update model card README.md
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,79 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: apache-2.0
         | 
| 3 | 
            +
            tags:
         | 
| 4 | 
            +
            - generated_from_trainer
         | 
| 5 | 
            +
            metrics:
         | 
| 6 | 
            +
            - precision
         | 
| 7 | 
            +
            - recall
         | 
| 8 | 
            +
            - accuracy
         | 
| 9 | 
            +
            - f1
         | 
| 10 | 
            +
            model-index:
         | 
| 11 | 
            +
            - name: bert-uncased-keyword-discriminator
         | 
| 12 | 
            +
              results: []
         | 
| 13 | 
            +
            ---
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            <!-- This model card has been generated automatically according to the information the Trainer had access to. You
         | 
| 16 | 
            +
            should probably proofread and complete it, then remove this comment. -->
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            # bert-uncased-keyword-discriminator
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
         | 
| 21 | 
            +
            It achieves the following results on the evaluation set:
         | 
| 22 | 
            +
            - Loss: 0.1296
         | 
| 23 | 
            +
            - Precision: 0.8439
         | 
| 24 | 
            +
            - Recall: 0.8722
         | 
| 25 | 
            +
            - Accuracy: 0.9727
         | 
| 26 | 
            +
            - F1: 0.8578
         | 
| 27 | 
            +
            - Ent/precision: 0.8723
         | 
| 28 | 
            +
            - Ent/accuracy: 0.9077
         | 
| 29 | 
            +
            - Ent/f1: 0.8896
         | 
| 30 | 
            +
            - Con/precision: 0.8010
         | 
| 31 | 
            +
            - Con/accuracy: 0.8196
         | 
| 32 | 
            +
            - Con/f1: 0.8102
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            ## Model description
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            More information needed
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            ## Intended uses & limitations
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            More information needed
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            ## Training and evaluation data
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            More information needed
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            ## Training procedure
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            ### Training hyperparameters
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            The following hyperparameters were used during training:
         | 
| 51 | 
            +
            - learning_rate: 2e-05
         | 
| 52 | 
            +
            - train_batch_size: 16
         | 
| 53 | 
            +
            - eval_batch_size: 16
         | 
| 54 | 
            +
            - seed: 42
         | 
| 55 | 
            +
            - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
         | 
| 56 | 
            +
            - lr_scheduler_type: linear
         | 
| 57 | 
            +
            - num_epochs: 8
         | 
| 58 | 
            +
            - mixed_precision_training: Native AMP
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            ### Training results
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            | Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | Accuracy | F1     | Ent/precision | Ent/accuracy | Ent/f1 | Con/precision | Con/accuracy | Con/f1 |
         | 
| 63 | 
            +
            |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:--------:|:------:|:-------------:|:------------:|:------:|:-------------:|:------------:|:------:|
         | 
| 64 | 
            +
            | 0.1849        | 1.0   | 1875  | 0.1323          | 0.7039    | 0.7428 | 0.9488   | 0.7228 | 0.7522        | 0.8166       | 0.7831 | 0.6268        | 0.6332       | 0.6300 |
         | 
| 65 | 
            +
            | 0.1357        | 2.0   | 3750  | 0.1132          | 0.7581    | 0.8024 | 0.9592   | 0.7796 | 0.7948        | 0.8785       | 0.8346 | 0.6971        | 0.6895       | 0.6933 |
         | 
| 66 | 
            +
            | 0.0965        | 3.0   | 5625  | 0.1033          | 0.8086    | 0.7980 | 0.9646   | 0.8032 | 0.8410        | 0.8592       | 0.8500 | 0.7560        | 0.7071       | 0.7307 |
         | 
| 67 | 
            +
            | 0.0713        | 4.0   | 7500  | 0.1040          | 0.8181    | 0.8435 | 0.9683   | 0.8306 | 0.8526        | 0.8906       | 0.8712 | 0.7652        | 0.7736       | 0.7694 |
         | 
| 68 | 
            +
            | 0.0525        | 5.0   | 9375  | 0.1126          | 0.8150    | 0.8633 | 0.9689   | 0.8385 | 0.8495        | 0.9064       | 0.8770 | 0.7629        | 0.7993       | 0.7807 |
         | 
| 69 | 
            +
            | 0.0386        | 6.0   | 11250 | 0.1183          | 0.8374    | 0.8678 | 0.9719   | 0.8523 | 0.8709        | 0.9020       | 0.8862 | 0.7877        | 0.8170       | 0.8021 |
         | 
| 70 | 
            +
            | 0.03          | 7.0   | 13125 | 0.1237          | 0.8369    | 0.8707 | 0.9723   | 0.8535 | 0.8657        | 0.9079       | 0.8863 | 0.7934        | 0.8155       | 0.8043 |
         | 
| 71 | 
            +
            | 0.0244        | 8.0   | 15000 | 0.1296          | 0.8439    | 0.8722 | 0.9727   | 0.8578 | 0.8723        | 0.9077       | 0.8896 | 0.8010        | 0.8196       | 0.8102 |
         | 
| 72 | 
            +
             | 
| 73 | 
            +
             | 
| 74 | 
            +
            ### Framework versions
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            - Transformers 4.19.2
         | 
| 77 | 
            +
            - Pytorch 1.11.0+cu113
         | 
| 78 | 
            +
            - Datasets 2.2.2
         | 
| 79 | 
            +
            - Tokenizers 0.12.1
         |