xshubhamx commited on
Commit
2d29366
·
verified ·
1 Parent(s): dab181f

End of training

Browse files
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: law-ai/InLegalBERT
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: IndianLegalBERT
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # IndianLegalBERT
19
+
20
+ This model is a fine-tuned version of [law-ai/InLegalBERT](https://huggingface.co/law-ai/InLegalBERT) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 1.2872
23
+ - Accuracy: 0.8218
24
+ - Precision: 0.8227
25
+ - Recall: 0.8218
26
+ - Precision Macro: 0.7823
27
+ - Recall Macro: 0.7855
28
+ - Macro Fpr: 0.0158
29
+ - Weighted Fpr: 0.0152
30
+ - Weighted Specificity: 0.9773
31
+ - Macro Specificity: 0.9866
32
+ - Weighted Sensitivity: 0.8218
33
+ - Macro Sensitivity: 0.7855
34
+ - F1 Micro: 0.8218
35
+ - F1 Macro: 0.7809
36
+ - F1 Weighted: 0.8211
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 10
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:---------------:|:------------:|:---------:|:------------:|:--------------------:|:-----------------:|:--------------------:|:-----------------:|:--------:|:--------:|:-----------:|
68
+ | 1.1031 | 1.0 | 643 | 0.6873 | 0.7854 | 0.7628 | 0.7854 | 0.5923 | 0.6107 | 0.0201 | 0.0191 | 0.9691 | 0.9836 | 0.7854 | 0.6107 | 0.7854 | 0.5863 | 0.7674 |
69
+ | 0.5953 | 2.0 | 1286 | 0.6741 | 0.8195 | 0.8135 | 0.8195 | 0.7481 | 0.7363 | 0.0162 | 0.0155 | 0.9753 | 0.9863 | 0.8195 | 0.7363 | 0.8195 | 0.7377 | 0.8153 |
70
+ | 0.4673 | 3.0 | 1929 | 0.7955 | 0.8242 | 0.8206 | 0.8242 | 0.7588 | 0.7421 | 0.0157 | 0.0150 | 0.9749 | 0.9866 | 0.8242 | 0.7421 | 0.8242 | 0.7433 | 0.8204 |
71
+ | 0.2292 | 4.0 | 2572 | 0.8666 | 0.8280 | 0.8297 | 0.8280 | 0.7945 | 0.7864 | 0.0151 | 0.0146 | 0.9786 | 0.9871 | 0.8280 | 0.7864 | 0.8280 | 0.7840 | 0.8270 |
72
+ | 0.1583 | 5.0 | 3215 | 0.9898 | 0.8335 | 0.8348 | 0.8335 | 0.8115 | 0.7893 | 0.0147 | 0.0141 | 0.9778 | 0.9874 | 0.8335 | 0.7893 | 0.8335 | 0.7926 | 0.8308 |
73
+ | 0.0975 | 6.0 | 3858 | 1.1179 | 0.8218 | 0.8260 | 0.8218 | 0.8185 | 0.7573 | 0.0158 | 0.0152 | 0.9781 | 0.9867 | 0.8218 | 0.7573 | 0.8218 | 0.7656 | 0.8203 |
74
+ | 0.0529 | 7.0 | 4501 | 1.1545 | 0.8211 | 0.8205 | 0.8211 | 0.7916 | 0.7691 | 0.0160 | 0.0153 | 0.9758 | 0.9865 | 0.8211 | 0.7691 | 0.8211 | 0.7773 | 0.8203 |
75
+ | 0.0184 | 8.0 | 5144 | 1.2160 | 0.8234 | 0.8248 | 0.8234 | 0.7770 | 0.7829 | 0.0157 | 0.0151 | 0.9774 | 0.9867 | 0.8234 | 0.7829 | 0.8234 | 0.7771 | 0.8229 |
76
+ | 0.0186 | 9.0 | 5787 | 1.2777 | 0.8226 | 0.8244 | 0.8226 | 0.7882 | 0.7851 | 0.0157 | 0.0152 | 0.9774 | 0.9867 | 0.8226 | 0.7851 | 0.8226 | 0.7827 | 0.8223 |
77
+ | 0.007 | 10.0 | 6430 | 1.2872 | 0.8218 | 0.8227 | 0.8218 | 0.7823 | 0.7855 | 0.0158 | 0.0152 | 0.9773 | 0.9866 | 0.8218 | 0.7855 | 0.8218 | 0.7809 | 0.8211 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.38.2
83
+ - Pytorch 2.1.2
84
+ - Datasets 2.1.0
85
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a00b05acd0c34786d6484bcd9143ba30803f0bb2b2be6d1a2ff1f0a1f6b37d60
3
  size 437998636
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9f18bb44944b7c56f72b081936ad17152713249f0d59bf8013cb9ccf6507767
3
  size 437998636
runs/Apr12_20-55-42_f580b627d25e/events.out.tfevents.1712955386.f580b627d25e.34.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aaa6229864951705c8faf7aac77d6a0c3a1ca5463c1276ab940b55155940a1ca
3
- size 17242
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c06a585d63333a2ee13722994219756120ac5a6fe2fedc89f56aa41bca7144ee
3
+ size 18866