--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-medium.en tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: wme_30s_Static_atMic_1.1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 args: 'config: en, split: test' metrics: - name: Wer type: wer value: 18.922229026331905 --- # wme_30s_Static_atMic_1.1 This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6879 - Wer: 18.9222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 48 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 44 - training_steps: 440 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | No log | 0 | 0 | 1.1143 | 21.3411 | | 0.5297 | 0.2 | 88 | 0.6960 | 20.5144 | | 0.3945 | 1.0023 | 176 | 0.6817 | 19.6877 | | 0.1416 | 1.2023 | 264 | 0.6822 | 19.8408 | | 0.1121 | 2.0045 | 352 | 0.6823 | 19.2284 | | 0.0366 | 2.2045 | 440 | 0.6879 | 18.9222 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1