Upload model
Browse files- config.json +2 -2
- configuration_yags.py +25 -0
- modeling_yags.py +648 -0
- pytorch_model.bin +1 -1
config.json
CHANGED
|
@@ -377,8 +377,8 @@
|
|
| 377 |
"GPTSoVITSModel"
|
| 378 |
],
|
| 379 |
"auto_map": {
|
| 380 |
-
"AutoConfig": "
|
| 381 |
-
"AutoModel": "
|
| 382 |
},
|
| 383 |
"model_type": "gpt_sovits",
|
| 384 |
"prompt_language": "zh",
|
|
|
|
| 377 |
"GPTSoVITSModel"
|
| 378 |
],
|
| 379 |
"auto_map": {
|
| 380 |
+
"AutoConfig": "configuration_yags.GPTSoVITSConfig",
|
| 381 |
+
"AutoModel": "modeling_yags.GPTSoVITSModel"
|
| 382 |
},
|
| 383 |
"model_type": "gpt_sovits",
|
| 384 |
"prompt_language": "zh",
|
configuration_yags.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class GPTSoVITSConfig(PretrainedConfig):
|
| 6 |
+
model_type = "gpt_sovits"
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
prompt_language: str="zh",
|
| 11 |
+
_hubert_config_dict: dict[str, any] = None,
|
| 12 |
+
_hubert_extractor_config_dict: dict[str, any] = None,
|
| 13 |
+
_bert_config_dict: dict[str, any] = None,
|
| 14 |
+
_hps_dict: dict[str, any] = None,
|
| 15 |
+
_gpt_config_dict: dict[str, any] = None,
|
| 16 |
+
**kwargs
|
| 17 |
+
):
|
| 18 |
+
self.prompt_language = prompt_language
|
| 19 |
+
self._hubert_config_dict = _hubert_config_dict
|
| 20 |
+
self._hubert_extractor_config_dict = _hubert_extractor_config_dict
|
| 21 |
+
self._bert_config_dict = _bert_config_dict
|
| 22 |
+
self._hps_dict = _hps_dict
|
| 23 |
+
self._gpt_config_dict = _gpt_config_dict
|
| 24 |
+
|
| 25 |
+
super().__init__(**kwargs)
|
modeling_yags.py
ADDED
|
@@ -0,0 +1,648 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PreTrainedModel
|
| 2 |
+
from .configuration_yags import GPTSoVITSConfig
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import re
|
| 6 |
+
import LangSegment
|
| 7 |
+
import torch
|
| 8 |
+
import librosa
|
| 9 |
+
import numpy as np
|
| 10 |
+
import soundfile as sf
|
| 11 |
+
from transformers import AutoModelForMaskedLM, BertConfig
|
| 12 |
+
|
| 13 |
+
from .t2s_lightning_module import \
|
| 14 |
+
Text2SemanticLightningModule
|
| 15 |
+
from . import cnhubert
|
| 16 |
+
from .mel_processing import spectrogram_torch
|
| 17 |
+
# from io import BytesIO
|
| 18 |
+
from .models import SynthesizerTrn
|
| 19 |
+
from .my_utils import load_audio
|
| 20 |
+
from .symbols import cleaned_text_to_sequence
|
| 21 |
+
from .cleaner import clean_text
|
| 22 |
+
|
| 23 |
+
from huggingface_hub import hf_hub_download
|
| 24 |
+
|
| 25 |
+
class DictToAttrRecursive(dict):
|
| 26 |
+
def __init__(self, input_dict):
|
| 27 |
+
super().__init__(input_dict)
|
| 28 |
+
for key, value in input_dict.items():
|
| 29 |
+
if isinstance(value, dict):
|
| 30 |
+
value = DictToAttrRecursive(value)
|
| 31 |
+
self[key] = value
|
| 32 |
+
setattr(self, key, value)
|
| 33 |
+
|
| 34 |
+
def __getattr__(self, item):
|
| 35 |
+
try:
|
| 36 |
+
return self[item]
|
| 37 |
+
except KeyError:
|
| 38 |
+
raise AttributeError(f"Attribute {item} not found")
|
| 39 |
+
|
| 40 |
+
def __setattr__(self, key, value):
|
| 41 |
+
if isinstance(value, dict):
|
| 42 |
+
value = DictToAttrRecursive(value)
|
| 43 |
+
super(DictToAttrRecursive, self).__setitem__(key, value)
|
| 44 |
+
super().__setattr__(key, value)
|
| 45 |
+
|
| 46 |
+
def __delattr__(self, item):
|
| 47 |
+
try:
|
| 48 |
+
del self[item]
|
| 49 |
+
except KeyError:
|
| 50 |
+
raise AttributeError(f"Attribute {item} not found")
|
| 51 |
+
|
| 52 |
+
dict_language = {
|
| 53 |
+
"中文": "all_zh",#全部按中文识别
|
| 54 |
+
"英文": "en",#全部按英文识别#######不变
|
| 55 |
+
"日文": "all_ja",#全部按日文识别
|
| 56 |
+
"中英混合": "zh",#按中英混合识别####不变
|
| 57 |
+
"日英混合": "ja",#按日英混合识别####不变
|
| 58 |
+
"多语种混合": "auto",#多语种启动切分识别语种
|
| 59 |
+
"ZH": "zh",
|
| 60 |
+
"EN": "en",
|
| 61 |
+
"JA": "ja",
|
| 62 |
+
"zh": "zh",
|
| 63 |
+
"en": "en",
|
| 64 |
+
"ja": "ja",
|
| 65 |
+
"all_zh": "all_zh", #手动添加,以防万一
|
| 66 |
+
"all_ja": "all_ja", #手动添加,以防万一
|
| 67 |
+
"auto": "auto" #手动添加,以防万一
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
splits = {
|
| 71 |
+
",",
|
| 72 |
+
"。",
|
| 73 |
+
"?",
|
| 74 |
+
"!",
|
| 75 |
+
",",
|
| 76 |
+
".",
|
| 77 |
+
"?",
|
| 78 |
+
"!",
|
| 79 |
+
"~",
|
| 80 |
+
":",
|
| 81 |
+
":",
|
| 82 |
+
"—",
|
| 83 |
+
"…",
|
| 84 |
+
} # 不考虑省略号
|
| 85 |
+
|
| 86 |
+
def splite_en_inf(sentence, language):
|
| 87 |
+
pattern = re.compile(r'[a-zA-Z ]+')
|
| 88 |
+
textlist = []
|
| 89 |
+
langlist = []
|
| 90 |
+
pos = 0
|
| 91 |
+
for match in pattern.finditer(sentence):
|
| 92 |
+
start, end = match.span()
|
| 93 |
+
if start > pos:
|
| 94 |
+
textlist.append(sentence[pos:start])
|
| 95 |
+
langlist.append(language)
|
| 96 |
+
textlist.append(sentence[start:end])
|
| 97 |
+
langlist.append("en")
|
| 98 |
+
pos = end
|
| 99 |
+
if pos < len(sentence):
|
| 100 |
+
textlist.append(sentence[pos:])
|
| 101 |
+
langlist.append(language)
|
| 102 |
+
# Merge punctuation into previous word
|
| 103 |
+
for i in range(len(textlist)-1, 0, -1):
|
| 104 |
+
if re.match(r'^[\W_]+$', textlist[i]):
|
| 105 |
+
textlist[i-1] += textlist[i]
|
| 106 |
+
del textlist[i]
|
| 107 |
+
del langlist[i]
|
| 108 |
+
# Merge consecutive words with the same language tag
|
| 109 |
+
i = 0
|
| 110 |
+
while i < len(langlist) - 1:
|
| 111 |
+
if langlist[i] == langlist[i+1]:
|
| 112 |
+
textlist[i] += textlist[i+1]
|
| 113 |
+
del textlist[i+1]
|
| 114 |
+
del langlist[i+1]
|
| 115 |
+
else:
|
| 116 |
+
i += 1
|
| 117 |
+
|
| 118 |
+
return textlist, langlist
|
| 119 |
+
|
| 120 |
+
def clean_text_inf(text, language):
|
| 121 |
+
formattext = ""
|
| 122 |
+
language = language.replace("all_","")
|
| 123 |
+
for tmp in LangSegment.getTexts(text):
|
| 124 |
+
if language == "ja":
|
| 125 |
+
if tmp["lang"] == language or tmp["lang"] == "zh":
|
| 126 |
+
formattext += tmp["text"] + " "
|
| 127 |
+
continue
|
| 128 |
+
if tmp["lang"] == language:
|
| 129 |
+
formattext += tmp["text"] + " "
|
| 130 |
+
while " " in formattext:
|
| 131 |
+
formattext = formattext.replace(" ", " ")
|
| 132 |
+
phones, word2ph, norm_text = clean_text(formattext, language)
|
| 133 |
+
phones = cleaned_text_to_sequence(phones)
|
| 134 |
+
return phones, word2ph, norm_text
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def nonen_clean_text_inf(text, language):
|
| 139 |
+
if(language!="auto"):
|
| 140 |
+
textlist, langlist = splite_en_inf(text, language)
|
| 141 |
+
else:
|
| 142 |
+
textlist=[]
|
| 143 |
+
langlist=[]
|
| 144 |
+
for tmp in LangSegment.getTexts(text):
|
| 145 |
+
langlist.append(tmp["lang"])
|
| 146 |
+
textlist.append(tmp["text"])
|
| 147 |
+
phones_list = []
|
| 148 |
+
word2ph_list = []
|
| 149 |
+
norm_text_list = []
|
| 150 |
+
for i in range(len(textlist)):
|
| 151 |
+
lang = langlist[i]
|
| 152 |
+
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
| 153 |
+
phones_list.append(phones)
|
| 154 |
+
if lang == "zh":
|
| 155 |
+
word2ph_list.append(word2ph)
|
| 156 |
+
norm_text_list.append(norm_text)
|
| 157 |
+
#【日志】 print(word2ph_list)
|
| 158 |
+
phones = sum(phones_list, [])
|
| 159 |
+
word2ph = sum(word2ph_list, [])
|
| 160 |
+
norm_text = ' '.join(norm_text_list)
|
| 161 |
+
|
| 162 |
+
return phones, word2ph, norm_text
|
| 163 |
+
|
| 164 |
+
def get_first(text):
|
| 165 |
+
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
| 166 |
+
text = re.split(pattern, text)[0].strip()
|
| 167 |
+
return text
|
| 168 |
+
|
| 169 |
+
def merge_short_text_in_array(texts, threshold):
|
| 170 |
+
if (len(texts)) < 2:
|
| 171 |
+
return texts
|
| 172 |
+
result = []
|
| 173 |
+
text = ""
|
| 174 |
+
for ele in texts:
|
| 175 |
+
text += ele
|
| 176 |
+
if len(text) >= threshold:
|
| 177 |
+
result.append(text)
|
| 178 |
+
text = ""
|
| 179 |
+
if (len(text) > 0):
|
| 180 |
+
if len(result) == 0:
|
| 181 |
+
result.append(text)
|
| 182 |
+
else:
|
| 183 |
+
result[len(result) - 1] += text
|
| 184 |
+
return result
|
| 185 |
+
|
| 186 |
+
# ====== 对输入文本进行切割 =========
|
| 187 |
+
|
| 188 |
+
def split(todo_text):
|
| 189 |
+
"""
|
| 190 |
+
将大段文本按标点切割,并将每段文本(保留末尾标点)组成列表。
|
| 191 |
+
"""
|
| 192 |
+
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
| 193 |
+
if todo_text[-1] not in splits:
|
| 194 |
+
todo_text += "。"
|
| 195 |
+
i_split_head = i_split_tail = 0
|
| 196 |
+
len_text = len(todo_text)
|
| 197 |
+
todo_texts = []
|
| 198 |
+
while 1:
|
| 199 |
+
if i_split_head >= len_text:
|
| 200 |
+
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
| 201 |
+
if todo_text[i_split_head] in splits:
|
| 202 |
+
i_split_head += 1
|
| 203 |
+
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
| 204 |
+
i_split_tail = i_split_head
|
| 205 |
+
else:
|
| 206 |
+
i_split_head += 1
|
| 207 |
+
return todo_texts
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def cut1(inp):
|
| 211 |
+
"""
|
| 212 |
+
第一种文本分段法:基于重写的split分割后,凑4段语句推理一次。
|
| 213 |
+
"""
|
| 214 |
+
inp = inp.strip("\n")
|
| 215 |
+
inps = split(inp)
|
| 216 |
+
split_idx = list(range(0, len(inps), 4))
|
| 217 |
+
split_idx[-1] = None
|
| 218 |
+
if len(split_idx) > 1:
|
| 219 |
+
opts = []
|
| 220 |
+
for idx in range(len(split_idx) - 1):
|
| 221 |
+
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
|
| 222 |
+
else:
|
| 223 |
+
opts = [inp]
|
| 224 |
+
return "\n".join(opts)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def cut2(inp):
|
| 228 |
+
"""
|
| 229 |
+
第二种文本分段法:基于重写split分割后,凑50个字推理一次。
|
| 230 |
+
"""
|
| 231 |
+
inp = inp.strip("\n")
|
| 232 |
+
inps = split(inp)
|
| 233 |
+
if len(inps) < 2:
|
| 234 |
+
return [inp]
|
| 235 |
+
opts = []
|
| 236 |
+
summ = 0
|
| 237 |
+
tmp_str = ""
|
| 238 |
+
for i in range(len(inps)):
|
| 239 |
+
summ += len(inps[i])
|
| 240 |
+
tmp_str += inps[i]
|
| 241 |
+
if summ > 50:
|
| 242 |
+
summ = 0
|
| 243 |
+
opts.append(tmp_str)
|
| 244 |
+
tmp_str = ""
|
| 245 |
+
if tmp_str != "":
|
| 246 |
+
opts.append(tmp_str)
|
| 247 |
+
if len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
| 248 |
+
opts[-2] = opts[-2] + opts[-1]
|
| 249 |
+
opts = opts[:-1]
|
| 250 |
+
return "\n".join(opts)
|
| 251 |
+
|
| 252 |
+
def cut3(inp):
|
| 253 |
+
"""
|
| 254 |
+
第三种文本分段法:仅仅按中文句号分割。
|
| 255 |
+
"""
|
| 256 |
+
inp = inp.strip("\n")
|
| 257 |
+
return "\n".join(["%s。" % item for item in inp.strip("。").split("。")])
|
| 258 |
+
|
| 259 |
+
# 新增两种切法
|
| 260 |
+
|
| 261 |
+
def cut4(inp):
|
| 262 |
+
"""
|
| 263 |
+
"按英文句号.切"
|
| 264 |
+
"""
|
| 265 |
+
inp = inp.strip("\n")
|
| 266 |
+
return "\n".join(["%s" % item for item in inp.strip(".").split(".")])
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
| 270 |
+
def cut5(inp):
|
| 271 |
+
"""
|
| 272 |
+
"按标点符号切"
|
| 273 |
+
"""
|
| 274 |
+
# if not re.search(r'[^\w\s]', inp[-1]):
|
| 275 |
+
# inp += '。'
|
| 276 |
+
inp = inp.strip("\n")
|
| 277 |
+
punds = r'[,.;?!、,。?!;:…]'
|
| 278 |
+
items = re.split(f'({punds})', inp)
|
| 279 |
+
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
|
| 280 |
+
# 在句子不存在符号或句尾无符号的时候保证文本完整
|
| 281 |
+
if len(items)%2 == 1:
|
| 282 |
+
mergeitems.append(items[-1])
|
| 283 |
+
opt = "\n".join(mergeitems)
|
| 284 |
+
return opt
|
| 285 |
+
|
| 286 |
+
def get_spepc(hps, filename):
|
| 287 |
+
audio = load_audio(filename, int(hps.data.sampling_rate))
|
| 288 |
+
audio = torch.FloatTensor(audio)
|
| 289 |
+
audio_norm = audio
|
| 290 |
+
audio_norm = audio_norm.unsqueeze(0)
|
| 291 |
+
spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length,
|
| 292 |
+
hps.data.win_length, center=False)
|
| 293 |
+
return spec
|
| 294 |
+
|
| 295 |
+
class GPTSoVITSModel(PreTrainedModel):
|
| 296 |
+
config_class = GPTSoVITSConfig
|
| 297 |
+
|
| 298 |
+
def __init__(self, config: GPTSoVITSConfig):
|
| 299 |
+
super().__init__(config)
|
| 300 |
+
self.name_or_path = config.name_or_path
|
| 301 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
| 302 |
+
try:
|
| 303 |
+
for file in ["opencpop-strict.txt","cmudict-fast.rep","cmudict.rep","engdict-hot.rep"]:
|
| 304 |
+
hf_hub_download(
|
| 305 |
+
repo_id=self.name_or_path,
|
| 306 |
+
filename=file,
|
| 307 |
+
repo_type="model",
|
| 308 |
+
local_dir=current_dir
|
| 309 |
+
)
|
| 310 |
+
except:
|
| 311 |
+
print("Download not executed: maybe under dev mode, please put the files in current directory")
|
| 312 |
+
pass
|
| 313 |
+
|
| 314 |
+
self.prompt_language = config.prompt_language
|
| 315 |
+
|
| 316 |
+
self.ssl_model = cnhubert.CNHubert(config._hubert_config_dict, config._hubert_extractor_config_dict)
|
| 317 |
+
self.bert_model = AutoModelForMaskedLM.from_config(BertConfig.from_dict(config._bert_config_dict))
|
| 318 |
+
self.hps = DictToAttrRecursive(config._hps_dict)
|
| 319 |
+
self.hps.model.semantic_frame_rate = "25hz"
|
| 320 |
+
self.gpt_config = config._gpt_config_dict
|
| 321 |
+
self.vq_model = SynthesizerTrn(
|
| 322 |
+
self.hps.data.filter_length // 2 + 1,
|
| 323 |
+
self.hps.train.segment_size // self.hps.data.hop_length,
|
| 324 |
+
n_speakers=self.hps.data.n_speakers,
|
| 325 |
+
**self.hps.model)
|
| 326 |
+
self.t2s_model = Text2SemanticLightningModule(self.gpt_config, "ojbk", is_train=False)
|
| 327 |
+
try:
|
| 328 |
+
self.ref_wav_path = hf_hub_download(
|
| 329 |
+
repo_id=self.name_or_path,
|
| 330 |
+
filename="ref.wav",
|
| 331 |
+
repo_type="model",
|
| 332 |
+
local_dir = current_dir
|
| 333 |
+
)
|
| 334 |
+
self.prompt_text_path = hf_hub_download(
|
| 335 |
+
repo_id=self.name_or_path,
|
| 336 |
+
filename="ref.txt",
|
| 337 |
+
repo_type="model",
|
| 338 |
+
local_dir = current_dir
|
| 339 |
+
)
|
| 340 |
+
except:
|
| 341 |
+
self.ref_wav_path = os.path.join(current_dir, "ref.wav")
|
| 342 |
+
self.prompt_text_path = os.path.join(current_dir, "ref.txt")
|
| 343 |
+
print("Download not executed: maybe under dev mode, please put the files in current directory")
|
| 344 |
+
self.refer = get_spepc(self.hps, self.ref_wav_path)
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def get_cleaned_text_final(self,text,language):
|
| 350 |
+
"""
|
| 351 |
+
根据语言类型选择适当的文本清洗函数,并返回处理后的音素序列、单词到音素的映射以及规范化文本。
|
| 352 |
+
-> phones,word2ph,norm_text
|
| 353 |
+
- clean_text_inf 针对单一语种{"en","all_zh","all_ja"}
|
| 354 |
+
- clean_text 和 cleaned_text_to_sequence 来自内部text模块cleaner和__init__
|
| 355 |
+
- nonen_clean_text_inf 针对混合语种{"zh", "ja","auto"}
|
| 356 |
+
- splite_en_inf
|
| 357 |
+
"""
|
| 358 |
+
if language in {"en","all_zh","all_ja"}:
|
| 359 |
+
phones, word2ph, norm_text = clean_text_inf(text, language)
|
| 360 |
+
elif language in {"zh", "ja","auto"}:
|
| 361 |
+
phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
|
| 362 |
+
return phones, word2ph, norm_text
|
| 363 |
+
|
| 364 |
+
def get_bert_inf(self, phones, word2ph, norm_text, language):
|
| 365 |
+
device = self.device # 【补】
|
| 366 |
+
is_half = self.dtype == torch.float16 # 【补】
|
| 367 |
+
|
| 368 |
+
language=language.replace("all_","")
|
| 369 |
+
if language == "zh":
|
| 370 |
+
bert = self.get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
|
| 371 |
+
else:
|
| 372 |
+
bert = torch.zeros(
|
| 373 |
+
(1024, len(phones)),
|
| 374 |
+
dtype=torch.float16 if is_half == True else torch.float32,
|
| 375 |
+
).to(device)
|
| 376 |
+
|
| 377 |
+
return bert
|
| 378 |
+
|
| 379 |
+
def get_bert_feature(self, text, word2ph, tokenizer):
|
| 380 |
+
|
| 381 |
+
is_half = self.dtype == torch.float16 # 【补】
|
| 382 |
+
device = self.device # 【补】
|
| 383 |
+
|
| 384 |
+
with torch.no_grad():
|
| 385 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 386 |
+
for i in inputs:
|
| 387 |
+
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model
|
| 388 |
+
res = self.bert_model(**inputs, output_hidden_states=True)
|
| 389 |
+
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
| 390 |
+
assert len(word2ph) == len(text)
|
| 391 |
+
phone_level_feature = []
|
| 392 |
+
for i in range(len(word2ph)):
|
| 393 |
+
repeat_feature = res[i].repeat(word2ph[i], 1)
|
| 394 |
+
phone_level_feature.append(repeat_feature)
|
| 395 |
+
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
| 396 |
+
if(is_half==True):phone_level_feature=phone_level_feature.half()
|
| 397 |
+
|
| 398 |
+
return phone_level_feature.T
|
| 399 |
+
|
| 400 |
+
# ======适配混合语种输出======
|
| 401 |
+
# ===
|
| 402 |
+
def get_cleaned_text_final(self,text,language):
|
| 403 |
+
"""
|
| 404 |
+
根据语言类型选择适当的文本清洗函数,并返回处理后的音素序列、单词到音素的映射以及规范化文本。
|
| 405 |
+
-> phones,word2ph,norm_text
|
| 406 |
+
- clean_text_inf 针对单一语种{"en","all_zh","all_ja"}
|
| 407 |
+
- clean_text 和 cleaned_text_to_sequence 来自内部text模块cleaner和__init__
|
| 408 |
+
- nonen_clean_text_inf 针对混合语种{"zh", "ja","auto"}
|
| 409 |
+
- splite_en_inf
|
| 410 |
+
"""
|
| 411 |
+
if language in {"en","all_zh","all_ja"}:
|
| 412 |
+
phones, word2ph, norm_text = clean_text_inf(text, language)
|
| 413 |
+
elif language in {"zh", "ja","auto"}:
|
| 414 |
+
phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
|
| 415 |
+
return phones, word2ph, norm_text
|
| 416 |
+
|
| 417 |
+
def get_bert_inf(self, phones, word2ph, norm_text, language, tokenizer):
|
| 418 |
+
device = self.device # 【补】
|
| 419 |
+
is_half = self.dtype == torch.float16 # 【补】
|
| 420 |
+
|
| 421 |
+
language=language.replace("all_","")
|
| 422 |
+
if language == "zh":
|
| 423 |
+
bert = self.get_bert_feature(norm_text, word2ph,tokenizer).to(device)#.to(dtype)
|
| 424 |
+
else:
|
| 425 |
+
bert = torch.zeros(
|
| 426 |
+
(1024, len(phones)),
|
| 427 |
+
dtype=torch.float16 if is_half == True else torch.float32,
|
| 428 |
+
).to(device)
|
| 429 |
+
|
| 430 |
+
return bert
|
| 431 |
+
|
| 432 |
+
def nonen_get_bert_inf(self, text, language, tokenizer):
|
| 433 |
+
if(language!="auto"):
|
| 434 |
+
textlist, langlist = splite_en_inf(text, language)
|
| 435 |
+
else:
|
| 436 |
+
textlist=[]
|
| 437 |
+
langlist=[]
|
| 438 |
+
for tmp in LangSegment.getTexts(text):
|
| 439 |
+
langlist.append(tmp["lang"])
|
| 440 |
+
textlist.append(tmp["text"])
|
| 441 |
+
print(textlist)
|
| 442 |
+
print(langlist)
|
| 443 |
+
bert_list = []
|
| 444 |
+
for i in range(len(textlist)):
|
| 445 |
+
lang = langlist[i]
|
| 446 |
+
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
| 447 |
+
bert = self.get_bert_inf(phones, word2ph, norm_text, lang,tokenizer)
|
| 448 |
+
bert_list.append(bert)
|
| 449 |
+
bert = torch.cat(bert_list, dim=1)
|
| 450 |
+
|
| 451 |
+
return bert
|
| 452 |
+
|
| 453 |
+
def get_bert_final(self,phones, word2ph, text,language, tokenizer):
|
| 454 |
+
"""
|
| 455 |
+
根据语言 选择调用不同的函数来得到一个bert表示。
|
| 456 |
+
需要输入Get_clean_text_final得到的文字素材
|
| 457 |
+
-> bert
|
| 458 |
+
- get_bert_inf 针对纯英文”en”
|
| 459 |
+
- nonen_get_bert_inf 针对混合语种{"zh", "ja","auto"}
|
| 460 |
+
- get_bert_feature 针对纯中文”all_zh”
|
| 461 |
+
"""
|
| 462 |
+
device = self.device # 【补】
|
| 463 |
+
|
| 464 |
+
if language == "en":
|
| 465 |
+
bert = self.get_bert_inf(phones, word2ph, text, language, tokenizer) # 【补】
|
| 466 |
+
elif language in {"zh", "ja","auto"}:
|
| 467 |
+
bert = self.nonen_get_bert_inf(text, language, tokenizer)
|
| 468 |
+
elif language == "all_zh":
|
| 469 |
+
bert = self.get_bert_feature(text, word2ph, tokenizer).to(device)
|
| 470 |
+
else:
|
| 471 |
+
bert = torch.zeros((1024, len(phones))).to(device)
|
| 472 |
+
return bert
|
| 473 |
+
|
| 474 |
+
# ===
|
| 475 |
+
# ======适配混合语种输出======
|
| 476 |
+
|
| 477 |
+
def infer(self, text, tokenizer, text_language="zh",
|
| 478 |
+
how_to_cut="凑四句一切",
|
| 479 |
+
top_k=20, top_p=0.6, temperature=0.6,
|
| 480 |
+
# 关于上面三个参数 https://github.com/RVC-Boss/GPT-SoVITS/pull/457
|
| 481 |
+
# 可以通过降低温度,降低top_p,top_k 提升模型输出内容的一致性
|
| 482 |
+
ref_free = False) -> tuple[np.ndarray,float|int]: # 在不知道参考音频文本的情况下进行推理
|
| 483 |
+
|
| 484 |
+
# ====== 函数内变量 ======
|
| 485 |
+
# ===
|
| 486 |
+
# 根据声色指定相关模型与参考语音
|
| 487 |
+
ref_wav_path = self.ref_wav_path
|
| 488 |
+
|
| 489 |
+
if not ref_free:
|
| 490 |
+
prompt_text_path = self.prompt_text_path
|
| 491 |
+
with open(prompt_text_path, 'r', encoding='utf-8') as file:
|
| 492 |
+
prompt_text = file.read()
|
| 493 |
+
# 如果txt中音频文本为空,则也不使用音频文本。
|
| 494 |
+
if prompt_text is None or len(prompt_text) == 0:
|
| 495 |
+
ref_free = True
|
| 496 |
+
prompt_language = self.prompt_language
|
| 497 |
+
|
| 498 |
+
|
| 499 |
+
device = self.device
|
| 500 |
+
is_half = self.dtype == torch.float16
|
| 501 |
+
dtype = self.dtype
|
| 502 |
+
|
| 503 |
+
hz = 50
|
| 504 |
+
max_sec = self.gpt_config['data']['max_sec']
|
| 505 |
+
# ===
|
| 506 |
+
# ====== 函数内变量 ======
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
# 确认参考语音和推理文本的语种(可以不必,已对prompt_language和text_language的输入做了严格限制)
|
| 510 |
+
prompt_language = dict_language[prompt_language]
|
| 511 |
+
text_language = dict_language[text_language]
|
| 512 |
+
|
| 513 |
+
if not ref_free:
|
| 514 |
+
prompt_text = prompt_text.strip("\n")
|
| 515 |
+
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
|
| 516 |
+
#【日志】 print("实际输入的参考文本:", prompt_text)
|
| 517 |
+
|
| 518 |
+
# 预处理推理文本:文本第一段(get_first)若特别短<4字符,则在文本最前方加上句号。
|
| 519 |
+
text = text.strip("\n")
|
| 520 |
+
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
| 521 |
+
|
| 522 |
+
#【日志】 print("实际输入的目标文本:", text)
|
| 523 |
+
|
| 524 |
+
# 创建空音频段
|
| 525 |
+
# 第一个with torch.no_grad() 从参考音频中提取语义信息,并把空音频段放到参考音频末尾->prompt_semantic
|
| 526 |
+
zero_wav = np.zeros(
|
| 527 |
+
int(self.hps.data.sampling_rate * 0.3), # 【补】
|
| 528 |
+
dtype=np.float16 if is_half == True else np.float32,
|
| 529 |
+
)
|
| 530 |
+
with torch.no_grad():
|
| 531 |
+
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
| 532 |
+
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
| 533 |
+
raise OSError("参考音频在3~10秒范围外,请更换!")
|
| 534 |
+
wav16k = torch.from_numpy(wav16k)
|
| 535 |
+
zero_wav_torch = torch.from_numpy(zero_wav)
|
| 536 |
+
if is_half == True:
|
| 537 |
+
wav16k = wav16k.half().to(device)
|
| 538 |
+
zero_wav_torch = zero_wav_torch.half().to(device)
|
| 539 |
+
else:
|
| 540 |
+
wav16k = wav16k.to(device)
|
| 541 |
+
zero_wav_torch = zero_wav_torch.to(device)
|
| 542 |
+
wav16k = torch.cat([wav16k, zero_wav_torch])
|
| 543 |
+
ssl_content = self.ssl_model.model(wav16k.unsqueeze(0))[
|
| 544 |
+
"last_hidden_state"
|
| 545 |
+
].transpose(
|
| 546 |
+
1, 2
|
| 547 |
+
) # .float()
|
| 548 |
+
codes = self.vq_model.extract_latent(ssl_content)
|
| 549 |
+
|
| 550 |
+
prompt_semantic = codes[0, 0]
|
| 551 |
+
|
| 552 |
+
# 切分推理文本,5种方法。一般可选4句一切和��标点符号切。之后,将其中小于5的语句/短语合并(merge_short_text_in_array)。最终得到推理文本切割列表
|
| 553 |
+
# -> texts
|
| 554 |
+
if (how_to_cut == "凑四句一切"):
|
| 555 |
+
text = cut1(text)
|
| 556 |
+
elif (how_to_cut == "凑50字一切"):
|
| 557 |
+
text = cut2(text)
|
| 558 |
+
elif (how_to_cut == "按中文句号。切"):
|
| 559 |
+
text = cut3(text)
|
| 560 |
+
elif (how_to_cut == "按英文句号.切"):
|
| 561 |
+
text = cut4(text)
|
| 562 |
+
elif (how_to_cut == "按标点符号切"):
|
| 563 |
+
text = cut5(text)
|
| 564 |
+
while "\n\n" in text:
|
| 565 |
+
text = text.replace("\n\n", "\n")
|
| 566 |
+
|
| 567 |
+
#【日志】 print("实际输入的目标文本(切句后):", text)
|
| 568 |
+
texts = text.split("\n")
|
| 569 |
+
texts = merge_short_text_in_array(texts, 5)
|
| 570 |
+
audio_opt = []
|
| 571 |
+
if not ref_free:
|
| 572 |
+
# 处理参考文本(get_cleaned_text_final)得到文字素材
|
| 573 |
+
# -> phones1,word2ph1,norm_text1
|
| 574 |
+
phones1, word2ph1, norm_text1=self.get_cleaned_text_final(prompt_text, prompt_language)
|
| 575 |
+
# 处理参考语音(Get_bert_final) 输入文字素材phones1,word2ph1,norm_text1
|
| 576 |
+
# 得到bert表示
|
| 577 |
+
# ->bert1
|
| 578 |
+
bert1=self.get_bert_final(phones1, word2ph1, norm_text1,prompt_language,tokenizer).to(dtype)
|
| 579 |
+
|
| 580 |
+
# for循环 处理推理文本,对texts中的每一段语句/短语
|
| 581 |
+
# 处理文本(get_cleaned_text_final)得到文字素材
|
| 582 |
+
# -> phones2,word2ph2,norm_text2
|
| 583 |
+
# 处理参考语音(Get_bert_final) 输入文字素材phones2,word2ph2,norm_text2
|
| 584 |
+
# 得到bert表示
|
| 585 |
+
# ->bert2
|
| 586 |
+
for text in texts:
|
| 587 |
+
# 解决输入目标文本的空行导致报错的问题
|
| 588 |
+
if (len(text.strip()) == 0):
|
| 589 |
+
continue
|
| 590 |
+
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
|
| 591 |
+
# 【日志】print("实际输入的目标文本(每句):", text)
|
| 592 |
+
phones2, word2ph2, norm_text2 = self.get_cleaned_text_final(text, text_language)
|
| 593 |
+
bert2 = self.get_bert_final(phones2, word2ph2, norm_text2, text_language,tokenizer).to(dtype)
|
| 594 |
+
if not ref_free:
|
| 595 |
+
bert = torch.cat([bert1, bert2], 1)
|
| 596 |
+
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
| 597 |
+
else:
|
| 598 |
+
bert = bert2
|
| 599 |
+
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
| 600 |
+
|
| 601 |
+
bert = bert.to(device).unsqueeze(0)
|
| 602 |
+
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
| 603 |
+
prompt = prompt_semantic.unsqueeze(0).to(device)
|
| 604 |
+
|
| 605 |
+
with torch.no_grad():
|
| 606 |
+
# pred_semantic = t2s_model.model.infer(
|
| 607 |
+
pred_semantic, idx = self.t2s_model.model.infer_panel(
|
| 608 |
+
all_phoneme_ids,
|
| 609 |
+
all_phoneme_len,
|
| 610 |
+
None if ref_free else prompt,
|
| 611 |
+
bert,
|
| 612 |
+
# prompt_phone_len=ph_offset,
|
| 613 |
+
top_k=top_k,
|
| 614 |
+
top_p=top_p,
|
| 615 |
+
temperature=temperature,
|
| 616 |
+
early_stop_num=hz * max_sec,
|
| 617 |
+
)
|
| 618 |
+
|
| 619 |
+
# print(pred_semantic.shape,idx)
|
| 620 |
+
pred_semantic = pred_semantic[:, -idx:].unsqueeze(
|
| 621 |
+
0
|
| 622 |
+
) # .unsqueeze(0)#mq要多unsqueeze一次
|
| 623 |
+
refer = get_spepc(self.hps, ref_wav_path) # .to(device) # 【补】
|
| 624 |
+
if is_half == True:
|
| 625 |
+
refer = refer.half().to(device)
|
| 626 |
+
else:
|
| 627 |
+
refer = refer.to(device)
|
| 628 |
+
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
|
| 629 |
+
audio = (
|
| 630 |
+
self.vq_model.decode( # 【补】
|
| 631 |
+
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
|
| 632 |
+
)
|
| 633 |
+
.detach()
|
| 634 |
+
.cpu()
|
| 635 |
+
.numpy()[0, 0]
|
| 636 |
+
) ###试试重建不带上prompt部分
|
| 637 |
+
max_audio=np.abs(audio).max()#简单防止16bit爆音
|
| 638 |
+
if max_audio>1:audio/=max_audio
|
| 639 |
+
audio_opt.append(audio)
|
| 640 |
+
audio_opt.append(zero_wav)
|
| 641 |
+
|
| 642 |
+
sampling_rate, audio_data = self.hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
| 643 |
+
np.int16
|
| 644 |
+
)
|
| 645 |
+
|
| 646 |
+
# sf.write(wav_save_path, audio_data, sampling_rate, format='wav')
|
| 647 |
+
torch.cuda.empty_cache()
|
| 648 |
+
return audio_data, sampling_rate
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 2201587998
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c9291172a30df7f6e38fe99950031f9276550dc850202ab84f426492826fc00
|
| 3 |
size 2201587998
|