--- metrics: - accuracy base_model: - Ultralytics/YOLOv8 pipeline_tag: object-detection tags: - UI/UX - test-automation - object-detection - yolov8 license: apache-2.0 language: - en new_version: yasirfaizahmed/android_ui_detection_yolov8 library_name: ultralytics datasets: - yasirfaizahmed/android_ui_detection_yolov8 --- # Android UI Detection – YOLOv8 This YOLOv8 model is trained to detect various Android UI elements in app/game screenshots, such as buttons, cards, toolbars, text views, and more. **Trained using YOLOv8 Nano** **Detects 21 Android UI classes** **Ideal for UI automation, testing, and design analysis** --- ## Installation ```bash pip install ultralytics ``` --- ## How to Load and Use the Model ```python from ultralytics import YOLO # Load the model directly from Hugging Face model = YOLO("yasirfaizahmed/android_ui_detection_yolov8") # Run detection on an image results = model("your_image.jpg") # Replace with your actual image path # Show results with bounding boxes results[0].show() ``` --- ## Classes Detected ```python [ 'BackgroundImage', 'Bottom_Navigation', 'Card', 'CheckBox', 'Checkbox', 'CheckedTextView', 'Drawer', 'EditText', 'Icon', 'Image', 'Map', 'Modal', 'Multi_Tab', 'PageIndicator', 'Remember', 'Spinner', 'Switch', 'Text', 'TextButton', 'Toolbar', 'UpperTaskBar' ] ``` --- ## Model Structure - Trained with: `yolov8n.pt` base - Format: YOLOv8 PyTorch - Dataset: Custom Pascal VOC-style Android UI dataset --- ## Training Configuration - Recommended image size: 640×640 - Supports `predict`, `val`, `export`, and `train` pipelines from Ultralytics - Use `.predict(source="folder_or_image.jpg")` for batch inference --- [More Information Needed]