File size: 2,300 Bytes
2954ae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
base_model: UWB-AIR/Czert-B-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: czert_lr2e-05_bs4_train287_cl_size2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# czert_lr2e-05_bs4_train287_cl_size2

This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co/UWB-AIR/Czert-B-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1715
- Precision: 0.9099
- Recall: 0.9222
- F1: 0.9160
- Accuracy: 0.9529

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 72   | 0.4681          | 0.7251    | 0.7489 | 0.7368 | 0.8673   |
| No log        | 2.0   | 144  | 0.2397          | 0.8668    | 0.8860 | 0.8763 | 0.9332   |
| No log        | 3.0   | 216  | 0.2036          | 0.9032    | 0.8875 | 0.8953 | 0.9429   |
| No log        | 4.0   | 288  | 0.1787          | 0.9071    | 0.9150 | 0.9111 | 0.9508   |
| No log        | 5.0   | 360  | 0.1585          | 0.9253    | 0.9213 | 0.9233 | 0.9586   |
| No log        | 6.0   | 432  | 0.1683          | 0.9176    | 0.9194 | 0.9185 | 0.9567   |
| 0.2732        | 7.0   | 504  | 0.1641          | 0.9310    | 0.9189 | 0.9249 | 0.9588   |
| 0.2732        | 8.0   | 576  | 0.1746          | 0.9256    | 0.9256 | 0.9256 | 0.9596   |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1