Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +539 -0
- config.json +25 -0
- config_sentence_transformers.json +14 -0
- eval/Information-Retrieval_evaluation_results.csv +5 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,539 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- dense
|
7 |
+
- generated_from_trainer
|
8 |
+
- dataset_size:3056
|
9 |
+
- loss:MatryoshkaLoss
|
10 |
+
- loss:MultipleNegativesRankingLoss
|
11 |
+
base_model: intfloat/e5-base-v2
|
12 |
+
widget:
|
13 |
+
- source_sentence: Assess the strengths and weaknesses of initiatives aimed at growing
|
14 |
+
indigenous agribusiness.
|
15 |
+
sentences:
|
16 |
+
- 'In Chile, 80% of sources go to irrigation and agriculture, making irrigation
|
17 |
+
in agriculture a relevant element to consider. The main aspects associated with
|
18 |
+
irrigation in agriculture are salinity, toxicity, and microbiological quality
|
19 |
+
due to pathogenic organisms present in wastewater. When discussing irrigation,
|
20 |
+
the type of irrigation must be taken into account, as there are globally two types:
|
21 |
+
restrictive irrigation, which applies to products eaten raw, and irrigation without
|
22 |
+
restriction, which has no significant effects on agriculture, animals, or humans.'
|
23 |
+
- Mr Yoshiyuki Arima discussed the World Bank's focus on sustainable solutions to
|
24 |
+
challenges like climate change and gender equality. The World Bank is moving from
|
25 |
+
Green Bonds to Sustainable Development Bonds, using SDGs as a framework. They
|
26 |
+
are working with the Government Pension Investment Fund on research related to
|
27 |
+
SDGs.
|
28 |
+
- Technical and leadership development to grow indigenous agribusiness. Commercialisation
|
29 |
+
and access to market channels – both domestic and international – for indigenous
|
30 |
+
goods and services. Building networks to strengthen and increase participation
|
31 |
+
in the food system of indigenous people in the Asia Pacific region.
|
32 |
+
- source_sentence: What is the largest water-consuming sector in Australia's economy?
|
33 |
+
sentences:
|
34 |
+
- Navarrot holds a Minor in Sustainability Studies.
|
35 |
+
- Australia’s agricultural sector is the largest water consuming sector in the economy,
|
36 |
+
accounting for 65 percent of total consumption in 2005. In the Murray-Darling
|
37 |
+
Basin, climate change will lead to decreased water levels and difficulties meeting
|
38 |
+
demand for irrigation while maintaining environmental flows. Additionally, vegetation
|
39 |
+
will consume more water under higher temperatures.
|
40 |
+
- The project contributes to the implementation of the APEC Food Security Roadmap
|
41 |
+
Towards 2030, focusing on food production, processing, and distribution. It includes
|
42 |
+
targets such as improving food system related digital literacy, promoting public-private
|
43 |
+
investment, modernizing food storage facilities, and sharing best practices among
|
44 |
+
APEC economies.
|
45 |
+
- source_sentence: How would you use anaerobic digestion to reduce landfill reliance
|
46 |
+
in a city?
|
47 |
+
sentences:
|
48 |
+
- 'Innovation Approach: Technologies like anaerobic digestion and microbial transformation
|
49 |
+
create biogas and animal feed, turning waste into valuable resources and reducing
|
50 |
+
landfill reliance.'
|
51 |
+
- The initiative started from the previous satellite communication project that
|
52 |
+
ITU implemented in the Pacific. ITU provided 9 economies with 93 units of satellite
|
53 |
+
ground stations, so the remote islands were connected with the satellites. For
|
54 |
+
the islands, the satellites became essential communication means when disaster
|
55 |
+
hits the region. For instance, when the hurricane hit in 2020, the satellite ground
|
56 |
+
stations were the only communication means when the economies tried to initiate
|
57 |
+
the disaster response efforts during the Covid lockdown. Additionally, according
|
58 |
+
to ITU’s assessment, this communication means were used by communities and remote
|
59 |
+
and previously unconnected communities for education and health, and to provide
|
60 |
+
and receive government services.
|
61 |
+
- Mexico cited changes to the lengths of growing seasons, with increased temperatures
|
62 |
+
leading to shorter growing seasons in traditional agricultural areas as temperatures
|
63 |
+
become too extreme for both crops and livestock.
|
64 |
+
- source_sentence: What would happen if APEC economies failed to coordinate across
|
65 |
+
borders?
|
66 |
+
sentences:
|
67 |
+
- APEC economies must co-ordinate across borders to facilitate services. The greater
|
68 |
+
the coherence between industry and governments, the greater the likelihood of
|
69 |
+
success.
|
70 |
+
- Another key issue she made clear about the food systems was the transaction costs.
|
71 |
+
To unlock the potential of the food systems, the transaction costs issues should
|
72 |
+
be addressed. These transactions are all over the food systems. They are encouraged
|
73 |
+
by farmers, their business partners to find each other, make deals and ensure
|
74 |
+
that these deals are enforced. While the transactions being essential to the production
|
75 |
+
of goods, the costs following them drive farmers to choose quantity over quality
|
76 |
+
at the expense of the environment, which ultimately affect consumers product choices.
|
77 |
+
- '• Mortality risk: lack of real time data to react.
|
78 |
+
|
79 |
+
• Yield optimization: no proper water quality data for yield optimization.'
|
80 |
+
- source_sentence: Identify the main goal of closing resource loops.
|
81 |
+
sentences:
|
82 |
+
- Closing resource loops aims to create new value through the reuse and recycling
|
83 |
+
of used materials.
|
84 |
+
- Shelf life can be extended up to 18 month, would this violate the expiration date?
|
85 |
+
- Closing resource loops aims to create new value through the reuse and recycling
|
86 |
+
of used materials.
|
87 |
+
pipeline_tag: sentence-similarity
|
88 |
+
library_name: sentence-transformers
|
89 |
+
metrics:
|
90 |
+
- cosine_accuracy@1
|
91 |
+
- cosine_accuracy@3
|
92 |
+
- cosine_accuracy@5
|
93 |
+
- cosine_accuracy@10
|
94 |
+
- cosine_precision@1
|
95 |
+
- cosine_precision@3
|
96 |
+
- cosine_precision@5
|
97 |
+
- cosine_precision@10
|
98 |
+
- cosine_recall@1
|
99 |
+
- cosine_recall@3
|
100 |
+
- cosine_recall@5
|
101 |
+
- cosine_recall@10
|
102 |
+
- cosine_ndcg@10
|
103 |
+
- cosine_mrr@10
|
104 |
+
- cosine_map@100
|
105 |
+
model-index:
|
106 |
+
- name: SentenceTransformer based on intfloat/e5-base-v2
|
107 |
+
results:
|
108 |
+
- task:
|
109 |
+
type: information-retrieval
|
110 |
+
name: Information Retrieval
|
111 |
+
dataset:
|
112 |
+
name: Unknown
|
113 |
+
type: unknown
|
114 |
+
metrics:
|
115 |
+
- type: cosine_accuracy@1
|
116 |
+
value: 0.7447643979057592
|
117 |
+
name: Cosine Accuracy@1
|
118 |
+
- type: cosine_accuracy@3
|
119 |
+
value: 0.8992146596858639
|
120 |
+
name: Cosine Accuracy@3
|
121 |
+
- type: cosine_accuracy@5
|
122 |
+
value: 0.93717277486911
|
123 |
+
name: Cosine Accuracy@5
|
124 |
+
- type: cosine_accuracy@10
|
125 |
+
value: 0.9607329842931938
|
126 |
+
name: Cosine Accuracy@10
|
127 |
+
- type: cosine_precision@1
|
128 |
+
value: 0.7447643979057592
|
129 |
+
name: Cosine Precision@1
|
130 |
+
- type: cosine_precision@3
|
131 |
+
value: 0.32504363001745196
|
132 |
+
name: Cosine Precision@3
|
133 |
+
- type: cosine_precision@5
|
134 |
+
value: 0.20863874345549735
|
135 |
+
name: Cosine Precision@5
|
136 |
+
- type: cosine_precision@10
|
137 |
+
value: 0.10863874345549739
|
138 |
+
name: Cosine Precision@10
|
139 |
+
- type: cosine_recall@1
|
140 |
+
value: 0.6882635253054101
|
141 |
+
name: Cosine Recall@1
|
142 |
+
- type: cosine_recall@3
|
143 |
+
value: 0.8697643979057592
|
144 |
+
name: Cosine Recall@3
|
145 |
+
- type: cosine_recall@5
|
146 |
+
value: 0.9212478184991274
|
147 |
+
name: Cosine Recall@5
|
148 |
+
- type: cosine_recall@10
|
149 |
+
value: 0.9526614310645725
|
150 |
+
name: Cosine Recall@10
|
151 |
+
- type: cosine_ndcg@10
|
152 |
+
value: 0.849824960377896
|
153 |
+
name: Cosine Ndcg@10
|
154 |
+
- type: cosine_mrr@10
|
155 |
+
value: 0.8267877919055926
|
156 |
+
name: Cosine Mrr@10
|
157 |
+
- type: cosine_map@100
|
158 |
+
value: 0.8125610657293678
|
159 |
+
name: Cosine Map@100
|
160 |
+
---
|
161 |
+
|
162 |
+
# SentenceTransformer based on intfloat/e5-base-v2
|
163 |
+
|
164 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
165 |
+
|
166 |
+
## Model Details
|
167 |
+
|
168 |
+
### Model Description
|
169 |
+
- **Model Type:** Sentence Transformer
|
170 |
+
- **Base model:** [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) <!-- at revision f52bf8ec8c7124536f0efb74aca902b2995e5bcd -->
|
171 |
+
- **Maximum Sequence Length:** 512 tokens
|
172 |
+
- **Output Dimensionality:** 768 dimensions
|
173 |
+
- **Similarity Function:** Cosine Similarity
|
174 |
+
<!-- - **Training Dataset:** Unknown -->
|
175 |
+
<!-- - **Language:** Unknown -->
|
176 |
+
<!-- - **License:** Unknown -->
|
177 |
+
|
178 |
+
### Model Sources
|
179 |
+
|
180 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
181 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
182 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
183 |
+
|
184 |
+
### Full Model Architecture
|
185 |
+
|
186 |
+
```
|
187 |
+
SentenceTransformer(
|
188 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
|
189 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
190 |
+
(2): Normalize()
|
191 |
+
)
|
192 |
+
```
|
193 |
+
|
194 |
+
## Usage
|
195 |
+
|
196 |
+
### Direct Usage (Sentence Transformers)
|
197 |
+
|
198 |
+
First install the Sentence Transformers library:
|
199 |
+
|
200 |
+
```bash
|
201 |
+
pip install -U sentence-transformers
|
202 |
+
```
|
203 |
+
|
204 |
+
Then you can load this model and run inference.
|
205 |
+
```python
|
206 |
+
from sentence_transformers import SentenceTransformer
|
207 |
+
|
208 |
+
# Download from the 🤗 Hub
|
209 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
210 |
+
# Run inference
|
211 |
+
sentences = [
|
212 |
+
'Identify the main goal of closing resource loops.',
|
213 |
+
'Closing resource loops aims to create new value through the reuse and recycling of used materials.',
|
214 |
+
'Shelf life can be extended up to 18 month, would this violate the expiration date?',
|
215 |
+
]
|
216 |
+
embeddings = model.encode(sentences)
|
217 |
+
print(embeddings.shape)
|
218 |
+
# [3, 768]
|
219 |
+
|
220 |
+
# Get the similarity scores for the embeddings
|
221 |
+
similarities = model.similarity(embeddings, embeddings)
|
222 |
+
print(similarities)
|
223 |
+
# tensor([[1.0000, 0.8682, 0.4450],
|
224 |
+
# [0.8682, 1.0000, 0.4960],
|
225 |
+
# [0.4450, 0.4960, 1.0000]])
|
226 |
+
```
|
227 |
+
|
228 |
+
<!--
|
229 |
+
### Direct Usage (Transformers)
|
230 |
+
|
231 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
232 |
+
|
233 |
+
</details>
|
234 |
+
-->
|
235 |
+
|
236 |
+
<!--
|
237 |
+
### Downstream Usage (Sentence Transformers)
|
238 |
+
|
239 |
+
You can finetune this model on your own dataset.
|
240 |
+
|
241 |
+
<details><summary>Click to expand</summary>
|
242 |
+
|
243 |
+
</details>
|
244 |
+
-->
|
245 |
+
|
246 |
+
<!--
|
247 |
+
### Out-of-Scope Use
|
248 |
+
|
249 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
250 |
+
-->
|
251 |
+
|
252 |
+
## Evaluation
|
253 |
+
|
254 |
+
### Metrics
|
255 |
+
|
256 |
+
#### Information Retrieval
|
257 |
+
|
258 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
259 |
+
|
260 |
+
| Metric | Value |
|
261 |
+
|:--------------------|:-----------|
|
262 |
+
| cosine_accuracy@1 | 0.7448 |
|
263 |
+
| cosine_accuracy@3 | 0.8992 |
|
264 |
+
| cosine_accuracy@5 | 0.9372 |
|
265 |
+
| cosine_accuracy@10 | 0.9607 |
|
266 |
+
| cosine_precision@1 | 0.7448 |
|
267 |
+
| cosine_precision@3 | 0.325 |
|
268 |
+
| cosine_precision@5 | 0.2086 |
|
269 |
+
| cosine_precision@10 | 0.1086 |
|
270 |
+
| cosine_recall@1 | 0.6883 |
|
271 |
+
| cosine_recall@3 | 0.8698 |
|
272 |
+
| cosine_recall@5 | 0.9212 |
|
273 |
+
| cosine_recall@10 | 0.9527 |
|
274 |
+
| **cosine_ndcg@10** | **0.8498** |
|
275 |
+
| cosine_mrr@10 | 0.8268 |
|
276 |
+
| cosine_map@100 | 0.8126 |
|
277 |
+
|
278 |
+
<!--
|
279 |
+
## Bias, Risks and Limitations
|
280 |
+
|
281 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
282 |
+
-->
|
283 |
+
|
284 |
+
<!--
|
285 |
+
### Recommendations
|
286 |
+
|
287 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
288 |
+
-->
|
289 |
+
|
290 |
+
## Training Details
|
291 |
+
|
292 |
+
### Training Dataset
|
293 |
+
|
294 |
+
#### Unnamed Dataset
|
295 |
+
|
296 |
+
* Size: 3,056 training samples
|
297 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
298 |
+
* Approximate statistics based on the first 1000 samples:
|
299 |
+
| | sentence_0 | sentence_1 |
|
300 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
301 |
+
| type | string | string |
|
302 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 17.94 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 82.66 tokens</li><li>max: 512 tokens</li></ul> |
|
303 |
+
* Samples:
|
304 |
+
| sentence_0 | sentence_1 |
|
305 |
+
|:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
306 |
+
| <code>How does the proximity of energy generation to consumption benefit floating solar plants?</code> | <code>What are the benefits of using a floating solar plant? At first, the interest is the use solar energy to generate electricity. The performance peak of solar panels is at 25 degrees Celcius, anything above generates a performance loss of 0.4%. Thus, when using water as a cooling system, the photovoltaic panel stays close to 25 degrees. Another aspect to consider is the point of energy consumption, which is close to the generation point.</code> |
|
307 |
+
| <code>Who won the Chilean award for women entrepreneurs at the regional level?</code> | <code>Mrs Curumilla won the Chilean award for women entrepreneurs at the regional level.</code> |
|
308 |
+
| <code>How did the follow-up survey contribute to the establishment of working groups?</code> | <code>The answers and interventions collected from the survey helped establish the different working groups and address common challenges in the workshop.</code> |
|
309 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
310 |
+
```json
|
311 |
+
{
|
312 |
+
"loss": "MultipleNegativesRankingLoss",
|
313 |
+
"matryoshka_dims": [
|
314 |
+
768,
|
315 |
+
512,
|
316 |
+
384,
|
317 |
+
256
|
318 |
+
],
|
319 |
+
"matryoshka_weights": [
|
320 |
+
1.0,
|
321 |
+
0.8,
|
322 |
+
0.6,
|
323 |
+
0.4
|
324 |
+
],
|
325 |
+
"n_dims_per_step": -1
|
326 |
+
}
|
327 |
+
```
|
328 |
+
|
329 |
+
### Training Hyperparameters
|
330 |
+
#### Non-Default Hyperparameters
|
331 |
+
|
332 |
+
- `eval_strategy`: steps
|
333 |
+
- `per_device_train_batch_size`: 6
|
334 |
+
- `per_device_eval_batch_size`: 6
|
335 |
+
- `num_train_epochs`: 4
|
336 |
+
- `multi_dataset_batch_sampler`: round_robin
|
337 |
+
|
338 |
+
#### All Hyperparameters
|
339 |
+
<details><summary>Click to expand</summary>
|
340 |
+
|
341 |
+
- `overwrite_output_dir`: False
|
342 |
+
- `do_predict`: False
|
343 |
+
- `eval_strategy`: steps
|
344 |
+
- `prediction_loss_only`: True
|
345 |
+
- `per_device_train_batch_size`: 6
|
346 |
+
- `per_device_eval_batch_size`: 6
|
347 |
+
- `per_gpu_train_batch_size`: None
|
348 |
+
- `per_gpu_eval_batch_size`: None
|
349 |
+
- `gradient_accumulation_steps`: 1
|
350 |
+
- `eval_accumulation_steps`: None
|
351 |
+
- `torch_empty_cache_steps`: None
|
352 |
+
- `learning_rate`: 5e-05
|
353 |
+
- `weight_decay`: 0.0
|
354 |
+
- `adam_beta1`: 0.9
|
355 |
+
- `adam_beta2`: 0.999
|
356 |
+
- `adam_epsilon`: 1e-08
|
357 |
+
- `max_grad_norm`: 1
|
358 |
+
- `num_train_epochs`: 4
|
359 |
+
- `max_steps`: -1
|
360 |
+
- `lr_scheduler_type`: linear
|
361 |
+
- `lr_scheduler_kwargs`: {}
|
362 |
+
- `warmup_ratio`: 0.0
|
363 |
+
- `warmup_steps`: 0
|
364 |
+
- `log_level`: passive
|
365 |
+
- `log_level_replica`: warning
|
366 |
+
- `log_on_each_node`: True
|
367 |
+
- `logging_nan_inf_filter`: True
|
368 |
+
- `save_safetensors`: True
|
369 |
+
- `save_on_each_node`: False
|
370 |
+
- `save_only_model`: False
|
371 |
+
- `restore_callback_states_from_checkpoint`: False
|
372 |
+
- `no_cuda`: False
|
373 |
+
- `use_cpu`: False
|
374 |
+
- `use_mps_device`: False
|
375 |
+
- `seed`: 42
|
376 |
+
- `data_seed`: None
|
377 |
+
- `jit_mode_eval`: False
|
378 |
+
- `use_ipex`: False
|
379 |
+
- `bf16`: False
|
380 |
+
- `fp16`: False
|
381 |
+
- `fp16_opt_level`: O1
|
382 |
+
- `half_precision_backend`: auto
|
383 |
+
- `bf16_full_eval`: False
|
384 |
+
- `fp16_full_eval`: False
|
385 |
+
- `tf32`: None
|
386 |
+
- `local_rank`: 0
|
387 |
+
- `ddp_backend`: None
|
388 |
+
- `tpu_num_cores`: None
|
389 |
+
- `tpu_metrics_debug`: False
|
390 |
+
- `debug`: []
|
391 |
+
- `dataloader_drop_last`: False
|
392 |
+
- `dataloader_num_workers`: 0
|
393 |
+
- `dataloader_prefetch_factor`: None
|
394 |
+
- `past_index`: -1
|
395 |
+
- `disable_tqdm`: False
|
396 |
+
- `remove_unused_columns`: True
|
397 |
+
- `label_names`: None
|
398 |
+
- `load_best_model_at_end`: False
|
399 |
+
- `ignore_data_skip`: False
|
400 |
+
- `fsdp`: []
|
401 |
+
- `fsdp_min_num_params`: 0
|
402 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
403 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
404 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
405 |
+
- `deepspeed`: None
|
406 |
+
- `label_smoothing_factor`: 0.0
|
407 |
+
- `optim`: adamw_torch
|
408 |
+
- `optim_args`: None
|
409 |
+
- `adafactor`: False
|
410 |
+
- `group_by_length`: False
|
411 |
+
- `length_column_name`: length
|
412 |
+
- `ddp_find_unused_parameters`: None
|
413 |
+
- `ddp_bucket_cap_mb`: None
|
414 |
+
- `ddp_broadcast_buffers`: False
|
415 |
+
- `dataloader_pin_memory`: True
|
416 |
+
- `dataloader_persistent_workers`: False
|
417 |
+
- `skip_memory_metrics`: True
|
418 |
+
- `use_legacy_prediction_loop`: False
|
419 |
+
- `push_to_hub`: False
|
420 |
+
- `resume_from_checkpoint`: None
|
421 |
+
- `hub_model_id`: None
|
422 |
+
- `hub_strategy`: every_save
|
423 |
+
- `hub_private_repo`: None
|
424 |
+
- `hub_always_push`: False
|
425 |
+
- `hub_revision`: None
|
426 |
+
- `gradient_checkpointing`: False
|
427 |
+
- `gradient_checkpointing_kwargs`: None
|
428 |
+
- `include_inputs_for_metrics`: False
|
429 |
+
- `include_for_metrics`: []
|
430 |
+
- `eval_do_concat_batches`: True
|
431 |
+
- `fp16_backend`: auto
|
432 |
+
- `push_to_hub_model_id`: None
|
433 |
+
- `push_to_hub_organization`: None
|
434 |
+
- `mp_parameters`:
|
435 |
+
- `auto_find_batch_size`: False
|
436 |
+
- `full_determinism`: False
|
437 |
+
- `torchdynamo`: None
|
438 |
+
- `ray_scope`: last
|
439 |
+
- `ddp_timeout`: 1800
|
440 |
+
- `torch_compile`: False
|
441 |
+
- `torch_compile_backend`: None
|
442 |
+
- `torch_compile_mode`: None
|
443 |
+
- `include_tokens_per_second`: False
|
444 |
+
- `include_num_input_tokens_seen`: False
|
445 |
+
- `neftune_noise_alpha`: None
|
446 |
+
- `optim_target_modules`: None
|
447 |
+
- `batch_eval_metrics`: False
|
448 |
+
- `eval_on_start`: False
|
449 |
+
- `use_liger_kernel`: False
|
450 |
+
- `liger_kernel_config`: None
|
451 |
+
- `eval_use_gather_object`: False
|
452 |
+
- `average_tokens_across_devices`: False
|
453 |
+
- `prompts`: None
|
454 |
+
- `batch_sampler`: batch_sampler
|
455 |
+
- `multi_dataset_batch_sampler`: round_robin
|
456 |
+
- `router_mapping`: {}
|
457 |
+
- `learning_rate_mapping`: {}
|
458 |
+
|
459 |
+
</details>
|
460 |
+
|
461 |
+
### Training Logs
|
462 |
+
| Epoch | Step | cosine_ndcg@10 |
|
463 |
+
|:------:|:----:|:--------------:|
|
464 |
+
| 0.7812 | 100 | 0.7980 |
|
465 |
+
| 1.0 | 128 | 0.8078 |
|
466 |
+
| 1.5625 | 200 | 0.8259 |
|
467 |
+
| 2.0 | 256 | 0.8463 |
|
468 |
+
| 2.3438 | 300 | 0.8446 |
|
469 |
+
| 3.0 | 384 | 0.8483 |
|
470 |
+
| 3.125 | 400 | 0.8498 |
|
471 |
+
|
472 |
+
|
473 |
+
### Framework Versions
|
474 |
+
- Python: 3.10.18
|
475 |
+
- Sentence Transformers: 5.0.0
|
476 |
+
- Transformers: 4.53.1
|
477 |
+
- PyTorch: 2.6.0+cu124
|
478 |
+
- Accelerate: 1.8.1
|
479 |
+
- Datasets: 2.14.0
|
480 |
+
- Tokenizers: 0.21.2
|
481 |
+
|
482 |
+
## Citation
|
483 |
+
|
484 |
+
### BibTeX
|
485 |
+
|
486 |
+
#### Sentence Transformers
|
487 |
+
```bibtex
|
488 |
+
@inproceedings{reimers-2019-sentence-bert,
|
489 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
490 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
491 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
492 |
+
month = "11",
|
493 |
+
year = "2019",
|
494 |
+
publisher = "Association for Computational Linguistics",
|
495 |
+
url = "https://arxiv.org/abs/1908.10084",
|
496 |
+
}
|
497 |
+
```
|
498 |
+
|
499 |
+
#### MatryoshkaLoss
|
500 |
+
```bibtex
|
501 |
+
@misc{kusupati2024matryoshka,
|
502 |
+
title={Matryoshka Representation Learning},
|
503 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
504 |
+
year={2024},
|
505 |
+
eprint={2205.13147},
|
506 |
+
archivePrefix={arXiv},
|
507 |
+
primaryClass={cs.LG}
|
508 |
+
}
|
509 |
+
```
|
510 |
+
|
511 |
+
#### MultipleNegativesRankingLoss
|
512 |
+
```bibtex
|
513 |
+
@misc{henderson2017efficient,
|
514 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
515 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
516 |
+
year={2017},
|
517 |
+
eprint={1705.00652},
|
518 |
+
archivePrefix={arXiv},
|
519 |
+
primaryClass={cs.CL}
|
520 |
+
}
|
521 |
+
```
|
522 |
+
|
523 |
+
<!--
|
524 |
+
## Glossary
|
525 |
+
|
526 |
+
*Clearly define terms in order to be accessible across audiences.*
|
527 |
+
-->
|
528 |
+
|
529 |
+
<!--
|
530 |
+
## Model Card Authors
|
531 |
+
|
532 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
533 |
+
-->
|
534 |
+
|
535 |
+
<!--
|
536 |
+
## Model Card Contact
|
537 |
+
|
538 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
539 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 3072,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.53.1",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 30522
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "SentenceTransformer",
|
3 |
+
"__version__": {
|
4 |
+
"sentence_transformers": "5.0.0",
|
5 |
+
"transformers": "4.53.1",
|
6 |
+
"pytorch": "2.6.0+cu124"
|
7 |
+
},
|
8 |
+
"prompts": {
|
9 |
+
"query": "",
|
10 |
+
"document": ""
|
11 |
+
},
|
12 |
+
"default_prompt_name": null,
|
13 |
+
"similarity_fn_name": "cosine"
|
14 |
+
}
|
eval/Information-Retrieval_evaluation_results.csv
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
|
2 |
+
1.0,128,0.7185863874345549,0.8429319371727748,0.8743455497382199,0.9267015706806283,0.7185863874345549,0.6638307155322862,0.30497382198952877,0.8150087260034904,0.19214659685863875,0.8516579406631762,0.10340314136125654,0.9105584642233856,0.7891885855563868,0.8078339615296005,0.7720311813695621
|
3 |
+
2.0,256,0.743455497382199,0.893979057591623,0.930628272251309,0.9568062827225131,0.743455497382199,0.68782722513089,0.32373472949389176,0.8647469458987783,0.20602094240837698,0.9112129144851657,0.10811518324607329,0.9485165794066317,0.8239637870855145,0.8462801265101514,0.8090963694552542
|
4 |
+
3.0,384,0.7421465968586387,0.8965968586387435,0.9384816753926701,0.9594240837696335,0.7421465968586387,0.6863001745200699,0.32373472949389176,0.8664921465968587,0.20916230366492145,0.9223385689354275,0.10850785340314137,0.9513525305410123,0.8252659353444691,0.8483219990153066,0.8107808263896493
|
5 |
+
4.0,512,0.731675392670157,0.8965968586387435,0.9358638743455497,0.9646596858638743,0.731675392670157,0.6747382198952879,0.3276614310645724,0.8708551483420592,0.2089005235602094,0.9197207678883071,0.1094240837696335,0.9583333333333333,0.8188943945815673,0.8457351092280725,0.8054387999493405
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34263a19eec29031a98481677982169825739eada679a697a633bb3c69199b86
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"sep_token": "[SEP]",
|
52 |
+
"strip_accents": null,
|
53 |
+
"tokenize_chinese_chars": true,
|
54 |
+
"tokenizer_class": "BertTokenizer",
|
55 |
+
"unk_token": "[UNK]"
|
56 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|