---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:123637
- loss:CosineSimilarityLoss
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
widget:
- source_sentence: Analisis biaya hidup di tiga kota Banten thn 2018
sentences:
- Indikator Konstruksi Triwulan I-2007
- Survei Biaya Hidup (SBH) 2018 Bengkulu
- Indikator Ekonomi Februari 2002
- source_sentence: Grafik ekspor hasil minyak Indonesia ke berbagai negara dari tahun
2000 hingga 2023.
sentences:
- Sistem Neraca Sosial Ekonomi Indonesia Tahun 2022 dalam Format SNA 1968 (65x65)
- Harga Produsen Gabah dan Beras Januari 2020
- Profil Usaha Konstruksi Perorangan Provinsi Papua 2016
- source_sentence: Tren konstruksi Indonesia tahun 2007 Q4
sentences:
- Laporan Bulanan Data Sosial Ekonomi Desember 2018
- Indeks Unit Value Ekspor Menurut Kode SITC Bulan Februari 2023
- Inflasi Februari 2008 sebesar 0,5 persen
- source_sentence: Informasi tentang kepemilikan dan penggunaan AC di rumah tangga
Indonesia tahun 2013?
sentences:
- Data dan Informasi Kemiskinan Kabupaten/Kota Tahun 2014
- Rata-rata Upah/Gaji Bersih Sebulan Buruh/Karyawan/Pegawai Menurut Kelompok Umur
dan Jenis Pekerjaan, 2022-2023
- Indikator Konstruksi, Triwulan II-2022
- source_sentence: Statistik harga Ternate 2012
sentences:
- Statistik Perhubungan 2005
- Indeks Unit Value Ekspor Menurut Kode SITC Bulan Januari 2019
- Indikator Ekonomi Agustus 2002
datasets:
- yahyaabd/allstats-semantic-synthetic-dataset-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstats semantic base v1 eval
type: allstats-semantic-base-v1-eval
metrics:
- type: pearson_cosine
value: 0.9868927327091045
name: Pearson Cosine
- type: spearman_cosine
value: 0.9277441071536588
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: allstat semantic base v1 test
type: allstat-semantic-base-v1-test
metrics:
- type: pearson_cosine
value: 0.9867639981224826
name: Pearson Cosine
- type: spearman_cosine
value: 0.9256998894451143
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [allstats-semantic-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [allstats-semantic-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1)
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-semantic-base-v1-2")
# Run inference
sentences = [
'Statistik harga Ternate 2012',
'Indikator Ekonomi Agustus 2002',
'Indeks Unit Value Ekspor Menurut Kode SITC Bulan Januari 2019',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `allstats-semantic-base-v1-eval` and `allstat-semantic-base-v1-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | allstats-semantic-base-v1-eval | allstat-semantic-base-v1-test |
|:--------------------|:-------------------------------|:------------------------------|
| pearson_cosine | 0.9869 | 0.9868 |
| **spearman_cosine** | **0.9277** | **0.9257** |
## Training Details
### Training Dataset
#### allstats-semantic-synthetic-dataset-v1
* Dataset: [allstats-semantic-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1) at [e73718f](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1/tree/e73718fb155f47b2c5cf8c4e00f0690d37bac9fa)
* Size: 123,637 training samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details |
Analisis upah tenaga kerja ekonomi kreatif
| Upah Tenaga Kerja Ekonomi Kreatif 2011-2016
| 0.88
|
| cari data persentase rumah tangga yang menggunakan listrik pln menurut provinsi dari 1993 sampai 2022.
| Persentase Rumah Tangga menurut Provinsi dan Sumber Penerangan Listrik PLN, 1993-2022
| 0.93
|
| apakah ada tabel yang menunjukkan ekspor minyak mentah ke negara tujuan utama tahun 2000-2023?
| IHK dan Rata-rata Upah per Bulan Buruh Peternakan dan Perikanan di Bawah Mandor (Supervisor), 2012-2014 (2012=100)
| 0.13
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### allstats-semantic-synthetic-dataset-v1
* Dataset: [allstats-semantic-synthetic-dataset-v1](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1) at [e73718f](https://huggingface.co/datasets/yahyaabd/allstats-semantic-synthetic-dataset-v1/tree/e73718fb155f47b2c5cf8c4e00f0690d37bac9fa)
* Size: 26,494 evaluation samples
* Columns: query
, doc
, and label
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | SBH Aceh 2018: Meulaboh, Banda Aceh, Lhokseumawe
| Survei Biaya Hidup (SBH) 2018 Meulaboh, Banda Aceh, dan Lhokseumawe
| 0.9
|
| ekspor produk indonesia juli 2018 per negara
| Direktori Perusahaan Pertambangan Besar 2013
| 0.07
|
| peternakan sapi di jawa tengah 2011
| Laporan Bulanan Data Sosial Ekonomi Juli 2024
| 0.07
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 24
- `warmup_ratio`: 0.1
- `fp16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True
- `label_smoothing_factor`: 0.1
- `eval_on_start`: True
#### All Hyperparameters