xiaohan-yi commited on
Commit
993ac59
·
verified ·
1 Parent(s): 54cbd91

Upload Model documentation

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - crystal-generation
5
+ - diffusion-transformer
6
+ - materials-science
7
+ - pytorch
8
+ language:
9
+ - en
10
+ library_name: pytorch
11
+ pipeline_tag: other
12
+ ---
13
+
14
+ # CrystalDiT: A Diffusion Transformer for Crystal Generation
15
+
16
+ [![GitHub](https://img.shields.io/badge/GitHub-CrystalDiT-blue)](https://github.com/xiaohan-yi/CrystalDiT)
17
+ [![Paper](https://img.shields.io/badge/arXiv-2508.16614-red)](https://arxiv.org/abs/2508.16614)
18
+
19
+ **CrystalDiT** is a simplified diffusion transformer architecture for crystal structure generation that achieves state-of-the-art performance by treating lattice and atomic properties as a single, interdependent system.
20
+
21
+ CrystalDiT achieves **9.62% SUN rate** on MP-20, significantly outperforming existing methods like FlowMM (4.38%) and MatterGen (3.42%).
22
+
23
+ Key features:
24
+ * **Unified Architecture**: Joint attention processing of lattice and atomic features
25
+ * **Chemical Representation**: Two-dimensional atomic encoding using periodic table positions
26
+ * **Balance Score**: Novel model selection metric optimizing discovery potential vs. generation quality
27
+
28
+ This checkpoint represents the best-performing model selected via Balance Score methodology after training for 50,000 epochs on the MP-20 dataset.
29
+
30
+ ## Files in this Repository
31
+
32
+ - **`best_model.pt`**: Pre-trained CrystalDiT model checkpoint (best model selected via Balance Score)
33
+ - **`generate_crystals.tar`**: Generated crystal structures from all compared methods, containing:
34
+ - **`CrystalDiT_crystals/`**: 10,000 structures from our method (9.62% SUN rate)
35
+ - **`flowmm_crystals/`**: 10,000 structures from FlowMM baseline (4.38% SUN rate)
36
+ - **`mattergen_crystals/`**: 10,000 structures from MatterGen baseline (3.42% SUN rate)
37
+ - **`ADiT_crystals_mp20/`**: 10,000 structures from ADiT baseline (2.74% SUN rate)
38
+ - **`diffcep_crystals/`**: 10,000 structures from DiffCSP baseline
39
+ - **`diffcsp-pp_crystals/`**: 10,000 structures from DiffCSP++ baseline
40
+
41
+ All crystal structures are in CIF format and were used for the comparative evaluation in our paper. These are provided to facilitate reproducible research and fair comparison with future methods.
42
+
43
+ ## Usage
44
+
45
+ Extract the generated structures:
46
+ ```bash
47
+ tar -xf generate_crystals.tar
48
+ ```
49
+
50
+ Load the model checkpoint as described in the **README on GitHub**.
51
+
52
+ ## Performance
53
+
54
+ | Method | SUN (%) | MSUN (%) | UN Rate (%) |
55
+ |---------|---------|----------|-------------|
56
+ | FlowMM | 4.38 | 20.16 | 87.66 |
57
+ | MatterGen | 3.42 | 23.91 | 89.89 |
58
+ | ADiT | 2.74 | 13.50 | 37.08 |
59
+ | **CrystalDiT** | **9.62** | **25.94** | **63.28** |
60
+
61
+ ## Citation
62
+
63
+ ```bibtex
64
+ @article{yi2024crystaldit,
65
+ title={CrystalDiT: A Diffusion Transformer for Crystal Generation},
66
+ author={Yi, Xiaohan and Xu, Guikun and Xiao, Xi and Zhang, Zhong and Liu, Liu and Bian, Yatao and Zhao, Peilin},
67
+ journal={arXiv preprint arXiv:2508.16614},
68
+ year={2024},
69
+ url={https://arxiv.org/abs/2508.16614}
70
+ }
71
+ ```