--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-medium.en tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: whisper-medium-en-cv-4.3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: en split: test args: 'config: en, split: test' metrics: - name: Wer type: wer value: 12.705667276051189 --- # whisper-medium-en-cv-4.3 This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3904 - Wer: 12.7057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.1e-05 - train_batch_size: 32 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - training_steps: 1125 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.299 | 0.3333 | 375 | 0.4141 | 13.8026 | | 0.261 | 0.6667 | 750 | 0.3941 | 13.5283 | | 0.2152 | 1.0 | 1125 | 0.3904 | 12.7057 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1