--- library_name: transformers tags: - llama-3 - tiny-llama - nano-llama - small-llama - random-llama - tiny - small - nano - random - debug - llama-3-debug - gpt - generation - xiaodongguaAIGC pipeline_tag: text-generation language: - en - zh --- # llama-3-debug This model use for debug, the parameter is random. It's small only '~32MB' memory size, that is efficent for you to download and debug. `llama-3-debug` model config modified as follow ```python config.intermediate_size = 128 config.hidden_size = 64 config.num_attention_heads = 2 config.num_key_value_heads = 2 config.num_hidden_layers = 1 ``` If you want to load it by this code ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = 'xiaodongguaAIGC/llama-3-debug' model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(model_name) print(model) print(tokenizer) ```