File size: 2,494 Bytes
9449dfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
base_model: MiMe-MeMo/MeMo-BERT-03
tags:
- generated_from_trainer
model-index:
- name: memo3_FGN
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# memo3_FGN
This model is a fine-tuned version of [MiMe-MeMo/MeMo-BERT-03](https://huggingface.co/MiMe-MeMo/MeMo-BERT-03) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3348
- F1-score: 0.8316
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1-score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 120 | 0.4934 | 0.8027 |
| No log | 2.0 | 240 | 0.5542 | 0.8121 |
| No log | 3.0 | 360 | 0.8229 | 0.8168 |
| No log | 4.0 | 480 | 0.9300 | 0.8123 |
| 0.4028 | 5.0 | 600 | 1.1413 | 0.8057 |
| 0.4028 | 6.0 | 720 | 1.3327 | 0.7989 |
| 0.4028 | 7.0 | 840 | 1.5178 | 0.7851 |
| 0.4028 | 8.0 | 960 | 1.1979 | 0.8299 |
| 0.0435 | 9.0 | 1080 | 1.2149 | 0.8307 |
| 0.0435 | 10.0 | 1200 | 1.2327 | 0.8302 |
| 0.0435 | 11.0 | 1320 | 1.2521 | 0.8312 |
| 0.0435 | 12.0 | 1440 | 1.2734 | 0.8304 |
| 0.0238 | 13.0 | 1560 | 1.3348 | 0.8316 |
| 0.0238 | 14.0 | 1680 | 1.3715 | 0.8181 |
| 0.0238 | 15.0 | 1800 | 1.4095 | 0.8064 |
| 0.0238 | 16.0 | 1920 | 1.4157 | 0.8179 |
| 0.0099 | 17.0 | 2040 | 1.4234 | 0.8179 |
| 0.0099 | 18.0 | 2160 | 1.4038 | 0.8127 |
| 0.0099 | 19.0 | 2280 | 1.4404 | 0.8117 |
| 0.0099 | 20.0 | 2400 | 1.4436 | 0.8117 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|