wyceee commited on
Commit
1943316
·
verified ·
1 Parent(s): 773d601

End of training

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Gensyn/Qwen2.5-1.5B-Instruct
3
+ library_name: transformers
4
+ model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-slithering_sneaky_chinchilla
5
+ tags:
6
+ - generated_from_trainer
7
+ - rl-swarm
8
+ - grpo
9
+ - gensyn
10
+ - I am slithering sneaky chinchilla
11
+ - trl
12
+ licence: license
13
+ ---
14
+
15
+ # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-slithering_sneaky_chinchilla
16
+
17
+ This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct).
18
+ It has been trained using [TRL](https://github.com/huggingface/trl).
19
+
20
+ ## Quick start
21
+
22
+ ```python
23
+ from transformers import pipeline
24
+
25
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
26
+ generator = pipeline("text-generation", model="wyceee/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-slithering_sneaky_chinchilla", device="cuda")
27
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
28
+ print(output["generated_text"])
29
+ ```
30
+
31
+ ## Training procedure
32
+
33
+
34
+
35
+
36
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
37
+
38
+ ### Framework versions
39
+
40
+ - TRL: 0.15.2
41
+ - Transformers: 4.51.3
42
+ - Pytorch: 2.5.1
43
+ - Datasets: 3.5.0
44
+ - Tokenizers: 0.21.1
45
+
46
+ ## Citations
47
+
48
+ Cite GRPO as:
49
+
50
+ ```bibtex
51
+ @article{zhihong2024deepseekmath,
52
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
53
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
54
+ year = 2024,
55
+ eprint = {arXiv:2402.03300},
56
+ }
57
+
58
+ ```
59
+
60
+ Cite TRL as:
61
+
62
+ ```bibtex
63
+ @misc{vonwerra2022trl,
64
+ title = {{TRL: Transformer Reinforcement Learning}},
65
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
66
+ year = 2020,
67
+ journal = {GitHub repository},
68
+ publisher = {GitHub},
69
+ howpublished = {\url{https://github.com/huggingface/trl}}
70
+ }
71
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 5.14280412971857e-06,
4
+ "train_runtime": 2155.4049,
5
+ "train_samples": 140,
6
+ "train_samples_per_second": 0.742,
7
+ "train_steps_per_second": 0.046
8
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 1536,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 8960,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 21,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 28,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": 32768,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.51.3",
25
+ "use_cache": true,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151936
28
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.51.3"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaf4fcdefb7f362fdb7f02a78b98eb604363f6c7c50d3aeb3a683bdc0f851555
3
+ size 4996670464
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7d10e11ce64502f5270013311d5eb4c6a7e0de8af92fc6e0961226fae7a98a4
3
+ size 1178224960
model.safetensors.index.json ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6174857216
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
265
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
268
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
270
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
274
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
276
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
277
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
278
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
280
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
281
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
282
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
297
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
298
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
299
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
300
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
301
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
302
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
303
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
304
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
305
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
306
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
307
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
308
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
309
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
310
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
311
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
312
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
313
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
314
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
315
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
316
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
317
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
318
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
319
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
320
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
321
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
322
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
323
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
324
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
325
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
326
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
327
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
328
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
329
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
330
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
331
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
332
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
333
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
334
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
335
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
336
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
337
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
338
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
339
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
340
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
341
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
342
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
343
+ "model.norm.weight": "model-00002-of-00002.safetensors"
344
+ }
345
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 5.14280412971857e-06,
4
+ "train_runtime": 2155.4049,
5
+ "train_samples": 140,
6
+ "train_samples_per_second": 0.742,
7
+ "train_steps_per_second": 0.046
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,993 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 5.571428571428571,
6
+ "eval_steps": 500,
7
+ "global_step": 100,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "completion_length": 313.65625,
14
+ "epoch": 0.11428571428571428,
15
+ "grad_norm": 1.9183201789855957,
16
+ "kl": 0.0,
17
+ "learning_rate": 1.6666666666666665e-07,
18
+ "loss": 0.0,
19
+ "reward": 5.733217548578978,
20
+ "reward_std": 3.8726130831055343,
21
+ "rewards/concensus_correctness_reward_func": 3.3072499986737967,
22
+ "rewards/consensus_reward_func": 0.6875,
23
+ "rewards/cumulative_reward_2": 0.0,
24
+ "rewards/final_correctness_reward_func": 0.875,
25
+ "rewards/question_recreation_reward_func": 0.5423112083226442,
26
+ "rewards/soft_format_reward_func": 0.0,
27
+ "rewards/strict_format_reward_func": 0.0,
28
+ "rewards/xmlcount_reward_func": 0.3211562526412308,
29
+ "step": 2
30
+ },
31
+ {
32
+ "completion_length": 302.6875,
33
+ "epoch": 0.22857142857142856,
34
+ "grad_norm": 2.035726308822632,
35
+ "kl": 0.0008348686824319884,
36
+ "learning_rate": 5e-07,
37
+ "loss": 0.0,
38
+ "reward": 3.6854598224163055,
39
+ "reward_std": 1.4634849466383457,
40
+ "rewards/concensus_correctness_reward_func": 1.4465625032316893,
41
+ "rewards/consensus_reward_func": 0.625,
42
+ "rewards/cumulative_reward_2": 0.0,
43
+ "rewards/final_correctness_reward_func": 0.4375,
44
+ "rewards/question_recreation_reward_func": 0.6805536039173603,
45
+ "rewards/soft_format_reward_func": 0.0,
46
+ "rewards/strict_format_reward_func": 0.015625,
47
+ "rewards/xmlcount_reward_func": 0.4802187574096024,
48
+ "step": 4
49
+ },
50
+ {
51
+ "completion_length": 278.5,
52
+ "epoch": 0.34285714285714286,
53
+ "grad_norm": 2.9881222248077393,
54
+ "kl": 0.0006843123064754764,
55
+ "learning_rate": 4.994757065594279e-07,
56
+ "loss": 0.0,
57
+ "reward": 1.408921517431736,
58
+ "reward_std": 0.8394484423333779,
59
+ "rewards/concensus_correctness_reward_func": 0.07199999992735684,
60
+ "rewards/consensus_reward_func": 0.25,
61
+ "rewards/cumulative_reward_2": 0.0,
62
+ "rewards/final_correctness_reward_func": 0.125,
63
+ "rewards/question_recreation_reward_func": 0.5614215070381761,
64
+ "rewards/soft_format_reward_func": 0.0,
65
+ "rewards/strict_format_reward_func": 0.015625,
66
+ "rewards/xmlcount_reward_func": 0.3848750018514693,
67
+ "step": 6
68
+ },
69
+ {
70
+ "completion_length": 308.09375,
71
+ "epoch": 0.45714285714285713,
72
+ "grad_norm": 2.3815231323242188,
73
+ "kl": 0.0008725040206627455,
74
+ "learning_rate": 4.979050253066063e-07,
75
+ "loss": 0.0,
76
+ "reward": 5.5596274845302105,
77
+ "reward_std": 2.3076624351087958,
78
+ "rewards/concensus_correctness_reward_func": 3.843499973183498,
79
+ "rewards/consensus_reward_func": 0.375,
80
+ "rewards/cumulative_reward_2": 0.0,
81
+ "rewards/final_correctness_reward_func": 0.5,
82
+ "rewards/question_recreation_reward_func": 0.5385024221614003,
83
+ "rewards/soft_format_reward_func": 0.0,
84
+ "rewards/strict_format_reward_func": 0.0,
85
+ "rewards/xmlcount_reward_func": 0.3026250071125105,
86
+ "step": 8
87
+ },
88
+ {
89
+ "completion_length": 287.6875,
90
+ "epoch": 0.5714285714285714,
91
+ "grad_norm": 2.3809289932250977,
92
+ "kl": 0.0008873967562976759,
93
+ "learning_rate": 4.952945442245597e-07,
94
+ "loss": 0.0,
95
+ "reward": 4.663692280650139,
96
+ "reward_std": 3.257206997834146,
97
+ "rewards/concensus_correctness_reward_func": 2.7571874954737723,
98
+ "rewards/consensus_reward_func": 0.3125,
99
+ "rewards/cumulative_reward_2": 0.0,
100
+ "rewards/final_correctness_reward_func": 0.625,
101
+ "rewards/question_recreation_reward_func": 0.5873797507956624,
102
+ "rewards/soft_format_reward_func": 0.0,
103
+ "rewards/strict_format_reward_func": 0.0,
104
+ "rewards/xmlcount_reward_func": 0.3816250069066882,
105
+ "step": 10
106
+ },
107
+ {
108
+ "completion_length": 267.8125,
109
+ "epoch": 0.6857142857142857,
110
+ "grad_norm": 2.1084818840026855,
111
+ "kl": 0.001183122909424128,
112
+ "learning_rate": 4.916552125781528e-07,
113
+ "loss": 0.0,
114
+ "reward": 5.68206575140357,
115
+ "reward_std": 5.3108197445981205,
116
+ "rewards/concensus_correctness_reward_func": 3.338500021956861,
117
+ "rewards/consensus_reward_func": 0.5625,
118
+ "rewards/cumulative_reward_2": 0.0,
119
+ "rewards/final_correctness_reward_func": 0.625,
120
+ "rewards/question_recreation_reward_func": 0.5143157998099923,
121
+ "rewards/soft_format_reward_func": 0.0,
122
+ "rewards/strict_format_reward_func": 0.03125,
123
+ "rewards/xmlcount_reward_func": 0.6105000090319663,
124
+ "step": 12
125
+ },
126
+ {
127
+ "completion_length": 306.0625,
128
+ "epoch": 0.8,
129
+ "grad_norm": 2.397752523422241,
130
+ "kl": 0.0014343660077429377,
131
+ "learning_rate": 4.870022949890676e-07,
132
+ "loss": 0.0,
133
+ "reward": 4.247058918699622,
134
+ "reward_std": 1.4322406734863762,
135
+ "rewards/concensus_correctness_reward_func": 2.0690625309944153,
136
+ "rewards/consensus_reward_func": 0.3125,
137
+ "rewards/cumulative_reward_2": 0.0,
138
+ "rewards/final_correctness_reward_func": 0.875,
139
+ "rewards/question_recreation_reward_func": 0.4255589717067778,
140
+ "rewards/soft_format_reward_func": 0.0,
141
+ "rewards/strict_format_reward_func": 0.0,
142
+ "rewards/xmlcount_reward_func": 0.5649375049397349,
143
+ "step": 14
144
+ },
145
+ {
146
+ "completion_length": 331.75,
147
+ "epoch": 0.9142857142857143,
148
+ "grad_norm": 2.2839765548706055,
149
+ "kl": 0.001408537311363034,
150
+ "learning_rate": 4.81355307410676e-07,
151
+ "loss": 0.0,
152
+ "reward": 2.6294993720948696,
153
+ "reward_std": 2.1304319854825735,
154
+ "rewards/concensus_correctness_reward_func": 0.8625625013373792,
155
+ "rewards/consensus_reward_func": 0.5,
156
+ "rewards/cumulative_reward_2": 0.0,
157
+ "rewards/final_correctness_reward_func": 0.3125,
158
+ "rewards/question_recreation_reward_func": 0.652124403975904,
159
+ "rewards/soft_format_reward_func": 0.0,
160
+ "rewards/strict_format_reward_func": 0.0,
161
+ "rewards/xmlcount_reward_func": 0.3023125068284571,
162
+ "step": 16
163
+ },
164
+ {
165
+ "completion_length": 254.75,
166
+ "epoch": 1.0,
167
+ "grad_norm": 1.293320894241333,
168
+ "kl": 0.001520198837776358,
169
+ "learning_rate": 4.747379352713488e-07,
170
+ "loss": 0.0,
171
+ "reward": 4.4054756959279375,
172
+ "reward_std": 0.8638230375945568,
173
+ "rewards/concensus_correctness_reward_func": 2.0449999949584403,
174
+ "rewards/consensus_reward_func": 0.75,
175
+ "rewards/cumulative_reward_2": 0.0,
176
+ "rewards/final_correctness_reward_func": 0.5,
177
+ "rewards/question_recreation_reward_func": 0.5937257781624794,
178
+ "rewards/soft_format_reward_func": 0.0,
179
+ "rewards/strict_format_reward_func": 0.0,
180
+ "rewards/xmlcount_reward_func": 0.5167499954501787,
181
+ "step": 18
182
+ },
183
+ {
184
+ "completion_length": 325.9375,
185
+ "epoch": 1.1142857142857143,
186
+ "grad_norm": 1.9340304136276245,
187
+ "kl": 0.0019464795368548948,
188
+ "learning_rate": 4.6717793412953776e-07,
189
+ "loss": 0.0,
190
+ "reward": 5.210880044847727,
191
+ "reward_std": 1.6739974903757684,
192
+ "rewards/concensus_correctness_reward_func": 3.3118124761313084,
193
+ "rewards/consensus_reward_func": 0.5625,
194
+ "rewards/cumulative_reward_2": 0.0,
195
+ "rewards/final_correctness_reward_func": 0.5,
196
+ "rewards/question_recreation_reward_func": 0.5269739665091038,
197
+ "rewards/soft_format_reward_func": 0.015625,
198
+ "rewards/strict_format_reward_func": 0.0,
199
+ "rewards/xmlcount_reward_func": 0.29396875062957406,
200
+ "step": 20
201
+ },
202
+ {
203
+ "completion_length": 272.71875,
204
+ "epoch": 1.2285714285714286,
205
+ "grad_norm": 2.2866125106811523,
206
+ "kl": 0.002068110006803181,
207
+ "learning_rate": 4.5870701325731773e-07,
208
+ "loss": 0.0,
209
+ "reward": 3.6153114959597588,
210
+ "reward_std": 2.5713650833349675,
211
+ "rewards/concensus_correctness_reward_func": 1.5542500228621066,
212
+ "rewards/consensus_reward_func": 0.4375,
213
+ "rewards/cumulative_reward_2": 0.0,
214
+ "rewards/final_correctness_reward_func": 0.5625,
215
+ "rewards/question_recreation_reward_func": 0.5716865402646363,
216
+ "rewards/soft_format_reward_func": 0.0,
217
+ "rewards/strict_format_reward_func": 0.0,
218
+ "rewards/xmlcount_reward_func": 0.48937500920146704,
219
+ "step": 22
220
+ },
221
+ {
222
+ "completion_length": 302.375,
223
+ "epoch": 1.342857142857143,
224
+ "grad_norm": 6.6668572425842285,
225
+ "kl": 0.0021221214192337357,
226
+ "learning_rate": 4.4936070264068016e-07,
227
+ "loss": 0.0,
228
+ "reward": 1.9632033314555883,
229
+ "reward_std": 0.8504583928734064,
230
+ "rewards/concensus_correctness_reward_func": 0.20187499769963324,
231
+ "rewards/consensus_reward_func": 0.3125,
232
+ "rewards/cumulative_reward_2": 0.0,
233
+ "rewards/final_correctness_reward_func": 0.5,
234
+ "rewards/question_recreation_reward_func": 0.45967210712842643,
235
+ "rewards/soft_format_reward_func": 0.0,
236
+ "rewards/strict_format_reward_func": 0.03125,
237
+ "rewards/xmlcount_reward_func": 0.4579062513075769,
238
+ "step": 24
239
+ },
240
+ {
241
+ "completion_length": 284.8125,
242
+ "epoch": 1.457142857142857,
243
+ "grad_norm": 2.070162534713745,
244
+ "kl": 0.0021677847471437417,
245
+ "learning_rate": 4.391782039544238e-07,
246
+ "loss": 0.0,
247
+ "reward": 1.9739556834101677,
248
+ "reward_std": 0.8432966666496213,
249
+ "rewards/concensus_correctness_reward_func": 0.17362499982118607,
250
+ "rewards/consensus_reward_func": 0.125,
251
+ "rewards/cumulative_reward_2": 0.0,
252
+ "rewards/final_correctness_reward_func": 0.5,
253
+ "rewards/question_recreation_reward_func": 0.5859243981540203,
254
+ "rewards/soft_format_reward_func": 0.0,
255
+ "rewards/strict_format_reward_func": 0.0,
256
+ "rewards/xmlcount_reward_func": 0.5894062593579292,
257
+ "step": 26
258
+ },
259
+ {
260
+ "completion_length": 314.625,
261
+ "epoch": 1.5714285714285714,
262
+ "grad_norm": 2.243846893310547,
263
+ "kl": 0.002329640177777037,
264
+ "learning_rate": 4.282022261367073e-07,
265
+ "loss": 0.0,
266
+ "reward": 2.3326709028333426,
267
+ "reward_std": 1.4158438248559833,
268
+ "rewards/concensus_correctness_reward_func": 0.09337499784305692,
269
+ "rewards/consensus_reward_func": 0.6875,
270
+ "rewards/cumulative_reward_2": 0.0,
271
+ "rewards/final_correctness_reward_func": 0.4375,
272
+ "rewards/question_recreation_reward_func": 0.6531084361486137,
273
+ "rewards/soft_format_reward_func": 0.0,
274
+ "rewards/strict_format_reward_func": 0.015625,
275
+ "rewards/xmlcount_reward_func": 0.44556250888854265,
276
+ "step": 28
277
+ },
278
+ {
279
+ "completion_length": 304.75,
280
+ "epoch": 1.6857142857142857,
281
+ "grad_norm": 2.563140869140625,
282
+ "kl": 0.002116368035785854,
283
+ "learning_rate": 4.1647880625292027e-07,
284
+ "loss": 0.0,
285
+ "reward": 3.5053839487954974,
286
+ "reward_std": 2.4146184872370213,
287
+ "rewards/concensus_correctness_reward_func": 1.5751250311732292,
288
+ "rewards/consensus_reward_func": 0.125,
289
+ "rewards/cumulative_reward_2": 0.0,
290
+ "rewards/final_correctness_reward_func": 0.8125,
291
+ "rewards/question_recreation_reward_func": 0.4747902047820389,
292
+ "rewards/soft_format_reward_func": 0.0,
293
+ "rewards/strict_format_reward_func": 0.0,
294
+ "rewards/xmlcount_reward_func": 0.517968756146729,
295
+ "step": 30
296
+ },
297
+ {
298
+ "completion_length": 281.3125,
299
+ "epoch": 1.8,
300
+ "grad_norm": 2.0132243633270264,
301
+ "kl": 0.002754501736490056,
302
+ "learning_rate": 4.040571164002318e-07,
303
+ "loss": 0.0,
304
+ "reward": 4.006643671542406,
305
+ "reward_std": 1.8082885849289596,
306
+ "rewards/concensus_correctness_reward_func": 2.0200000014156103,
307
+ "rewards/consensus_reward_func": 0.3125,
308
+ "rewards/cumulative_reward_2": 0.0,
309
+ "rewards/final_correctness_reward_func": 0.625,
310
+ "rewards/question_recreation_reward_func": 0.5669561615213752,
311
+ "rewards/soft_format_reward_func": 0.015625,
312
+ "rewards/strict_format_reward_func": 0.0,
313
+ "rewards/xmlcount_reward_func": 0.46656251489184797,
314
+ "step": 32
315
+ },
316
+ {
317
+ "completion_length": 320.8125,
318
+ "epoch": 1.9142857142857141,
319
+ "grad_norm": 2.2226650714874268,
320
+ "kl": 0.0029091214746586047,
321
+ "learning_rate": 3.909892574627266e-07,
322
+ "loss": 0.0,
323
+ "reward": 4.280492004007101,
324
+ "reward_std": 2.970120156183839,
325
+ "rewards/concensus_correctness_reward_func": 1.7401250004768372,
326
+ "rewards/consensus_reward_func": 0.625,
327
+ "rewards/cumulative_reward_2": 0.0,
328
+ "rewards/final_correctness_reward_func": 0.8125,
329
+ "rewards/question_recreation_reward_func": 0.601523166289553,
330
+ "rewards/soft_format_reward_func": 0.0,
331
+ "rewards/strict_format_reward_func": 0.0,
332
+ "rewards/xmlcount_reward_func": 0.5013437522575259,
333
+ "step": 34
334
+ },
335
+ {
336
+ "completion_length": 316.5,
337
+ "epoch": 2.0,
338
+ "grad_norm": 1.4613192081451416,
339
+ "kl": 0.002774594468064606,
340
+ "learning_rate": 3.773300405821908e-07,
341
+ "loss": 0.0,
342
+ "reward": 3.184830774863561,
343
+ "reward_std": 2.355151594034396,
344
+ "rewards/concensus_correctness_reward_func": 1.0445833352083962,
345
+ "rewards/consensus_reward_func": 0.5833333333333334,
346
+ "rewards/cumulative_reward_2": 0.0,
347
+ "rewards/final_correctness_reward_func": 0.3333333333333333,
348
+ "rewards/question_recreation_reward_func": 0.6418723997970422,
349
+ "rewards/soft_format_reward_func": 0.0,
350
+ "rewards/strict_format_reward_func": 0.020833333333333332,
351
+ "rewards/xmlcount_reward_func": 0.5608749911189079,
352
+ "step": 36
353
+ },
354
+ {
355
+ "completion_length": 316.625,
356
+ "epoch": 2.1142857142857143,
357
+ "grad_norm": 1.8819042444229126,
358
+ "kl": 0.002866531016479712,
359
+ "learning_rate": 3.6313675726113475e-07,
360
+ "loss": 0.0,
361
+ "reward": 3.52888186275959,
362
+ "reward_std": 0.9872541772201657,
363
+ "rewards/concensus_correctness_reward_func": 1.5981874950230122,
364
+ "rewards/consensus_reward_func": 0.375,
365
+ "rewards/cumulative_reward_2": 0.0,
366
+ "rewards/final_correctness_reward_func": 0.6875,
367
+ "rewards/question_recreation_reward_func": 0.6021005599759519,
368
+ "rewards/soft_format_reward_func": 0.0,
369
+ "rewards/strict_format_reward_func": 0.0,
370
+ "rewards/xmlcount_reward_func": 0.2660937544424087,
371
+ "step": 38
372
+ },
373
+ {
374
+ "completion_length": 283.75,
375
+ "epoch": 2.2285714285714286,
376
+ "grad_norm": 2.4403116703033447,
377
+ "kl": 0.003229207592085004,
378
+ "learning_rate": 3.484689390623218e-07,
379
+ "loss": 0.0,
380
+ "reward": 4.119999956339598,
381
+ "reward_std": 1.6003942100796849,
382
+ "rewards/concensus_correctness_reward_func": 2.0809374977834523,
383
+ "rewards/consensus_reward_func": 0.5,
384
+ "rewards/cumulative_reward_2": 0.0,
385
+ "rewards/final_correctness_reward_func": 0.375,
386
+ "rewards/question_recreation_reward_func": 0.556437520775944,
387
+ "rewards/soft_format_reward_func": 0.0,
388
+ "rewards/strict_format_reward_func": 0.03125,
389
+ "rewards/xmlcount_reward_func": 0.5763750001788139,
390
+ "step": 40
391
+ },
392
+ {
393
+ "completion_length": 283.5625,
394
+ "epoch": 2.342857142857143,
395
+ "grad_norm": 2.141371250152588,
396
+ "kl": 0.003269614593591541,
397
+ "learning_rate": 3.3338810791270517e-07,
398
+ "loss": 0.0,
399
+ "reward": 2.2994888741523027,
400
+ "reward_std": 1.130831709713675,
401
+ "rewards/concensus_correctness_reward_func": 0.3513124962337315,
402
+ "rewards/consensus_reward_func": 0.375,
403
+ "rewards/cumulative_reward_2": 0.0,
404
+ "rewards/final_correctness_reward_func": 0.625,
405
+ "rewards/question_recreation_reward_func": 0.47858266485854983,
406
+ "rewards/soft_format_reward_func": 0.0,
407
+ "rewards/strict_format_reward_func": 0.0,
408
+ "rewards/xmlcount_reward_func": 0.46959375590085983,
409
+ "step": 42
410
+ },
411
+ {
412
+ "completion_length": 258.0625,
413
+ "epoch": 2.4571428571428573,
414
+ "grad_norm": 3.21244215965271,
415
+ "kl": 0.005789920185634401,
416
+ "learning_rate": 3.179575180590857e-07,
417
+ "loss": 0.0,
418
+ "reward": 4.591513024177402,
419
+ "reward_std": 1.265730170533061,
420
+ "rewards/concensus_correctness_reward_func": 1.9743749988265336,
421
+ "rewards/consensus_reward_func": 0.75,
422
+ "rewards/cumulative_reward_2": 0.0,
423
+ "rewards/final_correctness_reward_func": 0.8125,
424
+ "rewards/question_recreation_reward_func": 0.5825754599645734,
425
+ "rewards/soft_format_reward_func": 0.0,
426
+ "rewards/strict_format_reward_func": 0.0,
427
+ "rewards/xmlcount_reward_func": 0.47206250205636024,
428
+ "step": 44
429
+ },
430
+ {
431
+ "completion_length": 249.09375,
432
+ "epoch": 2.571428571428571,
433
+ "grad_norm": 2.6296839714050293,
434
+ "kl": 0.005435560931800865,
435
+ "learning_rate": 3.022418907578188e-07,
436
+ "loss": 0.0,
437
+ "reward": 4.408128134906292,
438
+ "reward_std": 2.0285469442605972,
439
+ "rewards/concensus_correctness_reward_func": 2.1132499971427023,
440
+ "rewards/consensus_reward_func": 0.6875,
441
+ "rewards/cumulative_reward_2": 0.0,
442
+ "rewards/final_correctness_reward_func": 0.5,
443
+ "rewards/question_recreation_reward_func": 0.5583155920030549,
444
+ "rewards/soft_format_reward_func": 0.0,
445
+ "rewards/strict_format_reward_func": 0.015625,
446
+ "rewards/xmlcount_reward_func": 0.5334375011734664,
447
+ "step": 46
448
+ },
449
+ {
450
+ "completion_length": 308.3125,
451
+ "epoch": 2.685714285714286,
452
+ "grad_norm": 2.3870928287506104,
453
+ "kl": 0.003486459288978949,
454
+ "learning_rate": 2.863071428113726e-07,
455
+ "loss": 0.0,
456
+ "reward": 2.0714636370539665,
457
+ "reward_std": 1.128730148426257,
458
+ "rewards/concensus_correctness_reward_func": 0.17793750471173553,
459
+ "rewards/consensus_reward_func": 0.375,
460
+ "rewards/cumulative_reward_2": 0.0,
461
+ "rewards/final_correctness_reward_func": 0.5,
462
+ "rewards/question_recreation_reward_func": 0.5705886241048574,
463
+ "rewards/soft_format_reward_func": 0.0,
464
+ "rewards/strict_format_reward_func": 0.0,
465
+ "rewards/xmlcount_reward_func": 0.44793750811368227,
466
+ "step": 48
467
+ },
468
+ {
469
+ "completion_length": 350.34375,
470
+ "epoch": 2.8,
471
+ "grad_norm": 2.112053632736206,
472
+ "kl": 0.0031924354407237843,
473
+ "learning_rate": 2.7022011009035107e-07,
474
+ "loss": 0.0,
475
+ "reward": 2.2104606479406357,
476
+ "reward_std": 1.1965517563512549,
477
+ "rewards/concensus_correctness_reward_func": 0.26393750053830445,
478
+ "rewards/consensus_reward_func": 0.5625,
479
+ "rewards/cumulative_reward_2": 0.0,
480
+ "rewards/final_correctness_reward_func": 0.5625,
481
+ "rewards/question_recreation_reward_func": 0.5878356443718076,
482
+ "rewards/soft_format_reward_func": 0.0,
483
+ "rewards/strict_format_reward_func": 0.0,
484
+ "rewards/xmlcount_reward_func": 0.23368750466033816,
485
+ "step": 50
486
+ },
487
+ {
488
+ "completion_length": 282.90625,
489
+ "epoch": 2.914285714285714,
490
+ "grad_norm": 168.68026733398438,
491
+ "kl": 0.059496873698662966,
492
+ "learning_rate": 2.540482672006254e-07,
493
+ "loss": 0.0001,
494
+ "reward": 2.359485674649477,
495
+ "reward_std": 0.6959111683536321,
496
+ "rewards/concensus_correctness_reward_func": 0.4997500032186508,
497
+ "rewards/consensus_reward_func": 0.25,
498
+ "rewards/cumulative_reward_2": 0.0,
499
+ "rewards/final_correctness_reward_func": 0.5,
500
+ "rewards/question_recreation_reward_func": 0.5438919421285391,
501
+ "rewards/soft_format_reward_func": 0.0,
502
+ "rewards/strict_format_reward_func": 0.03125,
503
+ "rewards/xmlcount_reward_func": 0.5345937591046095,
504
+ "step": 52
505
+ },
506
+ {
507
+ "completion_length": 354.4583333333333,
508
+ "epoch": 3.0,
509
+ "grad_norm": 2.093106985092163,
510
+ "kl": 0.00446942588314414,
511
+ "learning_rate": 2.37859444471388e-07,
512
+ "loss": 0.0,
513
+ "reward": 3.0545214464267096,
514
+ "reward_std": 2.0393191116551557,
515
+ "rewards/concensus_correctness_reward_func": 1.0114166662096977,
516
+ "rewards/consensus_reward_func": 0.16666666666666666,
517
+ "rewards/cumulative_reward_2": 0.0,
518
+ "rewards/final_correctness_reward_func": 0.5,
519
+ "rewards/question_recreation_reward_func": 0.7018964091936747,
520
+ "rewards/soft_format_reward_func": 0.0,
521
+ "rewards/strict_format_reward_func": 0.0,
522
+ "rewards/xmlcount_reward_func": 0.6745416695872942,
523
+ "step": 54
524
+ },
525
+ {
526
+ "completion_length": 308.96875,
527
+ "epoch": 3.1142857142857143,
528
+ "grad_norm": 1.8336759805679321,
529
+ "kl": 0.0041244168824050575,
530
+ "learning_rate": 2.2172154345117894e-07,
531
+ "loss": 0.0,
532
+ "reward": 2.694729525479488,
533
+ "reward_std": 2.6853361323010176,
534
+ "rewards/concensus_correctness_reward_func": 1.0250000013038516,
535
+ "rewards/consensus_reward_func": 0.5,
536
+ "rewards/cumulative_reward_2": 0.0,
537
+ "rewards/final_correctness_reward_func": 0.4375,
538
+ "rewards/question_recreation_reward_func": 0.5355733069591224,
539
+ "rewards/soft_format_reward_func": 0.0,
540
+ "rewards/strict_format_reward_func": 0.0,
541
+ "rewards/xmlcount_reward_func": 0.19665626890491694,
542
+ "step": 56
543
+ },
544
+ {
545
+ "completion_length": 301.71875,
546
+ "epoch": 3.2285714285714286,
547
+ "grad_norm": 2.281761884689331,
548
+ "kl": 0.004181647425866686,
549
+ "learning_rate": 2.0570225210519433e-07,
550
+ "loss": 0.0,
551
+ "reward": 2.7115835566073656,
552
+ "reward_std": 2.3708576498320326,
553
+ "rewards/concensus_correctness_reward_func": 0.7873749984428287,
554
+ "rewards/consensus_reward_func": 0.5,
555
+ "rewards/cumulative_reward_2": 0.0,
556
+ "rewards/final_correctness_reward_func": 0.5625,
557
+ "rewards/question_recreation_reward_func": 0.4799272818490863,
558
+ "rewards/soft_format_reward_func": 0.0,
559
+ "rewards/strict_format_reward_func": 0.0,
560
+ "rewards/xmlcount_reward_func": 0.38178124325349927,
561
+ "step": 58
562
+ },
563
+ {
564
+ "completion_length": 295.90625,
565
+ "epoch": 3.342857142857143,
566
+ "grad_norm": 2.244230031967163,
567
+ "kl": 0.0050736206758301705,
568
+ "learning_rate": 1.8986876090843664e-07,
569
+ "loss": 0.0,
570
+ "reward": 4.905442409217358,
571
+ "reward_std": 1.7945623963605613,
572
+ "rewards/concensus_correctness_reward_func": 2.4236875250935555,
573
+ "rewards/consensus_reward_func": 0.6875,
574
+ "rewards/cumulative_reward_2": 0.0,
575
+ "rewards/final_correctness_reward_func": 0.5625,
576
+ "rewards/question_recreation_reward_func": 0.5710362014360726,
577
+ "rewards/soft_format_reward_func": 0.0,
578
+ "rewards/strict_format_reward_func": 0.015625,
579
+ "rewards/xmlcount_reward_func": 0.6450937511399388,
580
+ "step": 60
581
+ },
582
+ {
583
+ "completion_length": 318.59375,
584
+ "epoch": 3.4571428571428573,
585
+ "grad_norm": 2.056881904602051,
586
+ "kl": 0.004618284721800592,
587
+ "learning_rate": 1.7428748102551234e-07,
588
+ "loss": 0.0,
589
+ "reward": 4.192068429663777,
590
+ "reward_std": 1.9262854177504778,
591
+ "rewards/concensus_correctness_reward_func": 2.088000003132038,
592
+ "rewards/consensus_reward_func": 0.4375,
593
+ "rewards/cumulative_reward_2": 0.0,
594
+ "rewards/final_correctness_reward_func": 0.625,
595
+ "rewards/question_recreation_reward_func": 0.641599677503109,
596
+ "rewards/soft_format_reward_func": 0.0,
597
+ "rewards/strict_format_reward_func": 0.0,
598
+ "rewards/xmlcount_reward_func": 0.39996875007636845,
599
+ "step": 62
600
+ },
601
+ {
602
+ "completion_length": 286.96875,
603
+ "epoch": 3.571428571428571,
604
+ "grad_norm": 2.1847808361053467,
605
+ "kl": 0.005289344000630081,
606
+ "learning_rate": 1.5902376575912814e-07,
607
+ "loss": 0.0,
608
+ "reward": 2.9830123744904995,
609
+ "reward_std": 0.6361244827858172,
610
+ "rewards/concensus_correctness_reward_func": 1.307187500409782,
611
+ "rewards/consensus_reward_func": 0.375,
612
+ "rewards/cumulative_reward_2": 0.0,
613
+ "rewards/final_correctness_reward_func": 0.3125,
614
+ "rewards/question_recreation_reward_func": 0.47551230591489,
615
+ "rewards/soft_format_reward_func": 0.0,
616
+ "rewards/strict_format_reward_func": 0.0,
617
+ "rewards/xmlcount_reward_func": 0.5128125082701445,
618
+ "step": 64
619
+ },
620
+ {
621
+ "completion_length": 308.125,
622
+ "epoch": 3.685714285714286,
623
+ "grad_norm": 1.9466278553009033,
624
+ "kl": 0.00550089653552277,
625
+ "learning_rate": 1.4414163643562753e-07,
626
+ "loss": 0.0,
627
+ "reward": 4.133690036833286,
628
+ "reward_std": 0.9184011179022491,
629
+ "rewards/concensus_correctness_reward_func": 1.6501249980647117,
630
+ "rewards/consensus_reward_func": 0.75,
631
+ "rewards/cumulative_reward_2": 0.0,
632
+ "rewards/final_correctness_reward_func": 0.625,
633
+ "rewards/question_recreation_reward_func": 0.5630338042974472,
634
+ "rewards/soft_format_reward_func": 0.0,
635
+ "rewards/strict_format_reward_func": 0.015625,
636
+ "rewards/xmlcount_reward_func": 0.5299062561243773,
637
+ "step": 66
638
+ },
639
+ {
640
+ "completion_length": 291.9375,
641
+ "epoch": 3.8,
642
+ "grad_norm": 3.8379456996917725,
643
+ "kl": 0.005396832886617631,
644
+ "learning_rate": 1.2970351387729872e-07,
645
+ "loss": 0.0,
646
+ "reward": 2.430345553904772,
647
+ "reward_std": 1.710412791930139,
648
+ "rewards/concensus_correctness_reward_func": 0.707187500782311,
649
+ "rewards/consensus_reward_func": 0.25,
650
+ "rewards/cumulative_reward_2": 0.0,
651
+ "rewards/final_correctness_reward_func": 0.25,
652
+ "rewards/question_recreation_reward_func": 0.6847830386832356,
653
+ "rewards/soft_format_reward_func": 0.0,
654
+ "rewards/strict_format_reward_func": 0.015625,
655
+ "rewards/xmlcount_reward_func": 0.5227500032633543,
656
+ "step": 68
657
+ },
658
+ {
659
+ "completion_length": 265.625,
660
+ "epoch": 3.914285714285714,
661
+ "grad_norm": 2.23298978805542,
662
+ "kl": 0.005603167533990927,
663
+ "learning_rate": 1.1576995658775404e-07,
664
+ "loss": 0.0,
665
+ "reward": 4.257293211296201,
666
+ "reward_std": 3.9666671017184854,
667
+ "rewards/concensus_correctness_reward_func": 1.9901874985080212,
668
+ "rewards/consensus_reward_func": 0.625,
669
+ "rewards/cumulative_reward_2": 0.0,
670
+ "rewards/final_correctness_reward_func": 0.625,
671
+ "rewards/question_recreation_reward_func": 0.5431681228801608,
672
+ "rewards/soft_format_reward_func": 0.0,
673
+ "rewards/strict_format_reward_func": 0.015625,
674
+ "rewards/xmlcount_reward_func": 0.4583124993368983,
675
+ "step": 70
676
+ },
677
+ {
678
+ "completion_length": 291.2083333333333,
679
+ "epoch": 4.0,
680
+ "grad_norm": 1.4707306623458862,
681
+ "kl": 0.006299581126465152,
682
+ "learning_rate": 1.0239940674851941e-07,
683
+ "loss": 0.0,
684
+ "reward": 4.036697139342626,
685
+ "reward_std": 3.6838483214378357,
686
+ "rewards/concensus_correctness_reward_func": 1.85033332912523,
687
+ "rewards/consensus_reward_func": 0.3333333333333333,
688
+ "rewards/cumulative_reward_2": 0.0,
689
+ "rewards/final_correctness_reward_func": 0.9166666666666666,
690
+ "rewards/question_recreation_reward_func": 0.5903221443295479,
691
+ "rewards/soft_format_reward_func": 0.0,
692
+ "rewards/strict_format_reward_func": 0.020833333333333332,
693
+ "rewards/xmlcount_reward_func": 0.3252083510160446,
694
+ "step": 72
695
+ },
696
+ {
697
+ "completion_length": 355.53125,
698
+ "epoch": 4.114285714285714,
699
+ "grad_norm": 2.0232465267181396,
700
+ "kl": 0.005168267816770822,
701
+ "learning_rate": 8.964794509221507e-08,
702
+ "loss": 0.0,
703
+ "reward": 2.0521673914045095,
704
+ "reward_std": 1.2210392798297107,
705
+ "rewards/concensus_correctness_reward_func": 0.3000000002793968,
706
+ "rewards/consensus_reward_func": 0.3125,
707
+ "rewards/cumulative_reward_2": 0.0,
708
+ "rewards/final_correctness_reward_func": 0.4375,
709
+ "rewards/question_recreation_reward_func": 0.5546986176632345,
710
+ "rewards/soft_format_reward_func": 0.0,
711
+ "rewards/strict_format_reward_func": 0.0,
712
+ "rewards/xmlcount_reward_func": 0.44746875669807196,
713
+ "step": 74
714
+ },
715
+ {
716
+ "completion_length": 306.625,
717
+ "epoch": 4.228571428571429,
718
+ "grad_norm": 2.0220844745635986,
719
+ "kl": 0.005869668988452759,
720
+ "learning_rate": 7.756905568047392e-08,
721
+ "loss": 0.0,
722
+ "reward": 3.464091993868351,
723
+ "reward_std": 3.065386278554797,
724
+ "rewards/concensus_correctness_reward_func": 1.4443750018253922,
725
+ "rewards/consensus_reward_func": 0.3125,
726
+ "rewards/cumulative_reward_2": 0.0,
727
+ "rewards/final_correctness_reward_func": 0.625,
728
+ "rewards/question_recreation_reward_func": 0.6136857415549457,
729
+ "rewards/soft_format_reward_func": 0.0,
730
+ "rewards/strict_format_reward_func": 0.0,
731
+ "rewards/xmlcount_reward_func": 0.4685312566580251,
732
+ "step": 76
733
+ },
734
+ {
735
+ "completion_length": 274.53125,
736
+ "epoch": 4.3428571428571425,
737
+ "grad_norm": 2.320235013961792,
738
+ "kl": 0.00582803861470893,
739
+ "learning_rate": 6.621340157319996e-08,
740
+ "loss": 0.0,
741
+ "reward": 4.306629652157426,
742
+ "reward_std": 3.718445436330512,
743
+ "rewards/concensus_correctness_reward_func": 2.290749993175268,
744
+ "rewards/consensus_reward_func": 0.375,
745
+ "rewards/cumulative_reward_2": 0.0,
746
+ "rewards/final_correctness_reward_func": 0.625,
747
+ "rewards/question_recreation_reward_func": 0.5755982827395201,
748
+ "rewards/soft_format_reward_func": 0.0,
749
+ "rewards/strict_format_reward_func": 0.015625,
750
+ "rewards/xmlcount_reward_func": 0.4246562549378723,
751
+ "step": 78
752
+ },
753
+ {
754
+ "completion_length": 280.65625,
755
+ "epoch": 4.457142857142857,
756
+ "grad_norm": 2.4888482093811035,
757
+ "kl": 0.007190108473878354,
758
+ "learning_rate": 5.5628612330087724e-08,
759
+ "loss": 0.0,
760
+ "reward": 4.881872668862343,
761
+ "reward_std": 3.823639538139105,
762
+ "rewards/concensus_correctness_reward_func": 2.405187502503395,
763
+ "rewards/consensus_reward_func": 0.375,
764
+ "rewards/cumulative_reward_2": 0.0,
765
+ "rewards/final_correctness_reward_func": 0.875,
766
+ "rewards/question_recreation_reward_func": 0.6339664794504642,
767
+ "rewards/soft_format_reward_func": 0.0,
768
+ "rewards/strict_format_reward_func": 0.0,
769
+ "rewards/xmlcount_reward_func": 0.5927187576889992,
770
+ "step": 80
771
+ },
772
+ {
773
+ "completion_length": 303.5,
774
+ "epoch": 4.571428571428571,
775
+ "grad_norm": 4.6361470222473145,
776
+ "kl": 0.005384259682614356,
777
+ "learning_rate": 4.5859084235697235e-08,
778
+ "loss": 0.0,
779
+ "reward": 3.0980553831905127,
780
+ "reward_std": 2.1309230010956526,
781
+ "rewards/concensus_correctness_reward_func": 1.0608749956518295,
782
+ "rewards/consensus_reward_func": 0.625,
783
+ "rewards/cumulative_reward_2": 0.0,
784
+ "rewards/final_correctness_reward_func": 0.25,
785
+ "rewards/question_recreation_reward_func": 0.5475553153082728,
786
+ "rewards/soft_format_reward_func": 0.0,
787
+ "rewards/strict_format_reward_func": 0.015625,
788
+ "rewards/xmlcount_reward_func": 0.5990000087767839,
789
+ "step": 82
790
+ },
791
+ {
792
+ "completion_length": 266.28125,
793
+ "epoch": 4.685714285714286,
794
+ "grad_norm": 1.8511204719543457,
795
+ "kl": 0.006429586021113209,
796
+ "learning_rate": 3.6945794086007705e-08,
797
+ "loss": 0.0,
798
+ "reward": 4.905601989477873,
799
+ "reward_std": 1.8997747544199228,
800
+ "rewards/concensus_correctness_reward_func": 2.3535624709911644,
801
+ "rewards/consensus_reward_func": 0.75,
802
+ "rewards/cumulative_reward_2": 0.0,
803
+ "rewards/final_correctness_reward_func": 0.75,
804
+ "rewards/question_recreation_reward_func": 0.603758230805397,
805
+ "rewards/soft_format_reward_func": 0.0,
806
+ "rewards/strict_format_reward_func": 0.0,
807
+ "rewards/xmlcount_reward_func": 0.44828125601634383,
808
+ "step": 84
809
+ },
810
+ {
811
+ "completion_length": 278.03125,
812
+ "epoch": 4.8,
813
+ "grad_norm": 1.860162377357483,
814
+ "kl": 0.00791130104335025,
815
+ "learning_rate": 2.892612731749414e-08,
816
+ "loss": 0.0,
817
+ "reward": 4.628453429788351,
818
+ "reward_std": 1.4046993185766041,
819
+ "rewards/concensus_correctness_reward_func": 2.1729374984279275,
820
+ "rewards/consensus_reward_func": 0.75,
821
+ "rewards/cumulative_reward_2": 0.0,
822
+ "rewards/final_correctness_reward_func": 0.5,
823
+ "rewards/question_recreation_reward_func": 0.6255784202367067,
824
+ "rewards/soft_format_reward_func": 0.0,
825
+ "rewards/strict_format_reward_func": 0.0,
826
+ "rewards/xmlcount_reward_func": 0.5799375101923943,
827
+ "step": 86
828
+ },
829
+ {
830
+ "completion_length": 296.46875,
831
+ "epoch": 4.914285714285715,
832
+ "grad_norm": 1.8456752300262451,
833
+ "kl": 0.007626559119671583,
834
+ "learning_rate": 2.183372119961499e-08,
835
+ "loss": 0.0,
836
+ "reward": 2.681800600141287,
837
+ "reward_std": 1.8635689666261896,
838
+ "rewards/concensus_correctness_reward_func": 0.7971874834038317,
839
+ "rewards/consensus_reward_func": 0.3125,
840
+ "rewards/cumulative_reward_2": 0.0,
841
+ "rewards/final_correctness_reward_func": 0.4375,
842
+ "rewards/question_recreation_reward_func": 0.6776756662875414,
843
+ "rewards/soft_format_reward_func": 0.0,
844
+ "rewards/strict_format_reward_func": 0.0,
845
+ "rewards/xmlcount_reward_func": 0.4569375063292682,
846
+ "step": 88
847
+ },
848
+ {
849
+ "completion_length": 290.5,
850
+ "epoch": 5.0,
851
+ "grad_norm": 2.047769546508789,
852
+ "kl": 0.006456721554665516,
853
+ "learning_rate": 1.5698323748414122e-08,
854
+ "loss": 0.0,
855
+ "reward": 2.1199893852074942,
856
+ "reward_std": 1.2634541131556034,
857
+ "rewards/concensus_correctness_reward_func": 0.1910833322132627,
858
+ "rewards/consensus_reward_func": 0.5833333333333334,
859
+ "rewards/cumulative_reward_2": 0.0,
860
+ "rewards/final_correctness_reward_func": 0.4166666666666667,
861
+ "rewards/question_recreation_reward_func": 0.5751561038196087,
862
+ "rewards/soft_format_reward_func": 0.0,
863
+ "rewards/strict_format_reward_func": 0.0,
864
+ "rewards/xmlcount_reward_func": 0.3537500017943482,
865
+ "step": 90
866
+ },
867
+ {
868
+ "completion_length": 242.40625,
869
+ "epoch": 5.114285714285714,
870
+ "grad_norm": 2.607699394226074,
871
+ "kl": 0.007154520819312893,
872
+ "learning_rate": 1.054566895300324e-08,
873
+ "loss": 0.0,
874
+ "reward": 4.453570373356342,
875
+ "reward_std": 3.0469054598361254,
876
+ "rewards/concensus_correctness_reward_func": 2.308937451802194,
877
+ "rewards/consensus_reward_func": 0.4375,
878
+ "rewards/cumulative_reward_2": 0.0,
879
+ "rewards/final_correctness_reward_func": 0.8125,
880
+ "rewards/question_recreation_reward_func": 0.39563290192745626,
881
+ "rewards/soft_format_reward_func": 0.0,
882
+ "rewards/strict_format_reward_func": 0.015625,
883
+ "rewards/xmlcount_reward_func": 0.48337499890476465,
884
+ "step": 92
885
+ },
886
+ {
887
+ "completion_length": 308.125,
888
+ "epoch": 5.228571428571429,
889
+ "grad_norm": 2.1194515228271484,
890
+ "kl": 0.006183088626130484,
891
+ "learning_rate": 6.397368838268496e-09,
892
+ "loss": 0.0,
893
+ "reward": 2.625663474202156,
894
+ "reward_std": 1.7279910603974713,
895
+ "rewards/concensus_correctness_reward_func": 0.7290624994784594,
896
+ "rewards/consensus_reward_func": 0.375,
897
+ "rewards/cumulative_reward_2": 0.0,
898
+ "rewards/final_correctness_reward_func": 0.375,
899
+ "rewards/question_recreation_reward_func": 0.5077572092413902,
900
+ "rewards/soft_format_reward_func": 0.0,
901
+ "rewards/strict_format_reward_func": 0.015625,
902
+ "rewards/xmlcount_reward_func": 0.6232187608256936,
903
+ "step": 94
904
+ },
905
+ {
906
+ "completion_length": 274.21875,
907
+ "epoch": 5.3428571428571425,
908
+ "grad_norm": 2.2122576236724854,
909
+ "kl": 0.007067822094541043,
910
+ "learning_rate": 3.2708228165273244e-09,
911
+ "loss": 0.0,
912
+ "reward": 3.398947611451149,
913
+ "reward_std": 2.7149232206866145,
914
+ "rewards/concensus_correctness_reward_func": 1.5500000063329935,
915
+ "rewards/consensus_reward_func": 0.375,
916
+ "rewards/cumulative_reward_2": 0.0,
917
+ "rewards/final_correctness_reward_func": 0.4375,
918
+ "rewards/question_recreation_reward_func": 0.5797913847491145,
919
+ "rewards/soft_format_reward_func": 0.0,
920
+ "rewards/strict_format_reward_func": 0.015625,
921
+ "rewards/xmlcount_reward_func": 0.44103125110268593,
922
+ "step": 96
923
+ },
924
+ {
925
+ "completion_length": 313.75,
926
+ "epoch": 5.457142857142857,
927
+ "grad_norm": 1.9602198600769043,
928
+ "kl": 0.006589054362848401,
929
+ "learning_rate": 1.1791447083465133e-09,
930
+ "loss": 0.0,
931
+ "reward": 3.4984066113829613,
932
+ "reward_std": 2.1465693595819175,
933
+ "rewards/concensus_correctness_reward_func": 1.0073750019073486,
934
+ "rewards/consensus_reward_func": 0.4375,
935
+ "rewards/cumulative_reward_2": 0.0,
936
+ "rewards/final_correctness_reward_func": 0.6875,
937
+ "rewards/question_recreation_reward_func": 0.6563441203907132,
938
+ "rewards/soft_format_reward_func": 0.0,
939
+ "rewards/strict_format_reward_func": 0.015625,
940
+ "rewards/xmlcount_reward_func": 0.6940625086426735,
941
+ "step": 98
942
+ },
943
+ {
944
+ "completion_length": 299.125,
945
+ "epoch": 5.571428571428571,
946
+ "grad_norm": 2.126802682876587,
947
+ "kl": 0.007156282430514693,
948
+ "learning_rate": 1.3110773862126667e-10,
949
+ "loss": 0.0,
950
+ "reward": 3.7894926061853766,
951
+ "reward_std": 3.776049384730868,
952
+ "rewards/concensus_correctness_reward_func": 1.8608750000130385,
953
+ "rewards/consensus_reward_func": 0.5,
954
+ "rewards/cumulative_reward_2": 0.0,
955
+ "rewards/final_correctness_reward_func": 0.25,
956
+ "rewards/question_recreation_reward_func": 0.665586419403553,
957
+ "rewards/soft_format_reward_func": 0.0,
958
+ "rewards/strict_format_reward_func": 0.015625,
959
+ "rewards/xmlcount_reward_func": 0.49740625848062336,
960
+ "step": 100
961
+ },
962
+ {
963
+ "epoch": 5.571428571428571,
964
+ "step": 100,
965
+ "total_flos": 0.0,
966
+ "train_loss": 5.14280412971857e-06,
967
+ "train_runtime": 2155.4049,
968
+ "train_samples_per_second": 0.742,
969
+ "train_steps_per_second": 0.046
970
+ }
971
+ ],
972
+ "logging_steps": 2,
973
+ "max_steps": 100,
974
+ "num_input_tokens_seen": 0,
975
+ "num_train_epochs": 6,
976
+ "save_steps": 25,
977
+ "stateful_callbacks": {
978
+ "TrainerControl": {
979
+ "args": {
980
+ "should_epoch_stop": false,
981
+ "should_evaluate": false,
982
+ "should_log": false,
983
+ "should_save": true,
984
+ "should_training_stop": true
985
+ },
986
+ "attributes": {}
987
+ }
988
+ },
989
+ "total_flos": 0.0,
990
+ "train_batch_size": 2,
991
+ "trial_name": null,
992
+ "trial_params": null
993
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd9497f02e3fb28ad58a4a416bd0548acc4b0efbe0cc9a1453eb443976f69957
3
+ size 5944
vocab.json ADDED
The diff for this file is too large to render. See raw diff