update model card README.md
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,73 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: mit
         | 
| 3 | 
            +
            tags:
         | 
| 4 | 
            +
            - generated_from_trainer
         | 
| 5 | 
            +
            metrics:
         | 
| 6 | 
            +
            - precision
         | 
| 7 | 
            +
            - recall
         | 
| 8 | 
            +
            - accuracy
         | 
| 9 | 
            +
            - f1
         | 
| 10 | 
            +
            model-index:
         | 
| 11 | 
            +
            - name: berturk-uncased-keyword-extractor
         | 
| 12 | 
            +
              results: []
         | 
| 13 | 
            +
            ---
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            <!-- This model card has been generated automatically according to the information the Trainer had access to. You
         | 
| 16 | 
            +
            should probably proofread and complete it, then remove this comment. -->
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            # berturk-uncased-keyword-extractor
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            This model is a fine-tuned version of [dbmdz/bert-base-turkish-uncased](https://huggingface.co/dbmdz/bert-base-turkish-uncased) on an unknown dataset.
         | 
| 21 | 
            +
            It achieves the following results on the evaluation set:
         | 
| 22 | 
            +
            - Loss: 0.3931
         | 
| 23 | 
            +
            - Precision: 0.6631
         | 
| 24 | 
            +
            - Recall: 0.6728
         | 
| 25 | 
            +
            - Accuracy: 0.9188
         | 
| 26 | 
            +
            - F1: 0.6679
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            ## Model description
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            More information needed
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            ## Intended uses & limitations
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            More information needed
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            ## Training and evaluation data
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            More information needed
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            ## Training procedure
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            ### Training hyperparameters
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            The following hyperparameters were used during training:
         | 
| 45 | 
            +
            - learning_rate: 2e-05
         | 
| 46 | 
            +
            - train_batch_size: 16
         | 
| 47 | 
            +
            - eval_batch_size: 16
         | 
| 48 | 
            +
            - seed: 42
         | 
| 49 | 
            +
            - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
         | 
| 50 | 
            +
            - lr_scheduler_type: linear
         | 
| 51 | 
            +
            - num_epochs: 8
         | 
| 52 | 
            +
            - mixed_precision_training: Native AMP
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            ### Training results
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            | Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | Accuracy | F1     |
         | 
| 57 | 
            +
            |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:--------:|:------:|
         | 
| 58 | 
            +
            | 0.1779        | 1.0   | 1875  | 0.1862          | 0.6199    | 0.6356 | 0.9192   | 0.6276 |
         | 
| 59 | 
            +
            | 0.1327        | 2.0   | 3750  | 0.1890          | 0.6328    | 0.6917 | 0.9206   | 0.6610 |
         | 
| 60 | 
            +
            | 0.1008        | 3.0   | 5625  | 0.2188          | 0.6322    | 0.7037 | 0.9189   | 0.6660 |
         | 
| 61 | 
            +
            | 0.0755        | 4.0   | 7500  | 0.2539          | 0.6395    | 0.7030 | 0.9181   | 0.6697 |
         | 
| 62 | 
            +
            | 0.0574        | 5.0   | 9375  | 0.2882          | 0.6556    | 0.6868 | 0.9197   | 0.6709 |
         | 
| 63 | 
            +
            | 0.0433        | 6.0   | 11250 | 0.3425          | 0.6565    | 0.6851 | 0.9189   | 0.6705 |
         | 
| 64 | 
            +
            | 0.0352        | 7.0   | 13125 | 0.3703          | 0.6616    | 0.6776 | 0.9191   | 0.6695 |
         | 
| 65 | 
            +
            | 0.0288        | 8.0   | 15000 | 0.3931          | 0.6631    | 0.6728 | 0.9188   | 0.6679 |
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
            ### Framework versions
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            - Transformers 4.19.2
         | 
| 71 | 
            +
            - Pytorch 1.11.0+cu113
         | 
| 72 | 
            +
            - Datasets 2.2.2
         | 
| 73 | 
            +
            - Tokenizers 0.12.1
         |