--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: ufal/robeczech-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: robeczech_lr1e-05_bs16_train150 results: [] --- # robeczech_lr1e-05_bs16_train150 This model is a fine-tuned version of [ufal/robeczech-base](https://huggingface.co/ufal/robeczech-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3536 - Precision: 0.8941 - Recall: 0.9034 - F1: 0.8987 - Accuracy: 0.9477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 10 | 1.8823 | 0.0 | 0.0 | 0.0 | 0.5666 | | No log | 2.0 | 20 | 1.6416 | 0.0 | 0.0 | 0.0 | 0.5666 | | No log | 3.0 | 30 | 1.4591 | 0.0 | 0.0 | 0.0 | 0.5666 | | No log | 4.0 | 40 | 1.2836 | 0.375 | 0.0217 | 0.0411 | 0.5760 | | No log | 5.0 | 50 | 1.1520 | 0.4166 | 0.2665 | 0.3251 | 0.6794 | | No log | 6.0 | 60 | 1.0409 | 0.4572 | 0.4070 | 0.4307 | 0.7363 | | No log | 7.0 | 70 | 0.9407 | 0.6091 | 0.5794 | 0.5939 | 0.8093 | | No log | 8.0 | 80 | 0.8449 | 0.6839 | 0.6779 | 0.6809 | 0.8485 | | No log | 9.0 | 90 | 0.7620 | 0.7035 | 0.7079 | 0.7057 | 0.8602 | | No log | 10.0 | 100 | 0.6857 | 0.7370 | 0.7349 | 0.7360 | 0.8738 | | No log | 11.0 | 110 | 0.6316 | 0.7570 | 0.7610 | 0.7590 | 0.8845 | | No log | 12.0 | 120 | 0.5793 | 0.7782 | 0.7793 | 0.7788 | 0.8937 | | No log | 13.0 | 130 | 0.5451 | 0.7977 | 0.7996 | 0.7986 | 0.9016 | | No log | 14.0 | 140 | 0.5131 | 0.8194 | 0.8238 | 0.8216 | 0.9127 | | No log | 15.0 | 150 | 0.4870 | 0.8508 | 0.8479 | 0.8493 | 0.9253 | | No log | 16.0 | 160 | 0.4638 | 0.8601 | 0.8580 | 0.8591 | 0.9297 | | No log | 17.0 | 170 | 0.4476 | 0.8615 | 0.8682 | 0.8648 | 0.9316 | | No log | 18.0 | 180 | 0.4290 | 0.8755 | 0.8730 | 0.8743 | 0.9364 | | No log | 19.0 | 190 | 0.4160 | 0.8792 | 0.8817 | 0.8804 | 0.9391 | | No log | 20.0 | 200 | 0.4037 | 0.8841 | 0.8841 | 0.8841 | 0.9410 | | No log | 21.0 | 210 | 0.3962 | 0.8850 | 0.8885 | 0.8867 | 0.9418 | | No log | 22.0 | 220 | 0.3911 | 0.8831 | 0.8865 | 0.8848 | 0.9404 | | No log | 23.0 | 230 | 0.3850 | 0.8850 | 0.8880 | 0.8865 | 0.9416 | | No log | 24.0 | 240 | 0.3817 | 0.8869 | 0.8827 | 0.8848 | 0.9408 | | No log | 25.0 | 250 | 0.3764 | 0.8879 | 0.8875 | 0.8877 | 0.9424 | | No log | 26.0 | 260 | 0.3730 | 0.8857 | 0.8870 | 0.8864 | 0.9416 | | No log | 27.0 | 270 | 0.3691 | 0.8888 | 0.8880 | 0.8884 | 0.9427 | | No log | 28.0 | 280 | 0.3663 | 0.8877 | 0.8889 | 0.8883 | 0.9427 | | No log | 29.0 | 290 | 0.3657 | 0.8881 | 0.8894 | 0.8888 | 0.9429 | | No log | 30.0 | 300 | 0.3658 | 0.8880 | 0.8885 | 0.8882 | 0.9427 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1