_std": 1.1965517563512549,
|
477 |
+
"rewards/concensus_correctness_reward_func": 0.26393750053830445,
|
478 |
+
"rewards/consensus_reward_func": 0.5625,
|
479 |
+
"rewards/cumulative_reward_2": 0.0,
|
480 |
+
"rewards/final_correctness_reward_func": 0.5625,
|
481 |
+
"rewards/question_recreation_reward_func": 0.5878356443718076,
|
482 |
+
"rewards/soft_format_reward_func": 0.0,
|
483 |
+
"rewards/strict_format_reward_func": 0.0,
|
484 |
+
"rewards/xmlcount_reward_func": 0.23368750466033816,
|
485 |
+
"step": 50
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"completion_length": 282.90625,
|
489 |
+
"epoch": 2.914285714285714,
|
490 |
+
"grad_norm": 168.68026733398438,
|
491 |
+
"kl": 0.059496873698662966,
|
492 |
+
"learning_rate": 2.540482672006254e-07,
|
493 |
+
"loss": 0.0001,
|
494 |
+
"reward": 2.359485674649477,
|
495 |
+
"reward_std": 0.6959111683536321,
|
496 |
+
"rewards/concensus_correctness_reward_func": 0.4997500032186508,
|
497 |
+
"rewards/consensus_reward_func": 0.25,
|
498 |
+
"rewards/cumulative_reward_2": 0.0,
|
499 |
+
"rewards/final_correctness_reward_func": 0.5,
|
500 |
+
"rewards/question_recreation_reward_func": 0.5438919421285391,
|
501 |
+
"rewards/soft_format_reward_func": 0.0,
|
502 |
+
"rewards/strict_format_reward_func": 0.03125,
|
503 |
+
"rewards/xmlcount_reward_func": 0.5345937591046095,
|
504 |
+
"step": 52
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"completion_length": 354.4583333333333,
|
508 |
+
"epoch": 3.0,
|
509 |
+
"grad_norm": 2.093106985092163,
|
510 |
+
"kl": 0.00446942588314414,
|
511 |
+
"learning_rate": 2.37859444471388e-07,
|
512 |
+
"loss": 0.0,
|
513 |
+
"reward": 3.0545214464267096,
|
514 |
+
"reward_std": 2.0393191116551557,
|
515 |
+
"rewards/concensus_correctness_reward_func": 1.0114166662096977,
|
516 |
+
"rewards/consensus_reward_func": 0.16666666666666666,
|
517 |
+
"rewards/cumulative_reward_2": 0.0,
|
518 |
+
"rewards/final_correctness_reward_func": 0.5,
|
519 |
+
"rewards/question_recreation_reward_func": 0.7018964091936747,
|
520 |
+
"rewards/soft_format_reward_func": 0.0,
|
521 |
+
"rewards/strict_format_reward_func": 0.0,
|
522 |
+
"rewards/xmlcount_reward_func": 0.6745416695872942,
|
523 |
+
"step": 54
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"completion_length": 308.96875,
|
527 |
+
"epoch": 3.1142857142857143,
|
528 |
+
"grad_norm": 1.8336759805679321,
|
529 |
+
"kl": 0.0041244168824050575,
|
530 |
+
"learning_rate": 2.2172154345117894e-07,
|
531 |
+
"loss": 0.0,
|
532 |
+
"reward": 2.694729525479488,
|
533 |
+
"reward_std": 2.6853361323010176,
|
534 |
+
"rewards/concensus_correctness_reward_func": 1.0250000013038516,
|
535 |
+
"rewards/consensus_reward_func": 0.5,
|
536 |
+
"rewards/cumulative_reward_2": 0.0,
|
537 |
+
"rewards/final_correctness_reward_func": 0.4375,
|
538 |
+
"rewards/question_recreation_reward_func": 0.5355733069591224,
|
539 |
+
"rewards/soft_format_reward_func": 0.0,
|
540 |
+
"rewards/strict_format_reward_func": 0.0,
|
541 |
+
"rewards/xmlcount_reward_func": 0.19665626890491694,
|
542 |
+
"step": 56
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"completion_length": 301.71875,
|
546 |
+
"epoch": 3.2285714285714286,
|
547 |
+
"grad_norm": 2.281761884689331,
|
548 |
+
"kl": 0.004181647425866686,
|
549 |
+
"learning_rate": 2.0570225210519433e-07,
|
550 |
+
"loss": 0.0,
|
551 |
+
"reward": 2.7115835566073656,
|
552 |
+
"reward_std": 2.3708576498320326,
|
553 |
+
"rewards/concensus_correctness_reward_func": 0.7873749984428287,
|
554 |
+
"rewards/consensus_reward_func": 0.5,
|
555 |
+
"rewards/cumulative_reward_2": 0.0,
|
556 |
+
"rewards/final_correctness_reward_func": 0.5625,
|
557 |
+
"rewards/question_recreation_reward_func": 0.4799272818490863,
|
558 |
+
"rewards/soft_format_reward_func": 0.0,
|
559 |
+
"rewards/strict_format_reward_func": 0.0,
|
560 |
+
"rewards/xmlcount_reward_func": 0.38178124325349927,
|
561 |
+
"step": 58
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"completion_length": 295.90625,
|
565 |
+
"epoch": 3.342857142857143,
|
566 |
+
"grad_norm": 2.244230031967163,
|
567 |
+
"kl": 0.0050736206758301705,
|
568 |
+
"learning_rate": 1.8986876090843664e-07,
|
569 |
+
"loss": 0.0,
|
570 |
+
"reward": 4.905442409217358,
|
571 |
+
"reward_std": 1.7945623963605613,
|
572 |
+
"rewards/concensus_correctness_reward_func": 2.4236875250935555,
|
573 |
+
"rewards/consensus_reward_func": 0.6875,
|
574 |
+
"rewards/cumulative_reward_2": 0.0,
|
575 |
+
"rewards/final_correctness_reward_func": 0.5625,
|
576 |
+
"rewards/question_recreation_reward_func": 0.5710362014360726,
|
577 |
+
"rewards/soft_format_reward_func": 0.0,
|
578 |
+
"rewards/strict_format_reward_func": 0.015625,
|
579 |
+
"rewards/xmlcount_reward_func": 0.6450937511399388,
|
580 |
+
"step": 60
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"completion_length": 318.59375,
|
584 |
+
"epoch": 3.4571428571428573,
|
585 |
+
"grad_norm": 2.056881904602051,
|
586 |
+
"kl": 0.004618284721800592,
|
587 |
+
"learning_rate": 1.7428748102551234e-07,
|
588 |
+
"loss": 0.0,
|
589 |
+
"reward": 4.192068429663777,
|
590 |
+
"reward_std": 1.9262854177504778,
|
591 |
+
"rewards/concensus_correctness_reward_func": 2.088000003132038,
|
592 |
+
"rewards/consensus_reward_func": 0.4375,
|
593 |
+
"rewards/cumulative_reward_2": 0.0,
|
594 |
+
"rewards/final_correctness_reward_func": 0.625,
|
595 |
+
"rewards/question_recreation_reward_func": 0.641599677503109,
|
596 |
+
"rewards/soft_format_reward_func": 0.0,
|
597 |
+
"rewards/strict_format_reward_func": 0.0,
|
598 |
+
"rewards/xmlcount_reward_func": 0.39996875007636845,
|
599 |
+
"step": 62
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"completion_length": 286.96875,
|
603 |
+
"epoch": 3.571428571428571,
|
604 |
+
"grad_norm": 2.1847808361053467,
|
605 |
+
"kl": 0.005289344000630081,
|
606 |
+
"learning_rate": 1.5902376575912814e-07,
|
607 |
+
"loss": 0.0,
|
608 |
+
"reward": 2.9830123744904995,
|
609 |
+
"reward_std": 0.6361244827858172,
|
610 |
+
"rewards/concensus_correctness_reward_func": 1.307187500409782,
|
611 |
+
"rewards/consensus_reward_func": 0.375,
|
612 |
+
"rewards/cumulative_reward_2": 0.0,
|
613 |
+
"rewards/final_correctness_reward_func": 0.3125,
|
614 |
+
"rewards/question_recreation_reward_func": 0.47551230591489,
|
615 |
+
"rewards/soft_format_reward_func": 0.0,
|
616 |
+
"rewards/strict_format_reward_func": 0.0,
|
617 |
+
"rewards/xmlcount_reward_func": 0.5128125082701445,
|
618 |
+
"step": 64
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"completion_length": 308.125,
|
622 |
+
"epoch": 3.685714285714286,
|
623 |
+
"grad_norm": 1.9466278553009033,
|
624 |
+
"kl": 0.00550089653552277,
|
625 |
+
"learning_rate": 1.4414163643562753e-07,
|
626 |
+
"loss": 0.0,
|
627 |
+
"reward": 4.133690036833286,
|
628 |
+
"reward_std": 0.9184011179022491,
|
629 |
+
"rewards/concensus_correctness_reward_func": 1.6501249980647117,
|
630 |
+
"rewards/consensus_reward_func": 0.75,
|
631 |
+
"rewards/cumulative_reward_2": 0.0,
|
632 |
+
"rewards/final_correctness_reward_func": 0.625,
|
633 |
+
"rewards/question_recreation_reward_func": 0.5630338042974472,
|
634 |
+
"rewards/soft_format_reward_func": 0.0,
|
635 |
+
"rewards/strict_format_reward_func": 0.015625,
|
636 |
+
"rewards/xmlcount_reward_func": 0.5299062561243773,
|
637 |
+
"step": 66
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"completion_length": 291.9375,
|
641 |
+
"epoch": 3.8,
|
642 |
+
"grad_norm": 3.8379456996917725,
|
643 |
+
"kl": 0.005396832886617631,
|
644 |
+
"learning_rate": 1.2970351387729872e-07,
|
645 |
+
"loss": 0.0,
|
646 |
+
"reward": 2.430345553904772,
|
647 |
+
"reward_std": 1.710412791930139,
|
648 |
+
"rewards/concensus_correctness_reward_func": 0.707187500782311,
|
649 |
+
"rewards/consensus_reward_func": 0.25,
|
650 |
+
"rewards/cumulative_reward_2": 0.0,
|
651 |
+
"rewards/final_correctness_reward_func": 0.25,
|
652 |
+
"rewards/question_recreation_reward_func": 0.6847830386832356,
|
653 |
+
"rewards/soft_format_reward_func": 0.0,
|
654 |
+
"rewards/strict_format_reward_func": 0.015625,
|
655 |
+
"rewards/xmlcount_reward_func": 0.5227500032633543,
|
656 |
+
"step": 68
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"completion_length": 265.625,
|
660 |
+
"epoch": 3.914285714285714,
|
661 |
+
"grad_norm": 2.23298978805542,
|
662 |
+
"kl": 0.005603167533990927,
|
663 |
+
"learning_rate": 1.1576995658775404e-07,
|
664 |
+
"loss": 0.0,
|
665 |
+
"reward": 4.257293211296201,
|
666 |
+
"reward_std": 3.9666671017184854,
|
667 |
+
"rewards/concensus_correctness_reward_func": 1.9901874985080212,
|
668 |
+
"rewards/consensus_reward_func": 0.625,
|
669 |
+
"rewards/cumulative_reward_2": 0.0,
|
670 |
+
"rewards/final_correctness_reward_func": 0.625,
|
671 |
+
"rewards/question_recreation_reward_func": 0.5431681228801608,
|
672 |
+
"rewards/soft_format_reward_func": 0.0,
|
673 |
+
"rewards/strict_format_reward_func": 0.015625,
|
674 |
+
"rewards/xmlcount_reward_func": 0.4583124993368983,
|
675 |
+
"step": 70
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"completion_length": 291.2083333333333,
|
679 |
+
"epoch": 4.0,
|
680 |
+
"grad_norm": 1.4707306623458862,
|
681 |
+
"kl": 0.006299581126465152,
|
682 |
+
"learning_rate": 1.0239940674851941e-07,
|
683 |
+
"loss": 0.0,
|
684 |
+
"reward": 4.036697139342626,
|
685 |
+
"reward_std": 3.6838483214378357,
|
686 |
+
"rewards/concensus_correctness_reward_func": 1.85033332912523,
|
687 |
+
"rewards/consensus_reward_func": 0.3333333333333333,
|
688 |
+
"rewards/cumulative_reward_2": 0.0,
|
689 |
+
"rewards/final_correctness_reward_func": 0.9166666666666666,
|
690 |
+
"rewards/question_recreation_reward_func": 0.5903221443295479,
|
691 |
+
"rewards/soft_format_reward_func": 0.0,
|
692 |
+
"rewards/strict_format_reward_func": 0.020833333333333332,
|
693 |
+
"rewards/xmlcount_reward_func": 0.3252083510160446,
|
694 |
+
"step": 72
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"completion_length": 355.53125,
|
698 |
+
"epoch": 4.114285714285714,
|
699 |
+
"grad_norm": 2.0232465267181396,
|
700 |
+
"kl": 0.005168267816770822,
|
701 |
+
"learning_rate": 8.964794509221507e-08,
|
702 |
+
"loss": 0.0,
|
703 |
+
"reward": 2.0521673914045095,
|
704 |
+
"reward_std": 1.2210392798297107,
|
705 |
+
"rewards/concensus_correctness_reward_func": 0.3000000002793968,
|
706 |
+
"rewards/consensus_reward_func": 0.3125,
|
707 |
+
"rewards/cumulative_reward_2": 0.0,
|
708 |
+
"rewards/final_correctness_reward_func": 0.4375,
|
709 |
+
"rewards/question_recreation_reward_func": 0.5546986176632345,
|
710 |
+
"rewards/soft_format_reward_func": 0.0,
|
711 |
+
"rewards/strict_format_reward_func": 0.0,
|
712 |
+
"rewards/xmlcount_reward_func": 0.44746875669807196,
|
713 |
+
"step": 74
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"completion_length": 306.625,
|
717 |
+
"epoch": 4.228571428571429,
|
718 |
+
"grad_norm": 2.0220844745635986,
|
719 |
+
"kl": 0.005869668988452759,
|
720 |
+
"learning_rate": 7.756905568047392e-08,
|
721 |
+
"loss": 0.0,
|
722 |
+
"reward": 3.464091993868351,
|
723 |
+
"reward_std": 3.065386278554797,
|
724 |
+
"rewards/concensus_correctness_reward_func": 1.4443750018253922,
|
725 |
+
"rewards/consensus_reward_func": 0.3125,
|
726 |
+
"rewards/cumulative_reward_2": 0.0,
|
727 |
+
"rewards/final_correctness_reward_func": 0.625,
|
728 |
+
"rewards/question_recreation_reward_func": 0.6136857415549457,
|
729 |
+
"rewards/soft_format_reward_func": 0.0,
|
730 |
+
"rewards/strict_format_reward_func": 0.0,
|
731 |
+
"rewards/xmlcount_reward_func": 0.4685312566580251,
|
732 |
+
"step": 76
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"completion_length": 274.53125,
|
736 |
+
"epoch": 4.3428571428571425,
|
737 |
+
"grad_norm": 2.320235013961792,
|
738 |
+
"kl": 0.00582803861470893,
|
739 |
+
"learning_rate": 6.621340157319996e-08,
|
740 |
+
"loss": 0.0,
|
741 |
+
"reward": 4.306629652157426,
|
742 |
+
"reward_std": 3.718445436330512,
|
743 |
+
"rewards/concensus_correctness_reward_func": 2.290749993175268,
|
744 |
+
"rewards/consensus_reward_func": 0.375,
|
745 |
+
"rewards/cumulative_reward_2": 0.0,
|
746 |
+
"rewards/final_correctness_reward_func": 0.625,
|
747 |
+
"rewards/question_recreation_reward_func": 0.5755982827395201,
|
748 |
+
"rewards/soft_format_reward_func": 0.0,
|
749 |
+
"rewards/strict_format_reward_func": 0.015625,
|
750 |
+
"rewards/xmlcount_reward_func": 0.4246562549378723,
|
751 |
+
"step": 78
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"completion_length": 280.65625,
|
755 |
+
"epoch": 4.457142857142857,
|
756 |
+
"grad_norm": 2.4888482093811035,
|
757 |
+
"kl": 0.007190108473878354,
|
758 |
+
"learning_rate": 5.5628612330087724e-08,
|
759 |
+
"loss": 0.0,
|
760 |
+
"reward": 4.881872668862343,
|
761 |
+
"reward_std": 3.823639538139105,
|
762 |
+
"rewards/concensus_correctness_reward_func": 2.405187502503395,
|
763 |
+
"rewards/consensus_reward_func": 0.375,
|
764 |
+
"rewards/cumulative_reward_2": 0.0,
|
765 |
+
"rewards/final_correctness_reward_func": 0.875,
|
766 |
+
"rewards/question_recreation_reward_func": 0.6339664794504642,
|
767 |
+
"rewards/soft_format_reward_func": 0.0,
|
768 |
+
"rewards/strict_format_reward_func": 0.0,
|
769 |
+
"rewards/xmlcount_reward_func": 0.5927187576889992,
|
770 |
+
"step": 80
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"completion_length": 303.5,
|
774 |
+
"epoch": 4.571428571428571,
|
775 |
+
"grad_norm": 4.6361470222473145,
|
776 |
+
"kl": 0.005384259682614356,
|
777 |
+
"learning_rate": 4.5859084235697235e-08,
|
778 |
+
"loss": 0.0,
|
779 |
+
"reward": 3.0980553831905127,
|
780 |
+
"reward_std": 2.1309230010956526,
|
781 |
+
"rewards/concensus_correctness_reward_func": 1.0608749956518295,
|
782 |
+
"rewards/consensus_reward_func": 0.625,
|
783 |
+
"rewards/cumulative_reward_2": 0.0,
|
784 |
+
"rewards/final_correctness_reward_func": 0.25,
|
785 |
+
"rewards/question_recreation_reward_func": 0.5475553153082728,
|
786 |
+
"rewards/soft_format_reward_func": 0.0,
|
787 |
+
"rewards/strict_format_reward_func": 0.015625,
|
788 |
+
"rewards/xmlcount_reward_func": 0.5990000087767839,
|
789 |
+
"step": 82
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"completion_length": 266.28125,
|
793 |
+
"epoch": 4.685714285714286,
|
794 |
+
"grad_norm": 1.8511204719543457,
|
795 |
+
"kl": 0.006429586021113209,
|
796 |
+
"learning_rate": 3.6945794086007705e-08,
|
797 |
+
"loss": 0.0,
|
798 |
+
"reward": 4.905601989477873,
|
799 |
+
"reward_std": 1.8997747544199228,
|
800 |
+
"rewards/concensus_correctness_reward_func": 2.3535624709911644,
|
801 |
+
"rewards/consensus_reward_func": 0.75,
|
802 |
+
"rewards/cumulative_reward_2": 0.0,
|
803 |
+
"rewards/final_correctness_reward_func": 0.75,
|
804 |
+
"rewards/question_recreation_reward_func": 0.603758230805397,
|
805 |
+
"rewards/soft_format_reward_func": 0.0,
|
806 |
+
"rewards/strict_format_reward_func": 0.0,
|
807 |
+
"rewards/xmlcount_reward_func": 0.44828125601634383,
|
808 |
+
"step": 84
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"completion_length": 278.03125,
|
812 |
+
"epoch": 4.8,
|
813 |
+
"grad_norm": 1.860162377357483,
|
814 |
+
"kl": 0.00791130104335025,
|
815 |
+
"learning_rate": 2.892612731749414e-08,
|
816 |
+
"loss": 0.0,
|
817 |
+
"reward": 4.628453429788351,
|
818 |
+
"reward_std": 1.4046993185766041,
|
819 |
+
"rewards/concensus_correctness_reward_func": 2.1729374984279275,
|
820 |
+
"rewards/consensus_reward_func": 0.75,
|
821 |
+
"rewards/cumulative_reward_2": 0.0,
|
822 |
+
"rewards/final_correctness_reward_func": 0.5,
|
823 |
+
"rewards/question_recreation_reward_func": 0.6255784202367067,
|
824 |
+
"rewards/soft_format_reward_func": 0.0,
|
825 |
+
"rewards/strict_format_reward_func": 0.0,
|
826 |
+
"rewards/xmlcount_reward_func": 0.5799375101923943,
|
827 |
+
"step": 86
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"completion_length": 296.46875,
|
831 |
+
"epoch": 4.914285714285715,
|
832 |
+
"grad_norm": 1.8456752300262451,
|
833 |
+
"kl": 0.007626559119671583,
|
834 |
+
"learning_rate": 2.183372119961499e-08,
|
835 |
+
"loss": 0.0,
|
836 |
+
"reward": 2.681800600141287,
|
837 |
+
"reward_std": 1.8635689666261896,
|
838 |
+
"rewards/concensus_correctness_reward_func": 0.7971874834038317,
|
839 |
+
"rewards/consensus_reward_func": 0.3125,
|
840 |
+
"rewards/cumulative_reward_2": 0.0,
|
841 |
+
"rewards/final_correctness_reward_func": 0.4375,
|
842 |
+
"rewards/question_recreation_reward_func": 0.6776756662875414,
|
843 |
+
"rewards/soft_format_reward_func": 0.0,
|
844 |
+
"rewards/strict_format_reward_func": 0.0,
|
845 |
+
"rewards/xmlcount_reward_func": 0.4569375063292682,
|
846 |
+
"step": 88
|
847 |
+
},
|
848 |
+
{
|
849 |
+
"completion_length": 290.5,
|
850 |
+
"epoch": 5.0,
|
851 |
+
"grad_norm": 2.047769546508789,
|
852 |
+
"kl": 0.006456721554665516,
|
853 |
+
"learning_rate": 1.5698323748414122e-08,
|
854 |
+
"loss": 0.0,
|
855 |
+
"reward": 2.1199893852074942,
|
856 |
+
"reward_std": 1.2634541131556034,
|
857 |
+
"rewards/concensus_correctness_reward_func": 0.1910833322132627,
|
858 |
+
"rewards/consensus_reward_func": 0.5833333333333334,
|
859 |
+
"rewards/cumulative_reward_2": 0.0,
|
860 |
+
"rewards/final_correctness_reward_func": 0.4166666666666667,
|
861 |
+
"rewards/question_recreation_reward_func": 0.5751561038196087,
|
862 |
+
"rewards/soft_format_reward_func": 0.0,
|
863 |
+
"rewards/strict_format_reward_func": 0.0,
|
864 |
+
"rewards/xmlcount_reward_func": 0.3537500017943482,
|
865 |
+
"step": 90
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"completion_length": 242.40625,
|
869 |
+
"epoch": 5.114285714285714,
|
870 |
+
"grad_norm": 2.607699394226074,
|
871 |
+
"kl": 0.007154520819312893,
|
872 |
+
"learning_rate": 1.054566895300324e-08,
|
873 |
+
"loss": 0.0,
|
874 |
+
"reward": 4.453570373356342,
|
875 |
+
"reward_std": 3.0469054598361254,
|
876 |
+
"rewards/concensus_correctness_reward_func": 2.308937451802194,
|
877 |
+
"rewards/consensus_reward_func": 0.4375,
|
878 |
+
"rewards/cumulative_reward_2": 0.0,
|
879 |
+
"rewards/final_correctness_reward_func": 0.8125,
|
880 |
+
"rewards/question_recreation_reward_func": 0.39563290192745626,
|
881 |
+
"rewards/soft_format_reward_func": 0.0,
|
882 |
+
"rewards/strict_format_reward_func": 0.015625,
|
883 |
+
"rewards/xmlcount_reward_func": 0.48337499890476465,
|
884 |
+
"step": 92
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"completion_length": 308.125,
|
888 |
+
"epoch": 5.228571428571429,
|
889 |
+
"grad_norm": 2.1194515228271484,
|
890 |
+
"kl": 0.006183088626130484,
|
891 |
+
"learning_rate": 6.397368838268496e-09,
|
892 |
+
"loss": 0.0,
|
893 |
+
"reward": 2.625663474202156,
|
894 |
+
"reward_std": 1.7279910603974713,
|
895 |
+
"rewards/concensus_correctness_reward_func": 0.7290624994784594,
|
896 |
+
"rewards/consensus_reward_func": 0.375,
|
897 |
+
"rewards/cumulative_reward_2": 0.0,
|
898 |
+
"rewards/final_correctness_reward_func": 0.375,
|
899 |
+
"rewards/question_recreation_reward_func": 0.5077572092413902,
|
900 |
+
"rewards/soft_format_reward_func": 0.0,
|
901 |
+
"rewards/strict_format_reward_func": 0.015625,
|
902 |
+
"rewards/xmlcount_reward_func": 0.6232187608256936,
|
903 |
+
"step": 94
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"completion_length": 274.21875,
|
907 |
+
"epoch": 5.3428571428571425,
|
908 |
+
"grad_norm": 2.2122576236724854,
|
909 |
+
"kl": 0.007067822094541043,
|
910 |
+
"learning_rate": 3.2708228165273244e-09,
|
911 |
+
"loss": 0.0,
|
912 |
+
"reward": 3.398947611451149,
|
913 |
+
"reward_std": 2.7149232206866145,
|
914 |
+
"rewards/concensus_correctness_reward_func": 1.5500000063329935,
|
915 |
+
"rewards/consensus_reward_func": 0.375,
|
916 |
+
"rewards/cumulative_reward_2": 0.0,
|
917 |
+
"rewards/final_correctness_reward_func": 0.4375,
|
918 |
+
"rewards/question_recreation_reward_func": 0.5797913847491145,
|
919 |
+
"rewards/soft_format_reward_func": 0.0,
|
920 |
+
"rewards/strict_format_reward_func": 0.015625,
|
921 |
+
"rewards/xmlcount_reward_func": 0.44103125110268593,
|
922 |
+
"step": 96
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"completion_length": 313.75,
|
926 |
+
"epoch": 5.457142857142857,
|
927 |
+
"grad_norm": 1.9602198600769043,
|
928 |
+
"kl": 0.006589054362848401,
|
929 |
+
"learning_rate": 1.1791447083465133e-09,
|
930 |
+
"loss": 0.0,
|
931 |
+
"reward": 3.4984066113829613,
|
932 |
+
"reward_std": 2.1465693595819175,
|
933 |
+
"rewards/concensus_correctness_reward_func": 1.0073750019073486,
|
934 |
+
"rewards/consensus_reward_func": 0.4375,
|
935 |
+
"rewards/cumulative_reward_2": 0.0,
|
936 |
+
"rewards/final_correctness_reward_func": 0.6875,
|
937 |
+
"rewards/question_recreation_reward_func": 0.6563441203907132,
|
938 |
+
"rewards/soft_format_reward_func": 0.0,
|
939 |
+
"rewards/strict_format_reward_func": 0.015625,
|
940 |
+
"rewards/xmlcount_reward_func": 0.6940625086426735,
|
941 |
+
"step": 98
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"completion_length": 299.125,
|
945 |
+
"epoch": 5.571428571428571,
|
946 |
+
"grad_norm": 2.126802682876587,
|
947 |
+
"kl": 0.007156282430514693,
|
948 |
+
"learning_rate": 1.3110773862126667e-10,
|
949 |
+
"loss": 0.0,
|
950 |
+
"reward": 3.7894926061853766,
|
951 |
+
"reward_std": 3.776049384730868,
|
952 |
+
"rewards/concensus_correctness_reward_func": 1.8608750000130385,
|
953 |
+
"rewards/consensus_reward_func": 0.5,
|
954 |
+
"rewards/cumulative_reward_2": 0.0,
|
955 |
+
"rewards/final_correctness_reward_func": 0.25,
|
956 |
+
"rewards/question_recreation_reward_func": 0.665586419403553,
|
957 |
+
"rewards/soft_format_reward_func": 0.0,
|
958 |
+
"rewards/strict_format_reward_func": 0.015625,
|
959 |
+
"rewards/xmlcount_reward_func": 0.49740625848062336,
|
960 |
+
"step": 100
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"epoch": 5.571428571428571,
|
964 |
+
"step": 100,
|
965 |
+
"total_flos": 0.0,
|
966 |
+
"train_loss": 5.14280412971857e-06,
|
967 |
+
"train_runtime": 2155.4049,
|
968 |
+
"train_samples_per_second": 0.742,
|
969 |
+
"train_steps_per_second": 0.046
|
970 |
+
}
|
971 |
+
],
|
972 |
+
"logging_steps": 2,
|
973 |
+
"max_steps": 100,
|
974 |
+
"num_input_tokens_seen": 0,
|
975 |
+
"num_train_epochs": 6,
|
976 |
+
"save_steps": 25,
|
977 |
+
"stateful_callbacks": {
|
978 |
+
"TrainerControl": {
|
979 |
+
"args": {
|
980 |
+
"should_epoch_stop": false,
|
981 |
+
"should_evaluate": false,
|
982 |
+
"should_log": false,
|
983 |
+
"should_save": true,
|
984 |
+
"should_training_stop": true
|
985 |
+
},
|
986 |
+
"attributes": {}
|
987 |
+
}
|
988 |
+
},
|
989 |
+
"total_flos": 0.0,
|
990 |
+
"train_batch_size": 2,
|
991 |
+
"trial_name": null,
|
992 |
+
"trial_params": null
|
993 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dd9497f02e3fb28ad58a4a416bd0548acc4b0efbe0cc9a1453eb443976f69957
|
3 |
+
size 5944
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|