--- library_name: transformers base_model: MiMe-MeMo/MeMo-BERT-03 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: memo3_indirect_speech results: [] --- # memo3_indirect_speech This model is a fine-tuned version of [MiMe-MeMo/MeMo-BERT-03](https://huggingface.co/MiMe-MeMo/MeMo-BERT-03) on an unknown dataset. It achieves the following results on the evaluation set: - Accuracy: 0.6840 - Precision: 0.7036 - Recall: 0.6840 - F1: 0.6798 - Loss: 0.7225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | Precision | Recall | F1 | Validation Loss | |:-------------:|:-------:|:----:|:--------:|:---------:|:------:|:------:|:---------------:| | No log | 1.0 | 9 | 0.3820 | 0.1459 | 0.3820 | 0.2112 | 1.3936 | | No log | 2.0 | 18 | 0.3820 | 0.1459 | 0.3820 | 0.2112 | 1.5289 | | No log | 3.0 | 27 | 0.5385 | 0.2900 | 0.5385 | 0.3770 | 1.0207 | | No log | 4.0 | 36 | 0.3820 | 0.1459 | 0.3820 | 0.2112 | 1.3341 | | No log | 5.0 | 45 | 0.5385 | 0.2900 | 0.5385 | 0.3770 | 1.0219 | | No log | 6.0 | 54 | 0.3829 | 0.1825 | 0.3829 | 0.2130 | 1.0394 | | No log | 7.0 | 63 | 0.6020 | 0.5949 | 0.6020 | 0.5650 | 0.8312 | | No log | 8.0 | 72 | 0.6250 | 0.6270 | 0.6250 | 0.5846 | 0.8301 | | No log | 9.0 | 81 | 0.6821 | 0.7037 | 0.6821 | 0.6491 | 0.7462 | | No log | 10.0 | 90 | 0.5620 | 0.6878 | 0.5620 | 0.5268 | 0.8255 | | No log | 11.0 | 99 | 0.5968 | 0.6945 | 0.5968 | 0.5751 | 0.7890 | | No log | 12.0 | 108 | 0.6901 | 0.6877 | 0.6901 | 0.6868 | 0.7190 | | No log | 13.0 | 117 | 0.6020 | 0.7003 | 0.6020 | 0.5805 | 0.8426 | | No log | 14.0 | 126 | 0.6932 | 0.6919 | 0.6932 | 0.6899 | 0.7213 | | No log | 15.0 | 135 | 0.7158 | 0.7300 | 0.7158 | 0.6928 | 0.7416 | | No log | 16.0 | 144 | 0.6503 | 0.7054 | 0.6503 | 0.6417 | 0.7546 | | No log | 17.0 | 153 | 0.7031 | 0.7104 | 0.7031 | 0.6993 | 0.6824 | | No log | 17.8235 | 160 | 0.6840 | 0.7036 | 0.6840 | 0.6798 | 0.7225 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Tokenizers 0.21.0