xiaohaoWillX commited on
Commit
709b1ea
·
verified ·
1 Parent(s): f1643ce

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,539 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:3056
9
+ - loss:MatryoshkaLoss
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: intfloat/e5-base-v2
12
+ widget:
13
+ - source_sentence: Assess the strengths and weaknesses of initiatives aimed at growing
14
+ indigenous agribusiness.
15
+ sentences:
16
+ - 'In Chile, 80% of sources go to irrigation and agriculture, making irrigation
17
+ in agriculture a relevant element to consider. The main aspects associated with
18
+ irrigation in agriculture are salinity, toxicity, and microbiological quality
19
+ due to pathogenic organisms present in wastewater. When discussing irrigation,
20
+ the type of irrigation must be taken into account, as there are globally two types:
21
+ restrictive irrigation, which applies to products eaten raw, and irrigation without
22
+ restriction, which has no significant effects on agriculture, animals, or humans.'
23
+ - Mr Yoshiyuki Arima discussed the World Bank's focus on sustainable solutions to
24
+ challenges like climate change and gender equality. The World Bank is moving from
25
+ Green Bonds to Sustainable Development Bonds, using SDGs as a framework. They
26
+ are working with the Government Pension Investment Fund on research related to
27
+ SDGs.
28
+ - Technical and leadership development to grow indigenous agribusiness. Commercialisation
29
+ and access to market channels – both domestic and international – for indigenous
30
+ goods and services. Building networks to strengthen and increase participation
31
+ in the food system of indigenous people in the Asia Pacific region.
32
+ - source_sentence: What is the largest water-consuming sector in Australia's economy?
33
+ sentences:
34
+ - Navarrot holds a Minor in Sustainability Studies.
35
+ - Australia’s agricultural sector is the largest water consuming sector in the economy,
36
+ accounting for 65 percent of total consumption in 2005. In the Murray-Darling
37
+ Basin, climate change will lead to decreased water levels and difficulties meeting
38
+ demand for irrigation while maintaining environmental flows. Additionally, vegetation
39
+ will consume more water under higher temperatures.
40
+ - The project contributes to the implementation of the APEC Food Security Roadmap
41
+ Towards 2030, focusing on food production, processing, and distribution. It includes
42
+ targets such as improving food system related digital literacy, promoting public-private
43
+ investment, modernizing food storage facilities, and sharing best practices among
44
+ APEC economies.
45
+ - source_sentence: How would you use anaerobic digestion to reduce landfill reliance
46
+ in a city?
47
+ sentences:
48
+ - 'Innovation Approach: Technologies like anaerobic digestion and microbial transformation
49
+ create biogas and animal feed, turning waste into valuable resources and reducing
50
+ landfill reliance.'
51
+ - The initiative started from the previous satellite communication project that
52
+ ITU implemented in the Pacific. ITU provided 9 economies with 93 units of satellite
53
+ ground stations, so the remote islands were connected with the satellites. For
54
+ the islands, the satellites became essential communication means when disaster
55
+ hits the region. For instance, when the hurricane hit in 2020, the satellite ground
56
+ stations were the only communication means when the economies tried to initiate
57
+ the disaster response efforts during the Covid lockdown. Additionally, according
58
+ to ITU’s assessment, this communication means were used by communities and remote
59
+ and previously unconnected communities for education and health, and to provide
60
+ and receive government services.
61
+ - Mexico cited changes to the lengths of growing seasons, with increased temperatures
62
+ leading to shorter growing seasons in traditional agricultural areas as temperatures
63
+ become too extreme for both crops and livestock.
64
+ - source_sentence: What would happen if APEC economies failed to coordinate across
65
+ borders?
66
+ sentences:
67
+ - APEC economies must co-ordinate across borders to facilitate services. The greater
68
+ the coherence between industry and governments, the greater the likelihood of
69
+ success.
70
+ - Another key issue she made clear about the food systems was the transaction costs.
71
+ To unlock the potential of the food systems, the transaction costs issues should
72
+ be addressed. These transactions are all over the food systems. They are encouraged
73
+ by farmers, their business partners to find each other, make deals and ensure
74
+ that these deals are enforced. While the transactions being essential to the production
75
+ of goods, the costs following them drive farmers to choose quantity over quality
76
+ at the expense of the environment, which ultimately affect consumers product choices.
77
+ - '• Mortality risk: lack of real time data to react.
78
+
79
+ • Yield optimization: no proper water quality data for yield optimization.'
80
+ - source_sentence: Identify the main goal of closing resource loops.
81
+ sentences:
82
+ - Closing resource loops aims to create new value through the reuse and recycling
83
+ of used materials.
84
+ - Shelf life can be extended up to 18 month, would this violate the expiration date?
85
+ - Closing resource loops aims to create new value through the reuse and recycling
86
+ of used materials.
87
+ pipeline_tag: sentence-similarity
88
+ library_name: sentence-transformers
89
+ metrics:
90
+ - cosine_accuracy@1
91
+ - cosine_accuracy@3
92
+ - cosine_accuracy@5
93
+ - cosine_accuracy@10
94
+ - cosine_precision@1
95
+ - cosine_precision@3
96
+ - cosine_precision@5
97
+ - cosine_precision@10
98
+ - cosine_recall@1
99
+ - cosine_recall@3
100
+ - cosine_recall@5
101
+ - cosine_recall@10
102
+ - cosine_ndcg@10
103
+ - cosine_mrr@10
104
+ - cosine_map@100
105
+ model-index:
106
+ - name: SentenceTransformer based on intfloat/e5-base-v2
107
+ results:
108
+ - task:
109
+ type: information-retrieval
110
+ name: Information Retrieval
111
+ dataset:
112
+ name: Unknown
113
+ type: unknown
114
+ metrics:
115
+ - type: cosine_accuracy@1
116
+ value: 0.7447643979057592
117
+ name: Cosine Accuracy@1
118
+ - type: cosine_accuracy@3
119
+ value: 0.8992146596858639
120
+ name: Cosine Accuracy@3
121
+ - type: cosine_accuracy@5
122
+ value: 0.93717277486911
123
+ name: Cosine Accuracy@5
124
+ - type: cosine_accuracy@10
125
+ value: 0.9607329842931938
126
+ name: Cosine Accuracy@10
127
+ - type: cosine_precision@1
128
+ value: 0.7447643979057592
129
+ name: Cosine Precision@1
130
+ - type: cosine_precision@3
131
+ value: 0.32504363001745196
132
+ name: Cosine Precision@3
133
+ - type: cosine_precision@5
134
+ value: 0.20863874345549735
135
+ name: Cosine Precision@5
136
+ - type: cosine_precision@10
137
+ value: 0.10863874345549739
138
+ name: Cosine Precision@10
139
+ - type: cosine_recall@1
140
+ value: 0.6882635253054101
141
+ name: Cosine Recall@1
142
+ - type: cosine_recall@3
143
+ value: 0.8697643979057592
144
+ name: Cosine Recall@3
145
+ - type: cosine_recall@5
146
+ value: 0.9212478184991274
147
+ name: Cosine Recall@5
148
+ - type: cosine_recall@10
149
+ value: 0.9526614310645725
150
+ name: Cosine Recall@10
151
+ - type: cosine_ndcg@10
152
+ value: 0.849824960377896
153
+ name: Cosine Ndcg@10
154
+ - type: cosine_mrr@10
155
+ value: 0.8267877919055926
156
+ name: Cosine Mrr@10
157
+ - type: cosine_map@100
158
+ value: 0.8125610657293678
159
+ name: Cosine Map@100
160
+ ---
161
+
162
+ # SentenceTransformer based on intfloat/e5-base-v2
163
+
164
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
165
+
166
+ ## Model Details
167
+
168
+ ### Model Description
169
+ - **Model Type:** Sentence Transformer
170
+ - **Base model:** [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) <!-- at revision f52bf8ec8c7124536f0efb74aca902b2995e5bcd -->
171
+ - **Maximum Sequence Length:** 512 tokens
172
+ - **Output Dimensionality:** 768 dimensions
173
+ - **Similarity Function:** Cosine Similarity
174
+ <!-- - **Training Dataset:** Unknown -->
175
+ <!-- - **Language:** Unknown -->
176
+ <!-- - **License:** Unknown -->
177
+
178
+ ### Model Sources
179
+
180
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
181
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
182
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
183
+
184
+ ### Full Model Architecture
185
+
186
+ ```
187
+ SentenceTransformer(
188
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
189
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
190
+ (2): Normalize()
191
+ )
192
+ ```
193
+
194
+ ## Usage
195
+
196
+ ### Direct Usage (Sentence Transformers)
197
+
198
+ First install the Sentence Transformers library:
199
+
200
+ ```bash
201
+ pip install -U sentence-transformers
202
+ ```
203
+
204
+ Then you can load this model and run inference.
205
+ ```python
206
+ from sentence_transformers import SentenceTransformer
207
+
208
+ # Download from the 🤗 Hub
209
+ model = SentenceTransformer("sentence_transformers_model_id")
210
+ # Run inference
211
+ sentences = [
212
+ 'Identify the main goal of closing resource loops.',
213
+ 'Closing resource loops aims to create new value through the reuse and recycling of used materials.',
214
+ 'Shelf life can be extended up to 18 month, would this violate the expiration date?',
215
+ ]
216
+ embeddings = model.encode(sentences)
217
+ print(embeddings.shape)
218
+ # [3, 768]
219
+
220
+ # Get the similarity scores for the embeddings
221
+ similarities = model.similarity(embeddings, embeddings)
222
+ print(similarities)
223
+ # tensor([[1.0000, 0.8682, 0.4450],
224
+ # [0.8682, 1.0000, 0.4960],
225
+ # [0.4450, 0.4960, 1.0000]])
226
+ ```
227
+
228
+ <!--
229
+ ### Direct Usage (Transformers)
230
+
231
+ <details><summary>Click to see the direct usage in Transformers</summary>
232
+
233
+ </details>
234
+ -->
235
+
236
+ <!--
237
+ ### Downstream Usage (Sentence Transformers)
238
+
239
+ You can finetune this model on your own dataset.
240
+
241
+ <details><summary>Click to expand</summary>
242
+
243
+ </details>
244
+ -->
245
+
246
+ <!--
247
+ ### Out-of-Scope Use
248
+
249
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
250
+ -->
251
+
252
+ ## Evaluation
253
+
254
+ ### Metrics
255
+
256
+ #### Information Retrieval
257
+
258
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
259
+
260
+ | Metric | Value |
261
+ |:--------------------|:-----------|
262
+ | cosine_accuracy@1 | 0.7448 |
263
+ | cosine_accuracy@3 | 0.8992 |
264
+ | cosine_accuracy@5 | 0.9372 |
265
+ | cosine_accuracy@10 | 0.9607 |
266
+ | cosine_precision@1 | 0.7448 |
267
+ | cosine_precision@3 | 0.325 |
268
+ | cosine_precision@5 | 0.2086 |
269
+ | cosine_precision@10 | 0.1086 |
270
+ | cosine_recall@1 | 0.6883 |
271
+ | cosine_recall@3 | 0.8698 |
272
+ | cosine_recall@5 | 0.9212 |
273
+ | cosine_recall@10 | 0.9527 |
274
+ | **cosine_ndcg@10** | **0.8498** |
275
+ | cosine_mrr@10 | 0.8268 |
276
+ | cosine_map@100 | 0.8126 |
277
+
278
+ <!--
279
+ ## Bias, Risks and Limitations
280
+
281
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
282
+ -->
283
+
284
+ <!--
285
+ ### Recommendations
286
+
287
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
288
+ -->
289
+
290
+ ## Training Details
291
+
292
+ ### Training Dataset
293
+
294
+ #### Unnamed Dataset
295
+
296
+ * Size: 3,056 training samples
297
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
298
+ * Approximate statistics based on the first 1000 samples:
299
+ | | sentence_0 | sentence_1 |
300
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
301
+ | type | string | string |
302
+ | details | <ul><li>min: 7 tokens</li><li>mean: 17.94 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 82.66 tokens</li><li>max: 512 tokens</li></ul> |
303
+ * Samples:
304
+ | sentence_0 | sentence_1 |
305
+ |:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
306
+ | <code>How does the proximity of energy generation to consumption benefit floating solar plants?</code> | <code>What are the benefits of using a floating solar plant? At first, the interest is the use solar energy to generate electricity. The performance peak of solar panels is at 25 degrees Celcius, anything above generates a performance loss of 0.4%. Thus, when using water as a cooling system, the photovoltaic panel stays close to 25 degrees. Another aspect to consider is the point of energy consumption, which is close to the generation point.</code> |
307
+ | <code>Who won the Chilean award for women entrepreneurs at the regional level?</code> | <code>Mrs Curumilla won the Chilean award for women entrepreneurs at the regional level.</code> |
308
+ | <code>How did the follow-up survey contribute to the establishment of working groups?</code> | <code>The answers and interventions collected from the survey helped establish the different working groups and address common challenges in the workshop.</code> |
309
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
310
+ ```json
311
+ {
312
+ "loss": "MultipleNegativesRankingLoss",
313
+ "matryoshka_dims": [
314
+ 768,
315
+ 512,
316
+ 384,
317
+ 256
318
+ ],
319
+ "matryoshka_weights": [
320
+ 1.0,
321
+ 0.8,
322
+ 0.6,
323
+ 0.4
324
+ ],
325
+ "n_dims_per_step": -1
326
+ }
327
+ ```
328
+
329
+ ### Training Hyperparameters
330
+ #### Non-Default Hyperparameters
331
+
332
+ - `eval_strategy`: steps
333
+ - `per_device_train_batch_size`: 6
334
+ - `per_device_eval_batch_size`: 6
335
+ - `num_train_epochs`: 4
336
+ - `multi_dataset_batch_sampler`: round_robin
337
+
338
+ #### All Hyperparameters
339
+ <details><summary>Click to expand</summary>
340
+
341
+ - `overwrite_output_dir`: False
342
+ - `do_predict`: False
343
+ - `eval_strategy`: steps
344
+ - `prediction_loss_only`: True
345
+ - `per_device_train_batch_size`: 6
346
+ - `per_device_eval_batch_size`: 6
347
+ - `per_gpu_train_batch_size`: None
348
+ - `per_gpu_eval_batch_size`: None
349
+ - `gradient_accumulation_steps`: 1
350
+ - `eval_accumulation_steps`: None
351
+ - `torch_empty_cache_steps`: None
352
+ - `learning_rate`: 5e-05
353
+ - `weight_decay`: 0.0
354
+ - `adam_beta1`: 0.9
355
+ - `adam_beta2`: 0.999
356
+ - `adam_epsilon`: 1e-08
357
+ - `max_grad_norm`: 1
358
+ - `num_train_epochs`: 4
359
+ - `max_steps`: -1
360
+ - `lr_scheduler_type`: linear
361
+ - `lr_scheduler_kwargs`: {}
362
+ - `warmup_ratio`: 0.0
363
+ - `warmup_steps`: 0
364
+ - `log_level`: passive
365
+ - `log_level_replica`: warning
366
+ - `log_on_each_node`: True
367
+ - `logging_nan_inf_filter`: True
368
+ - `save_safetensors`: True
369
+ - `save_on_each_node`: False
370
+ - `save_only_model`: False
371
+ - `restore_callback_states_from_checkpoint`: False
372
+ - `no_cuda`: False
373
+ - `use_cpu`: False
374
+ - `use_mps_device`: False
375
+ - `seed`: 42
376
+ - `data_seed`: None
377
+ - `jit_mode_eval`: False
378
+ - `use_ipex`: False
379
+ - `bf16`: False
380
+ - `fp16`: False
381
+ - `fp16_opt_level`: O1
382
+ - `half_precision_backend`: auto
383
+ - `bf16_full_eval`: False
384
+ - `fp16_full_eval`: False
385
+ - `tf32`: None
386
+ - `local_rank`: 0
387
+ - `ddp_backend`: None
388
+ - `tpu_num_cores`: None
389
+ - `tpu_metrics_debug`: False
390
+ - `debug`: []
391
+ - `dataloader_drop_last`: False
392
+ - `dataloader_num_workers`: 0
393
+ - `dataloader_prefetch_factor`: None
394
+ - `past_index`: -1
395
+ - `disable_tqdm`: False
396
+ - `remove_unused_columns`: True
397
+ - `label_names`: None
398
+ - `load_best_model_at_end`: False
399
+ - `ignore_data_skip`: False
400
+ - `fsdp`: []
401
+ - `fsdp_min_num_params`: 0
402
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
403
+ - `fsdp_transformer_layer_cls_to_wrap`: None
404
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
405
+ - `deepspeed`: None
406
+ - `label_smoothing_factor`: 0.0
407
+ - `optim`: adamw_torch
408
+ - `optim_args`: None
409
+ - `adafactor`: False
410
+ - `group_by_length`: False
411
+ - `length_column_name`: length
412
+ - `ddp_find_unused_parameters`: None
413
+ - `ddp_bucket_cap_mb`: None
414
+ - `ddp_broadcast_buffers`: False
415
+ - `dataloader_pin_memory`: True
416
+ - `dataloader_persistent_workers`: False
417
+ - `skip_memory_metrics`: True
418
+ - `use_legacy_prediction_loop`: False
419
+ - `push_to_hub`: False
420
+ - `resume_from_checkpoint`: None
421
+ - `hub_model_id`: None
422
+ - `hub_strategy`: every_save
423
+ - `hub_private_repo`: None
424
+ - `hub_always_push`: False
425
+ - `hub_revision`: None
426
+ - `gradient_checkpointing`: False
427
+ - `gradient_checkpointing_kwargs`: None
428
+ - `include_inputs_for_metrics`: False
429
+ - `include_for_metrics`: []
430
+ - `eval_do_concat_batches`: True
431
+ - `fp16_backend`: auto
432
+ - `push_to_hub_model_id`: None
433
+ - `push_to_hub_organization`: None
434
+ - `mp_parameters`:
435
+ - `auto_find_batch_size`: False
436
+ - `full_determinism`: False
437
+ - `torchdynamo`: None
438
+ - `ray_scope`: last
439
+ - `ddp_timeout`: 1800
440
+ - `torch_compile`: False
441
+ - `torch_compile_backend`: None
442
+ - `torch_compile_mode`: None
443
+ - `include_tokens_per_second`: False
444
+ - `include_num_input_tokens_seen`: False
445
+ - `neftune_noise_alpha`: None
446
+ - `optim_target_modules`: None
447
+ - `batch_eval_metrics`: False
448
+ - `eval_on_start`: False
449
+ - `use_liger_kernel`: False
450
+ - `liger_kernel_config`: None
451
+ - `eval_use_gather_object`: False
452
+ - `average_tokens_across_devices`: False
453
+ - `prompts`: None
454
+ - `batch_sampler`: batch_sampler
455
+ - `multi_dataset_batch_sampler`: round_robin
456
+ - `router_mapping`: {}
457
+ - `learning_rate_mapping`: {}
458
+
459
+ </details>
460
+
461
+ ### Training Logs
462
+ | Epoch | Step | cosine_ndcg@10 |
463
+ |:------:|:----:|:--------------:|
464
+ | 0.7812 | 100 | 0.7980 |
465
+ | 1.0 | 128 | 0.8078 |
466
+ | 1.5625 | 200 | 0.8259 |
467
+ | 2.0 | 256 | 0.8463 |
468
+ | 2.3438 | 300 | 0.8446 |
469
+ | 3.0 | 384 | 0.8483 |
470
+ | 3.125 | 400 | 0.8498 |
471
+
472
+
473
+ ### Framework Versions
474
+ - Python: 3.10.18
475
+ - Sentence Transformers: 5.0.0
476
+ - Transformers: 4.53.1
477
+ - PyTorch: 2.6.0+cu124
478
+ - Accelerate: 1.8.1
479
+ - Datasets: 2.14.0
480
+ - Tokenizers: 0.21.2
481
+
482
+ ## Citation
483
+
484
+ ### BibTeX
485
+
486
+ #### Sentence Transformers
487
+ ```bibtex
488
+ @inproceedings{reimers-2019-sentence-bert,
489
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
490
+ author = "Reimers, Nils and Gurevych, Iryna",
491
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
492
+ month = "11",
493
+ year = "2019",
494
+ publisher = "Association for Computational Linguistics",
495
+ url = "https://arxiv.org/abs/1908.10084",
496
+ }
497
+ ```
498
+
499
+ #### MatryoshkaLoss
500
+ ```bibtex
501
+ @misc{kusupati2024matryoshka,
502
+ title={Matryoshka Representation Learning},
503
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
504
+ year={2024},
505
+ eprint={2205.13147},
506
+ archivePrefix={arXiv},
507
+ primaryClass={cs.LG}
508
+ }
509
+ ```
510
+
511
+ #### MultipleNegativesRankingLoss
512
+ ```bibtex
513
+ @misc{henderson2017efficient,
514
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
515
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
516
+ year={2017},
517
+ eprint={1705.00652},
518
+ archivePrefix={arXiv},
519
+ primaryClass={cs.CL}
520
+ }
521
+ ```
522
+
523
+ <!--
524
+ ## Glossary
525
+
526
+ *Clearly define terms in order to be accessible across audiences.*
527
+ -->
528
+
529
+ <!--
530
+ ## Model Card Authors
531
+
532
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
533
+ -->
534
+
535
+ <!--
536
+ ## Model Card Contact
537
+
538
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
539
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.53.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.0.0",
5
+ "transformers": "4.53.1",
6
+ "pytorch": "2.6.0+cu124"
7
+ },
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
eval/Information-Retrieval_evaluation_results.csv ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
+ 1.0,128,0.7185863874345549,0.8429319371727748,0.8743455497382199,0.9267015706806283,0.7185863874345549,0.6638307155322862,0.30497382198952877,0.8150087260034904,0.19214659685863875,0.8516579406631762,0.10340314136125654,0.9105584642233856,0.7891885855563868,0.8078339615296005,0.7720311813695621
3
+ 2.0,256,0.743455497382199,0.893979057591623,0.930628272251309,0.9568062827225131,0.743455497382199,0.68782722513089,0.32373472949389176,0.8647469458987783,0.20602094240837698,0.9112129144851657,0.10811518324607329,0.9485165794066317,0.8239637870855145,0.8462801265101514,0.8090963694552542
4
+ 3.0,384,0.7421465968586387,0.8965968586387435,0.9384816753926701,0.9594240837696335,0.7421465968586387,0.6863001745200699,0.32373472949389176,0.8664921465968587,0.20916230366492145,0.9223385689354275,0.10850785340314137,0.9513525305410123,0.8252659353444691,0.8483219990153066,0.8107808263896493
5
+ 4.0,512,0.731675392670157,0.8965968586387435,0.9358638743455497,0.9646596858638743,0.731675392670157,0.6747382198952879,0.3276614310645724,0.8708551483420592,0.2089005235602094,0.9197207678883071,0.1094240837696335,0.9583333333333333,0.8188943945815673,0.8457351092280725,0.8054387999493405
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34263a19eec29031a98481677982169825739eada679a697a633bb3c69199b86
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff