{ "cells": [ { "cell_type": "code", "execution_count": 13, "id": "c8bdf258", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "New https://pypi.org/project/ultralytics/8.3.172 available 😃 Update with 'pip install -U ultralytics'\n", "Ultralytics 8.3.171 🚀 Python-3.12.3 torch-2.7.1+cu126 CUDA:0 (NVIDIA GeForce RTX 3060, 11910MiB)\n", "\u001b[34m\u001b[1mengine/trainer: \u001b[0magnostic_nms=False, amp=True, augment=False, auto_augment=randaugment, batch=16, bgr=0.0, box=7.5, cache=False, cfg=None, classes=None, close_mosaic=10, cls=0.5, conf=None, copy_paste=0.0, copy_paste_mode=flip, cos_lr=False, cutmix=0.0, data=/home/xd/Documents/ML_AI/ui_detection_yolo/data.yml, degrees=0.0, deterministic=True, device=0, dfl=1.5, dnn=False, dropout=0.0, dynamic=False, embed=None, epochs=20, erasing=0.4, exist_ok=False, fliplr=0.5, flipud=0.0, format=torchscript, fraction=1.0, freeze=None, half=False, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, imgsz=640, int8=False, iou=0.7, keras=False, kobj=1.0, line_width=None, lr0=0.01, lrf=0.01, mask_ratio=4, max_det=300, mixup=0.0, mode=train, model=yolov8n.pt, momentum=0.937, mosaic=1.0, multi_scale=False, name=train5, nbs=64, nms=False, opset=None, optimize=False, optimizer=auto, overlap_mask=True, patience=100, perspective=0.0, plots=True, pose=12.0, pretrained=True, profile=False, project=None, rect=False, resume=False, retina_masks=False, save=True, save_conf=False, save_crop=False, save_dir=runs/detect/train5, save_frames=False, save_json=False, save_period=-1, save_txt=False, scale=0.5, seed=0, shear=0.0, show=False, show_boxes=True, show_conf=True, show_labels=True, simplify=True, single_cls=False, source=None, split=val, stream_buffer=False, task=detect, time=None, tracker=botsort.yaml, translate=0.1, val=True, verbose=True, vid_stride=1, visualize=False, warmup_bias_lr=0.1, warmup_epochs=3.0, warmup_momentum=0.8, weight_decay=0.0005, workers=8, workspace=None\n", "Overriding model.yaml nc=80 with nc=21\n", "\n", " from n params module arguments \n", " 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] \n", " 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] \n", " 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] \n", " 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] \n", " 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] \n", " 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] \n", " 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] \n", " 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] \n", " 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] \n", " 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] \n", " 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] \n", " 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] \n", " 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] \n", " 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] \n", " 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] \n", " 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] \n", " 22 [15, 18, 21] 1 755407 ultralytics.nn.modules.head.Detect [21, [64, 128, 256]] \n", "Model summary: 129 layers, 3,014,943 parameters, 3,014,927 gradients, 8.2 GFLOPs\n", "\n", "Transferred 319/355 items from pretrained weights\n", "Freezing layer 'model.22.dfl.conv.weight'\n", "\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks...\n", "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n", "\u001b[34m\u001b[1mtrain: \u001b[0mFast image access ✅ (ping: 0.0±0.0 ms, read: 5872.4±1709.8 MB/s, size: 167.0 KB)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /home/xd/Documents/ML_AI/ui_detection_yolo/dataset/train/labels... 3845 images, 0 backgrounds, 0 corrupt: 100%|██████████| 3845/3845 [00:03<00:00, 1107.02it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mtrain: \u001b[0m/home/xd/Documents/ML_AI/ui_detection_yolo/dataset/train/images/69825a2b08bd43c7a9ca4fcd3cd8c8c2.jpg: 1 duplicate labels removed\n", "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /home/xd/Documents/ML_AI/ui_detection_yolo/dataset/train/labels.cache\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mFast image access ✅ (ping: 0.0±0.0 ms, read: 754.3±135.6 MB/s, size: 109.7 KB)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mScanning /home/xd/Documents/ML_AI/ui_detection_yolo/dataset/val/labels... 481 images, 0 backgrounds, 0 corrupt: 100%|██████████| 481/481 [00:00<00:00, 1961.08it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /home/xd/Documents/ML_AI/ui_detection_yolo/dataset/val/labels.cache\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Plotting labels to runs/detect/train5/labels.jpg... \n", "\u001b[34m\u001b[1moptimizer:\u001b[0m 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... \n", "\u001b[34m\u001b[1moptimizer:\u001b[0m AdamW(lr=0.0004, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)\n", "Image sizes 640 train, 640 val\n", "Using 8 dataloader workers\n", "Logging results to \u001b[1mruns/detect/train5\u001b[0m\n", "Starting training for 20 epochs...\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 1/20 2.88G 1.154 2.561 1.105 78 640: 100%|██████████| 241/241 [00:30<00:00, 8.00it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 8.99it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.827 0.327 0.359 0.282\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 2/20 3.31G 0.8688 1.187 0.9828 103 640: 100%|██████████| 241/241 [00:29<00:00, 8.27it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.55it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.823 0.449 0.501 0.405\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 3/20 3.32G 0.784 1.012 0.9498 119 640: 100%|██████████| 241/241 [00:28<00:00, 8.38it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.34it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.856 0.476 0.519 0.428\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 4/20 3.56G 0.7496 0.9416 0.9344 106 640: 100%|██████████| 241/241 [00:28<00:00, 8.35it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.47it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.85 0.518 0.597 0.508\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 5/20 3.56G 0.7189 0.8863 0.9241 136 640: 100%|██████████| 241/241 [00:28<00:00, 8.38it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.63it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.725 0.59 0.618 0.521\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 6/20 3.57G 0.6922 0.8384 0.9155 144 640: 100%|██████████| 241/241 [00:28<00:00, 8.38it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.61it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.774 0.584 0.635 0.541\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 7/20 3.58G 0.6745 0.8128 0.9085 124 640: 100%|██████████| 241/241 [00:28<00:00, 8.34it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.58it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.769 0.601 0.673 0.576\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 8/20 3.86G 0.6598 0.78 0.9037 87 640: 100%|██████████| 241/241 [00:28<00:00, 8.34it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.48it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.776 0.622 0.682 0.598\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 9/20 3.86G 0.6381 0.7502 0.8973 162 640: 100%|██████████| 241/241 [00:28<00:00, 8.37it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.77it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.692 0.609 0.654 0.573\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 10/20 3.86G 0.6308 0.7258 0.8911 114 640: 100%|██████████| 241/241 [00:29<00:00, 8.28it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.66it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.721 0.625 0.664 0.582\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Closing dataloader mosaic\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 11/20 3.86G 0.6223 0.7513 0.8781 44 640: 100%|██████████| 241/241 [00:28<00:00, 8.55it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.53it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.716 0.631 0.667 0.583\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 12/20 3.86G 0.6038 0.7067 0.8681 59 640: 100%|██████████| 241/241 [00:27<00:00, 8.71it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.62it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.769 0.633 0.691 0.609\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 13/20 3.86G 0.5843 0.675 0.8647 41 640: 100%|██████████| 241/241 [00:27<00:00, 8.71it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.58it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.759 0.627 0.673 0.597\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 14/20 3.86G 0.5757 0.6552 0.8599 55 640: 100%|██████████| 241/241 [00:27<00:00, 8.71it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.85it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.809 0.639 0.704 0.63\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 15/20 3.86G 0.5684 0.6373 0.857 105 640: 100%|██████████| 241/241 [00:27<00:00, 8.73it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.79it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.764 0.646 0.692 0.619\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 16/20 3.86G 0.5521 0.6189 0.8535 53 640: 100%|██████████| 241/241 [00:27<00:00, 8.68it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.79it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.751 0.623 0.68 0.612\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 17/20 3.86G 0.544 0.6061 0.8504 45 640: 100%|██████████| 241/241 [00:27<00:00, 8.74it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.99it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.753 0.664 0.692 0.624\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 18/20 3.86G 0.548 0.5979 0.8497 56 640: 100%|██████████| 241/241 [00:27<00:00, 8.73it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.85it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.752 0.647 0.689 0.624\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 19/20 3.86G 0.5285 0.58 0.8455 73 640: 100%|██████████| 241/241 [00:27<00:00, 8.74it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 11.85it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.735 0.672 0.691 0.625\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 20/20 3.86G 0.525 0.5689 0.8472 72 640: 100%|██████████| 241/241 [00:27<00:00, 8.74it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:01<00:00, 10.56it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.786 0.679 0.707 0.641\n", "\n", "20 epochs completed in 0.166 hours.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Optimizer stripped from runs/detect/train5/weights/last.pt, 6.2MB\n", "Optimizer stripped from runs/detect/train5/weights/best.pt, 6.2MB\n", "\n", "Validating runs/detect/train5/weights/best.pt...\n", "Ultralytics 8.3.171 🚀 Python-3.12.3 torch-2.7.1+cu126 CUDA:0 (NVIDIA GeForce RTX 3060, 11910MiB)\n", "Model summary (fused): 72 layers, 3,009,743 parameters, 0 gradients, 8.1 GFLOPs\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 16/16 [00:02<00:00, 7.23it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " all 481 6875 0.786 0.678 0.707 0.64\n", " BackgroundImage 56 56 0.872 0.73 0.875 0.842\n", " Bottom_Navigation 2 2 1 0 0.0326 0.0271\n", " Card 6 14 0.469 0.786 0.501 0.444\n", " CheckedTextView 23 107 0.837 0.832 0.881 0.7\n", " Drawer 30 30 0.938 0.967 0.993 0.987\n", " EditText 112 246 0.927 0.879 0.945 0.849\n", " Icon 297 1269 0.883 0.864 0.925 0.759\n", " Image 370 868 0.781 0.841 0.894 0.833\n", " Map 1 1 0 0 0 0\n", " Modal 41 41 0.918 0.854 0.937 0.911\n", " Multi_Tab 3 3 1 0 0.056 0.0474\n", " PageIndicator 151 151 0.971 0.854 0.961 0.715\n", " Spinner 1 1 0 0 0 0\n", " Switch 10 28 0.957 0.929 0.984 0.915\n", " Text 479 3164 0.932 0.946 0.97 0.839\n", " TextButton 290 493 0.925 0.974 0.976 0.95\n", " Toolbar 26 26 0.747 0.808 0.797 0.783\n", " UpperTaskBar 375 375 0.996 0.949 0.992 0.927\n", "Speed: 0.1ms preprocess, 1.0ms inference, 0.0ms loss, 2.3ms postprocess per image\n", "Results saved to \u001b[1mruns/detect/train5\u001b[0m\n", "Ultralytics 8.3.171 🚀 Python-3.12.3 torch-2.7.1+cu126 CUDA:0 (NVIDIA GeForce RTX 3060, 11910MiB)\n", "Model summary (fused): 72 layers, 3,009,743 parameters, 0 gradients, 8.1 GFLOPs\n", "\u001b[34m\u001b[1mval: \u001b[0mFast image access ✅ (ping: 0.0±0.0 ms, read: 4011.9±2287.7 MB/s, size: 279.8 KB)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mval: \u001b[0mScanning /home/xd/Documents/ML_AI/ui_detection_yolo/dataset/val/labels.cache... 481 images, 0 backgrounds, 0 corrupt: 100%|██████████| 481/481 [00:00