yashpwr commited on
Commit
3ea6ecf
·
verified ·
1 Parent(s): 77473f5

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -176
README.md CHANGED
@@ -1,199 +1,82 @@
1
  ---
 
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
 
 
 
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
102
 
103
- ## Evaluation
 
 
 
 
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
 
106
 
107
- ### Testing Data, Factors & Metrics
 
 
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
 
 
 
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
 
 
120
 
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
1
  ---
2
+ language: en
3
+ license: apache-2.0
4
  library_name: transformers
5
+ pipeline_tag: token-classification
6
+ tags:
7
+ - resume-parsing
8
+ - named-entity-recognition
9
+ - ner
10
+ - bert
11
+ - information-extraction
12
+ widget:
13
+ - text: "John Doe is a Software Engineer at Google. Email: [email protected], Phone: +1-555-123-4567"
14
+ example_title: "Resume Information Extraction"
15
  ---
16
 
17
+ # Resume NER Model
18
 
19
+ A fine-tuned BERT model for Named Entity Recognition (NER) specifically designed for resume/CV parsing and information extraction.
20
 
21
+ ## Model Description
22
 
23
+ This model is based on `bert-base-cased` and has been fine-tuned to extract key information from resume documents including:
24
 
25
+ - label_to_id
26
+ - id_to_label
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ ## Performance
29
 
30
+ | Metric | Score |
31
+ |--------|-------|
32
+ | F1 Score | 0.7128521806252412 |
33
+ | Precision | 0.6843275287143387 |
34
+ | Recall | 0.7438582360048329 |
35
+ | Accuracy | 0.9482567433286769 |
36
 
37
+ ## Usage
38
 
39
+ ```python
40
+ from transformers import pipeline
41
 
42
+ # Load the model
43
+ ner_pipeline = pipeline(
44
+ "ner",
45
+ model="yashpwr/resume-ner-bert",
46
+ aggregation_strategy="simple"
47
+ )
48
 
49
+ # Extract entities from resume text
50
+ text = "John Doe is a Software Engineer at Google. Email: [email protected]"
51
+ results = ner_pipeline(text)
52
 
53
+ for entity in results:
54
+ print(f"{entity['word']}: {entity['entity_group']} ({entity['score']:.3f})")
55
+ ```
56
 
57
+ ## Training Data
58
 
59
+ - Training samples: 576
60
+ - Validation samples: 144
61
+ - Epochs: 3
62
 
63
+ ## Intended Use
64
 
65
+ This model is designed for:
66
+ - Resume parsing systems
67
+ - HR automation tools
68
+ - Recruitment platforms
69
+ - Document processing pipelines
70
 
71
+ ## Limitations
72
 
73
+ - Optimized specifically for resume/CV documents
74
+ - Performance may vary on other document types
75
+ - Requires preprocessing for best results
76
 
77
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
+ - Base model: `bert-base-cased`
80
+ - Model size: ~110M parameters
81
+ - Language: English
82
+ - License: Apache 2.0