File size: 2,853 Bytes
23d6566 19256f8 23d6566 19256f8 23d6566 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
base_model: MiMe-MeMo/MeMo-BERT-03
tags:
- generated_from_trainer
model-index:
- name: MeMo_BERT-WSD-03
results: []
language: da # <-- my language
widget:
- text: "Men havde Gud vendt sig fra ham , saa kunde han ogsaa vende sig fra Gud . Havde Gud ingen Øren , saa havde han heller ingen Læber , havde Gud ingen Naade , saa havde han heller ingen Tilbedelse , og han trodsede og viste Gud ud af sit Hjærte ."
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MeMo_BERT-WSD-03
This model is a fine-tuned version of [MiMe-MeMo/MeMo-BERT-03](https://huggingface.co/MiMe-MeMo/MeMo-BERT-03) on https://huggingface.co/MiMe-MeMo/MeMo-Dataset-WSD dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7403
- F1-score: 0.5317
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 61 | 1.5313 | 0.2765 |
| No log | 2.0 | 122 | 1.1618 | 0.3798 |
| No log | 3.0 | 183 | 1.1259 | 0.4814 |
| No log | 4.0 | 244 | 1.3069 | 0.4656 |
| No log | 5.0 | 305 | 1.9109 | 0.4598 |
| No log | 6.0 | 366 | 2.0905 | 0.4766 |
| No log | 7.0 | 427 | 2.3842 | 0.4609 |
| No log | 8.0 | 488 | 2.7403 | 0.5317 |
| 0.5392 | 9.0 | 549 | 2.6113 | 0.4633 |
| 0.5392 | 10.0 | 610 | 3.0131 | 0.5016 |
| 0.5392 | 11.0 | 671 | 2.8423 | 0.5196 |
| 0.5392 | 12.0 | 732 | 2.9776 | 0.4876 |
| 0.5392 | 13.0 | 793 | 2.9717 | 0.4881 |
| 0.5392 | 14.0 | 854 | 2.9801 | 0.4887 |
| 0.5392 | 15.0 | 915 | 3.0105 | 0.4669 |
| 0.5392 | 16.0 | 976 | 3.0355 | 0.4887 |
| 0.0089 | 17.0 | 1037 | 3.0591 | 0.4887 |
| 0.0089 | 18.0 | 1098 | 3.0704 | 0.4887 |
| 0.0089 | 19.0 | 1159 | 3.0760 | 0.5012 |
| 0.0089 | 20.0 | 1220 | 3.0780 | 0.5012 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|