--- base_model: MiMe-MeMo/MeMo-BERT-03 tags: - generated_from_trainer model-index: - name: MeMo_BERT-WSD-03 results: [] language: da # <-- my language widget: - text: "Men havde Gud vendt sig fra ham , saa kunde han ogsaa vende sig fra Gud . Havde Gud ingen Øren , saa havde han heller ingen Læber , havde Gud ingen Naade , saa havde han heller ingen Tilbedelse , og han trodsede og viste Gud ud af sit Hjærte ." --- # MeMo_BERT-WSD-03 This model is a fine-tuned version of [MiMe-MeMo/MeMo-BERT-03](https://huggingface.co/MiMe-MeMo/MeMo-BERT-03) on https://huggingface.co/MiMe-MeMo/MeMo-Dataset-WSD dataset. It achieves the following results on the evaluation set: - Loss: 2.7403 - F1-score: 0.5317 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1-score | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 61 | 1.5313 | 0.2765 | | No log | 2.0 | 122 | 1.1618 | 0.3798 | | No log | 3.0 | 183 | 1.1259 | 0.4814 | | No log | 4.0 | 244 | 1.3069 | 0.4656 | | No log | 5.0 | 305 | 1.9109 | 0.4598 | | No log | 6.0 | 366 | 2.0905 | 0.4766 | | No log | 7.0 | 427 | 2.3842 | 0.4609 | | No log | 8.0 | 488 | 2.7403 | 0.5317 | | 0.5392 | 9.0 | 549 | 2.6113 | 0.4633 | | 0.5392 | 10.0 | 610 | 3.0131 | 0.5016 | | 0.5392 | 11.0 | 671 | 2.8423 | 0.5196 | | 0.5392 | 12.0 | 732 | 2.9776 | 0.4876 | | 0.5392 | 13.0 | 793 | 2.9717 | 0.4881 | | 0.5392 | 14.0 | 854 | 2.9801 | 0.4887 | | 0.5392 | 15.0 | 915 | 3.0105 | 0.4669 | | 0.5392 | 16.0 | 976 | 3.0355 | 0.4887 | | 0.0089 | 17.0 | 1037 | 3.0591 | 0.4887 | | 0.0089 | 18.0 | 1098 | 3.0704 | 0.4887 | | 0.0089 | 19.0 | 1159 | 3.0760 | 0.5012 | | 0.0089 | 20.0 | 1220 | 3.0780 | 0.5012 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2