File size: 2,773 Bytes
4bc90a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: ufal/robeczech-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: robeczech_lr5e-05_bs16_train287
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# robeczech_lr5e-05_bs16_train287

This model is a fine-tuned version of [ufal/robeczech-base](https://huggingface.co/ufal/robeczech-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1534
- Precision: 0.9532
- Recall: 0.9571
- F1: 0.9552
- Accuracy: 0.9737

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 18   | 1.0604          | 0.5553    | 0.4655 | 0.5064 | 0.7578   |
| No log        | 2.0   | 36   | 0.5178          | 0.8104    | 0.8049 | 0.8077 | 0.9048   |
| No log        | 3.0   | 54   | 0.3230          | 0.9009    | 0.9000 | 0.9005 | 0.9489   |
| No log        | 4.0   | 72   | 0.2539          | 0.9277    | 0.9174 | 0.9226 | 0.9594   |
| No log        | 5.0   | 90   | 0.2271          | 0.9369    | 0.9324 | 0.9347 | 0.9640   |
| No log        | 6.0   | 108  | 0.2010          | 0.9332    | 0.9440 | 0.9386 | 0.9663   |
| No log        | 7.0   | 126  | 0.1867          | 0.9425    | 0.9411 | 0.9418 | 0.9690   |
| No log        | 8.0   | 144  | 0.1798          | 0.9402    | 0.9411 | 0.9406 | 0.9684   |
| No log        | 9.0   | 162  | 0.1824          | 0.9411    | 0.9406 | 0.9408 | 0.9686   |
| No log        | 10.0  | 180  | 0.1689          | 0.9500    | 0.9440 | 0.9470 | 0.9711   |
| No log        | 11.0  | 198  | 0.1609          | 0.9547    | 0.9474 | 0.9510 | 0.9726   |
| No log        | 12.0  | 216  | 0.1543          | 0.9542    | 0.9459 | 0.9500 | 0.9726   |
| No log        | 13.0  | 234  | 0.1668          | 0.9503    | 0.9334 | 0.9418 | 0.9678   |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1