yinchenghust commited on
Commit
c1db3a5
·
verified ·
1 Parent(s): dedf5c4

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - robotics
5
+ - vla
6
+ - image-text-to-text
7
+ - multimodal
8
+ - pretraining
9
+ license: mit
10
+ language:
11
+ - en
12
+ pipeline_tag: image-text-to-text
13
+ ---
14
+
15
+ # OpenVLA 7B
16
+
17
+ OpenVLA 7B (`openvla-7b`) is an open vision-language-action model trained on 970K robot manipulation episodes from the [Open X-Embodiment](https://robotics-transformer-x.github.io/) dataset.
18
+ The model takes language instructions and camera images as input and generates robot actions. It supports controlling multiple robots out-of-the-box, and can be quickly adapted for new robot domains via (parameter-efficient) fine-tuning.
19
+
20
+ All OpenVLA checkpoints, as well as our [training codebase](https://github.com/openvla/openvla) are released under an MIT License.
21
+
22
+ For full details, please read [our paper](https://arxiv.org/abs/2406.09246) and see [our project page](https://openvla.github.io/).
23
+
24
+ ## Model Summary
25
+
26
+ - **Developed by:** The OpenVLA team consisting of researchers from Stanford, UC Berkeley, Google Deepmind, and the Toyota Research Institute.
27
+ - **Model type:** Vision-language-action (language, image => robot actions)
28
+ - **Language(s) (NLP):** en
29
+ - **License:** MIT
30
+ - **Finetuned from:** [`prism-dinosiglip-224px`](https://github.com/TRI-ML/prismatic-vlms), a VLM trained from:
31
+ + **Vision Backbone**: DINOv2 ViT-L/14 and SigLIP ViT-So400M/14
32
+ + **Language Model**: Llama-2
33
+ - **Pretraining Dataset:** [Open X-Embodiment](https://robotics-transformer-x.github.io/) -- specific component datasets can be found [here](https://github.com/openvla/openvla).
34
+ - **Repository:** [https://github.com/openvla/openvla](https://github.com/openvla/openvla)
35
+ - **Paper:** [OpenVLA: An Open-Source Vision-Language-Action Model](https://arxiv.org/abs/2406.09246)
36
+ - **Project Page & Videos:** [https://openvla.github.io/](https://openvla.github.io/)
37
+
38
+ ## Uses
39
+
40
+ OpenVLA models take a language instruction and a camera image of a robot workspace as input, and predict (normalized) robot actions consisting of 7-DoF end-effector deltas
41
+ of the form (x, y, z, roll, pitch, yaw, gripper). To execute on an actual robot platform, actions need to be *un-normalized* subject to statistics computed on a per-robot,
42
+ per-dataset basis. See [our repository](https://github.com/openvla/openvla) for more information.
43
+
44
+ OpenVLA models can be used zero-shot to control robots for specific combinations of embodiments and domains seen in the Open-X pretraining mixture (e.g., for
45
+ [BridgeV2 environments with a Widow-X robot](https://rail-berkeley.github.io/bridgedata/)). They can also be efficiently *fine-tuned* for new tasks and robot setups
46
+ given minimal demonstration data; [see here](https://github.com/openvla/openvla/blob/main/scripts/finetune.py).
47
+
48
+ **Out-of-Scope:** OpenVLA models do not zero-shot generalize to new (unseen) robot embodiments, or setups that are not represented in the pretraining mix; in these cases,
49
+ we suggest collecting a dataset of demonstrations on the desired setup, and fine-tuning OpenVLA models instead.
50
+
51
+ ## Getting Started
52
+
53
+ OpenVLA 7B can be used to control multiple robots for domains represented in the pretraining mixture out-of-the-box. For example,
54
+ here is an example for loading `openvla-7b` for zero-shot instruction following in the [BridgeV2 environments] with a Widow-X robot:
55
+
56
+ ```python
57
+ # Install minimal dependencies (`torch`, `transformers`, `timm`, `tokenizers`, ...)
58
+ # > pip install -r https://raw.githubusercontent.com/openvla/openvla/main/requirements-min.txt
59
+ from transformers import AutoModelForVision2Seq, AutoProcessor
60
+ from PIL import Image
61
+
62
+ import torch
63
+
64
+ # Load Processor & VLA
65
+ processor = AutoProcessor.from_pretrained("openvla/openvla-7b", trust_remote_code=True)
66
+ vla = AutoModelForVision2Seq.from_pretrained(
67
+ "openvla/openvla-7b",
68
+ attn_implementation="flash_attention_2", # [Optional] Requires `flash_attn`
69
+ torch_dtype=torch.bfloat16,
70
+ low_cpu_mem_usage=True,
71
+ trust_remote_code=True
72
+ ).to("cuda:0")
73
+
74
+ # Grab image input & format prompt
75
+ image: Image.Image = get_from_camera(...)
76
+ prompt = "In: What action should the robot take to {<INSTRUCTION>}?\nOut:"
77
+
78
+ # Predict Action (7-DoF; un-normalize for BridgeV2)
79
+ inputs = processor(prompt, image).to("cuda:0", dtype=torch.bfloat16)
80
+ action = vla.predict_action(**inputs, unnorm_key="bridge_orig", do_sample=False)
81
+
82
+ # Execute...
83
+ robot.act(action, ...)
84
+ ```
85
+
86
+ For more examples, including scripts for fine-tuning OpenVLA models on your own robot demonstration datasets, see [our training repository](https://github.com/openvla/openvla).
87
+
88
+ ## Citation
89
+
90
+ **BibTeX:**
91
+
92
+ ```bibtex
93
+ @article{kim24openvla,
94
+ title={OpenVLA: An Open-Source Vision-Language-Action Model},
95
+ author={{Moo Jin} Kim and Karl Pertsch and Siddharth Karamcheti and Ted Xiao and Ashwin Balakrishna and Suraj Nair and Rafael Rafailov and Ethan Foster and Grace Lam and Pannag Sanketi and Quan Vuong and Thomas Kollar and Benjamin Burchfiel and Russ Tedrake and Dorsa Sadigh and Sergey Levine and Percy Liang and Chelsea Finn},
96
+ journal = {arXiv preprint arXiv:2406.09246},
97
+ year={2024}
98
+ }
99
+ ```
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<PAD>": 32000
3
+ }
config.json ADDED
@@ -0,0 +1,3168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "arch_specifier": "no-align+fused-gelu-mlp",
3
+ "architectures": [
4
+ "OpenVLAForActionPrediction"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_prismatic.OpenVLAConfig",
8
+ "AutoModelForVision2Seq": "modeling_prismatic.OpenVLAForActionPrediction"
9
+ },
10
+ "hf_llm_id": "meta-llama/Llama-2-7b-hf",
11
+ "image_resize_strategy": "resize-naive",
12
+ "image_sizes": [
13
+ 224,
14
+ 224
15
+ ],
16
+ "llm_backbone_id": "llama2-7b-pure",
17
+ "llm_max_length": 2048,
18
+ "model_type": "openvla",
19
+ "n_action_bins": 256,
20
+ "norm_stats": {
21
+ "austin_buds_dataset_converted_externally_to_rlds": {
22
+ "action": {
23
+ "mask": [
24
+ true,
25
+ true,
26
+ true,
27
+ true,
28
+ true,
29
+ true,
30
+ false
31
+ ],
32
+ "max": [
33
+ 1.0,
34
+ 1.0,
35
+ 1.0,
36
+ 0.0,
37
+ 0.0,
38
+ 0.0,
39
+ 1.0
40
+ ],
41
+ "mean": [
42
+ -0.07678354531526566,
43
+ 0.0036849044263362885,
44
+ 0.05644911900162697,
45
+ 0.0,
46
+ 0.0,
47
+ 0.0,
48
+ 0.3510494828224182
49
+ ],
50
+ "min": [
51
+ -1.0,
52
+ -1.0,
53
+ -1.0,
54
+ 0.0,
55
+ 0.0,
56
+ 0.0,
57
+ 0.0
58
+ ],
59
+ "q01": [
60
+ -1.0,
61
+ -0.9599999785423279,
62
+ -0.8714285492897034,
63
+ 0.0,
64
+ 0.0,
65
+ 0.0,
66
+ 0.0
67
+ ],
68
+ "q99": [
69
+ 1.0,
70
+ 0.8600000143051147,
71
+ 1.0,
72
+ 0.0,
73
+ 0.0,
74
+ 0.0,
75
+ 1.0
76
+ ],
77
+ "std": [
78
+ 0.6367740631103516,
79
+ 0.37889179587364197,
80
+ 0.47796326875686646,
81
+ 0.0,
82
+ 0.0,
83
+ 0.0,
84
+ 0.47721168398857117
85
+ ]
86
+ },
87
+ "num_trajectories": 50,
88
+ "num_transitions": 34112,
89
+ "proprio": {
90
+ "max": [
91
+ 0.0,
92
+ 0.0,
93
+ 0.0,
94
+ 0.0,
95
+ 0.0,
96
+ 0.0,
97
+ 0.0
98
+ ],
99
+ "mean": [
100
+ 0.0,
101
+ 0.0,
102
+ 0.0,
103
+ 0.0,
104
+ 0.0,
105
+ 0.0,
106
+ 0.0
107
+ ],
108
+ "min": [
109
+ 0.0,
110
+ 0.0,
111
+ 0.0,
112
+ 0.0,
113
+ 0.0,
114
+ 0.0,
115
+ 0.0
116
+ ],
117
+ "q01": [
118
+ 0.0,
119
+ 0.0,
120
+ 0.0,
121
+ 0.0,
122
+ 0.0,
123
+ 0.0,
124
+ 0.0
125
+ ],
126
+ "q99": [
127
+ 0.0,
128
+ 0.0,
129
+ 0.0,
130
+ 0.0,
131
+ 0.0,
132
+ 0.0,
133
+ 0.0
134
+ ],
135
+ "std": [
136
+ 0.0,
137
+ 0.0,
138
+ 0.0,
139
+ 0.0,
140
+ 0.0,
141
+ 0.0,
142
+ 0.0
143
+ ]
144
+ }
145
+ },
146
+ "austin_sailor_dataset_converted_externally_to_rlds": {
147
+ "action": {
148
+ "mask": [
149
+ true,
150
+ true,
151
+ true,
152
+ true,
153
+ true,
154
+ true,
155
+ false
156
+ ],
157
+ "max": [
158
+ 1.0,
159
+ 1.0,
160
+ 1.0,
161
+ 0.0,
162
+ 0.0,
163
+ 0.375,
164
+ 1.0
165
+ ],
166
+ "mean": [
167
+ 0.011825348250567913,
168
+ 0.006461074110120535,
169
+ 0.06023626774549484,
170
+ 0.0,
171
+ 0.0,
172
+ 0.0016465914668515325,
173
+ 0.5260950326919556
174
+ ],
175
+ "min": [
176
+ -1.0,
177
+ -1.0,
178
+ -1.0,
179
+ 0.0,
180
+ 0.0,
181
+ -0.375,
182
+ 0.0
183
+ ],
184
+ "q01": [
185
+ -1.0,
186
+ -0.9828571677207947,
187
+ -0.6000000238418579,
188
+ 0.0,
189
+ 0.0,
190
+ -0.17249999940395355,
191
+ 0.0
192
+ ],
193
+ "q99": [
194
+ 1.0,
195
+ 0.9457142949104309,
196
+ 1.0,
197
+ 0.0,
198
+ 0.0,
199
+ 0.17892856895923615,
200
+ 1.0
201
+ ],
202
+ "std": [
203
+ 0.46348899602890015,
204
+ 0.41240179538726807,
205
+ 0.411862850189209,
206
+ 0.0,
207
+ 0.0,
208
+ 0.0578610822558403,
209
+ 0.49894046783447266
210
+ ]
211
+ },
212
+ "num_trajectories": 240,
213
+ "num_transitions": 353094,
214
+ "proprio": {
215
+ "max": [
216
+ 0.0,
217
+ 0.0,
218
+ 0.0,
219
+ 0.0,
220
+ 0.0,
221
+ 0.0,
222
+ 0.0
223
+ ],
224
+ "mean": [
225
+ 0.0,
226
+ 0.0,
227
+ 0.0,
228
+ 0.0,
229
+ 0.0,
230
+ 0.0,
231
+ 0.0
232
+ ],
233
+ "min": [
234
+ 0.0,
235
+ 0.0,
236
+ 0.0,
237
+ 0.0,
238
+ 0.0,
239
+ 0.0,
240
+ 0.0
241
+ ],
242
+ "q01": [
243
+ 0.0,
244
+ 0.0,
245
+ 0.0,
246
+ 0.0,
247
+ 0.0,
248
+ 0.0,
249
+ 0.0
250
+ ],
251
+ "q99": [
252
+ 0.0,
253
+ 0.0,
254
+ 0.0,
255
+ 0.0,
256
+ 0.0,
257
+ 0.0,
258
+ 0.0
259
+ ],
260
+ "std": [
261
+ 0.0,
262
+ 0.0,
263
+ 0.0,
264
+ 0.0,
265
+ 0.0,
266
+ 0.0,
267
+ 0.0
268
+ ]
269
+ }
270
+ },
271
+ "austin_sirius_dataset_converted_externally_to_rlds": {
272
+ "action": {
273
+ "mask": [
274
+ true,
275
+ true,
276
+ true,
277
+ true,
278
+ true,
279
+ true,
280
+ false
281
+ ],
282
+ "max": [
283
+ 1.0002285242080688,
284
+ 0.960608720779419,
285
+ 1.105179786682129,
286
+ 0.0,
287
+ 0.0,
288
+ 0.341785728931427,
289
+ 1.0
290
+ ],
291
+ "mean": [
292
+ 0.07747682929039001,
293
+ 0.03195561468601227,
294
+ 0.04244732856750488,
295
+ 0.0,
296
+ 0.0,
297
+ -0.01603456400334835,
298
+ 0.43260177969932556
299
+ ],
300
+ "min": [
301
+ -1.0183025598526,
302
+ -0.9800000190734863,
303
+ -0.9774575233459473,
304
+ 0.0,
305
+ 0.0,
306
+ -0.34607142210006714,
307
+ 0.0
308
+ ],
309
+ "q01": [
310
+ -0.780905865430832,
311
+ -0.5667179036140442,
312
+ -0.5254343223571777,
313
+ 0.0,
314
+ 0.0,
315
+ -0.28495091378688814,
316
+ 0.0
317
+ ],
318
+ "q99": [
319
+ 0.9569637751579284,
320
+ 0.6971374487876891,
321
+ 0.8124888157844541,
322
+ 0.0,
323
+ 0.0,
324
+ 0.1971428543329239,
325
+ 1.0
326
+ ],
327
+ "std": [
328
+ 0.3906329572200775,
329
+ 0.2998155355453491,
330
+ 0.2782271206378937,
331
+ 0.0,
332
+ 0.0,
333
+ 0.08120622485876083,
334
+ 0.49528297781944275
335
+ ]
336
+ },
337
+ "num_trajectories": 559,
338
+ "num_transitions": 279939,
339
+ "proprio": {
340
+ "max": [
341
+ 0.0,
342
+ 0.0,
343
+ 0.0,
344
+ 0.0,
345
+ 0.0,
346
+ 0.0,
347
+ 0.0
348
+ ],
349
+ "mean": [
350
+ 0.0,
351
+ 0.0,
352
+ 0.0,
353
+ 0.0,
354
+ 0.0,
355
+ 0.0,
356
+ 0.0
357
+ ],
358
+ "min": [
359
+ 0.0,
360
+ 0.0,
361
+ 0.0,
362
+ 0.0,
363
+ 0.0,
364
+ 0.0,
365
+ 0.0
366
+ ],
367
+ "q01": [
368
+ 0.0,
369
+ 0.0,
370
+ 0.0,
371
+ 0.0,
372
+ 0.0,
373
+ 0.0,
374
+ 0.0
375
+ ],
376
+ "q99": [
377
+ 0.0,
378
+ 0.0,
379
+ 0.0,
380
+ 0.0,
381
+ 0.0,
382
+ 0.0,
383
+ 0.0
384
+ ],
385
+ "std": [
386
+ 0.0,
387
+ 0.0,
388
+ 0.0,
389
+ 0.0,
390
+ 0.0,
391
+ 0.0,
392
+ 0.0
393
+ ]
394
+ }
395
+ },
396
+ "bc_z": {
397
+ "action": {
398
+ "mask": [
399
+ true,
400
+ true,
401
+ true,
402
+ true,
403
+ true,
404
+ true,
405
+ false
406
+ ],
407
+ "max": [
408
+ 0.2165454924106598,
409
+ 0.1251407265663147,
410
+ 0.10772687941789627,
411
+ 0.33544227480888367,
412
+ 0.28117990493774414,
413
+ 0.40614867210388184,
414
+ 1.0
415
+ ],
416
+ "mean": [
417
+ -0.009958467446267605,
418
+ 0.0008958321413956583,
419
+ 0.004995597992092371,
420
+ 0.00029755113064311445,
421
+ -0.008735382929444313,
422
+ -0.030693737789988518,
423
+ 0.8344562649726868
424
+ ],
425
+ "min": [
426
+ -0.1677047461271286,
427
+ -0.14630407094955444,
428
+ -0.10066790133714676,
429
+ -0.29421567916870117,
430
+ -0.32101404666900635,
431
+ -0.4635624885559082,
432
+ 0.0
433
+ ],
434
+ "q01": [
435
+ -0.09220654994249344,
436
+ -0.06456145539879798,
437
+ -0.049121275544166565,
438
+ -0.11594625547528267,
439
+ -0.14152548640966414,
440
+ -0.2251061636209488,
441
+ 0.0
442
+ ],
443
+ "q99": [
444
+ 0.07628866866230968,
445
+ 0.058019736707210584,
446
+ 0.052540797740221024,
447
+ 0.11740604028105736,
448
+ 0.11703975558280955,
449
+ 0.16729306846857078,
450
+ 1.0
451
+ ],
452
+ "std": [
453
+ 0.03053455986082554,
454
+ 0.0231423731893301,
455
+ 0.020641816779971123,
456
+ 0.04155943542718887,
457
+ 0.046427831053733826,
458
+ 0.0769818127155304,
459
+ 0.3610210120677948
460
+ ]
461
+ },
462
+ "num_trajectories": 43264,
463
+ "num_transitions": 6015535,
464
+ "proprio": {
465
+ "max": [
466
+ 0.0,
467
+ 0.0,
468
+ 0.0,
469
+ 0.0,
470
+ 0.0,
471
+ 0.0,
472
+ 0.0
473
+ ],
474
+ "mean": [
475
+ 0.0,
476
+ 0.0,
477
+ 0.0,
478
+ 0.0,
479
+ 0.0,
480
+ 0.0,
481
+ 0.0
482
+ ],
483
+ "min": [
484
+ 0.0,
485
+ 0.0,
486
+ 0.0,
487
+ 0.0,
488
+ 0.0,
489
+ 0.0,
490
+ 0.0
491
+ ],
492
+ "q01": [
493
+ 0.0,
494
+ 0.0,
495
+ 0.0,
496
+ 0.0,
497
+ 0.0,
498
+ 0.0,
499
+ 0.0
500
+ ],
501
+ "q99": [
502
+ 0.0,
503
+ 0.0,
504
+ 0.0,
505
+ 0.0,
506
+ 0.0,
507
+ 0.0,
508
+ 0.0
509
+ ],
510
+ "std": [
511
+ 0.0,
512
+ 0.0,
513
+ 0.0,
514
+ 0.0,
515
+ 0.0,
516
+ 0.0,
517
+ 0.0
518
+ ]
519
+ }
520
+ },
521
+ "berkeley_autolab_ur5": {
522
+ "action": {
523
+ "mask": [
524
+ true,
525
+ true,
526
+ true,
527
+ true,
528
+ true,
529
+ true,
530
+ false
531
+ ],
532
+ "max": [
533
+ 0.019999999552965164,
534
+ 0.019999999552965164,
535
+ 0.019999999552965164,
536
+ 0.06666667014360428,
537
+ 0.06666667014360428,
538
+ 0.06666667014360428,
539
+ 1.0
540
+ ],
541
+ "mean": [
542
+ 0.0005683620693162084,
543
+ 0.001217700308188796,
544
+ -0.0005296372692100704,
545
+ 0.00021029810886830091,
546
+ 6.0695128922816366e-05,
547
+ 0.001204986940138042,
548
+ 0.6298308372497559
549
+ ],
550
+ "min": [
551
+ -0.019999999552965164,
552
+ -0.019999999552965164,
553
+ -0.019999999552965164,
554
+ -0.06666667014360428,
555
+ -0.06666667014360428,
556
+ -0.06666667014360428,
557
+ 0.0
558
+ ],
559
+ "q01": [
560
+ -0.019999999552965164,
561
+ -0.019999999552965164,
562
+ -0.019999999552965164,
563
+ -0.02628571353852749,
564
+ -0.06666667014360428,
565
+ -0.03847619146108627,
566
+ 0.0
567
+ ],
568
+ "q99": [
569
+ 0.019999999552965164,
570
+ 0.019999999552965164,
571
+ 0.019999999552965164,
572
+ 0.031809523701667786,
573
+ 0.06666667014360428,
574
+ 0.036571428179740906,
575
+ 1.0
576
+ ],
577
+ "std": [
578
+ 0.0115329809486866,
579
+ 0.007990492507815361,
580
+ 0.009577835910022259,
581
+ 0.009432995691895485,
582
+ 0.016427582129836082,
583
+ 0.011053967289626598,
584
+ 0.48267969489097595
585
+ ]
586
+ },
587
+ "num_trajectories": 1000,
588
+ "num_transitions": 97939,
589
+ "proprio": {
590
+ "max": [
591
+ 0.0,
592
+ 0.0,
593
+ 0.0,
594
+ 0.0,
595
+ 0.0,
596
+ 0.0,
597
+ 0.0
598
+ ],
599
+ "mean": [
600
+ 0.0,
601
+ 0.0,
602
+ 0.0,
603
+ 0.0,
604
+ 0.0,
605
+ 0.0,
606
+ 0.0
607
+ ],
608
+ "min": [
609
+ 0.0,
610
+ 0.0,
611
+ 0.0,
612
+ 0.0,
613
+ 0.0,
614
+ 0.0,
615
+ 0.0
616
+ ],
617
+ "q01": [
618
+ 0.0,
619
+ 0.0,
620
+ 0.0,
621
+ 0.0,
622
+ 0.0,
623
+ 0.0,
624
+ 0.0
625
+ ],
626
+ "q99": [
627
+ 0.0,
628
+ 0.0,
629
+ 0.0,
630
+ 0.0,
631
+ 0.0,
632
+ 0.0,
633
+ 0.0
634
+ ],
635
+ "std": [
636
+ 0.0,
637
+ 0.0,
638
+ 0.0,
639
+ 0.0,
640
+ 0.0,
641
+ 0.0,
642
+ 0.0
643
+ ]
644
+ }
645
+ },
646
+ "berkeley_cable_routing": {
647
+ "action": {
648
+ "mask": [
649
+ true,
650
+ true,
651
+ true,
652
+ true,
653
+ true,
654
+ true,
655
+ false
656
+ ],
657
+ "max": [
658
+ 0.9633283019065857,
659
+ 1.0,
660
+ 1.0,
661
+ 0.0,
662
+ 0.0,
663
+ 1.0,
664
+ 0.0
665
+ ],
666
+ "mean": [
667
+ -0.07139874249696732,
668
+ 0.023609008640050888,
669
+ 0.10241943597793579,
670
+ 0.0,
671
+ 0.0,
672
+ 0.049671024084091187,
673
+ 0.0
674
+ ],
675
+ "min": [
676
+ -0.9809081554412842,
677
+ -0.9554349184036255,
678
+ -0.9994775056838989,
679
+ 0.0,
680
+ 0.0,
681
+ -1.0,
682
+ 0.0
683
+ ],
684
+ "q01": [
685
+ -0.5534318816661835,
686
+ -0.4797285574674606,
687
+ -0.5314934802055359,
688
+ 0.0,
689
+ 0.0,
690
+ -0.8855219376087189,
691
+ 0.0
692
+ ],
693
+ "q99": [
694
+ 0.42652835428714786,
695
+ 0.5000944086909298,
696
+ 0.639823433756829,
697
+ 0.0,
698
+ 0.0,
699
+ 0.984243879914284,
700
+ 0.0
701
+ ],
702
+ "std": [
703
+ 0.1815500408411026,
704
+ 0.1810990273952484,
705
+ 0.21220779418945312,
706
+ 0.0,
707
+ 0.0,
708
+ 0.3475511968135834,
709
+ 0.0
710
+ ]
711
+ },
712
+ "num_trajectories": 1647,
713
+ "num_transitions": 42328,
714
+ "proprio": {
715
+ "max": [
716
+ 0.0,
717
+ 0.0,
718
+ 0.0,
719
+ 0.0,
720
+ 0.0,
721
+ 0.0,
722
+ 0.0
723
+ ],
724
+ "mean": [
725
+ 0.0,
726
+ 0.0,
727
+ 0.0,
728
+ 0.0,
729
+ 0.0,
730
+ 0.0,
731
+ 0.0
732
+ ],
733
+ "min": [
734
+ 0.0,
735
+ 0.0,
736
+ 0.0,
737
+ 0.0,
738
+ 0.0,
739
+ 0.0,
740
+ 0.0
741
+ ],
742
+ "q01": [
743
+ 0.0,
744
+ 0.0,
745
+ 0.0,
746
+ 0.0,
747
+ 0.0,
748
+ 0.0,
749
+ 0.0
750
+ ],
751
+ "q99": [
752
+ 0.0,
753
+ 0.0,
754
+ 0.0,
755
+ 0.0,
756
+ 0.0,
757
+ 0.0,
758
+ 0.0
759
+ ],
760
+ "std": [
761
+ 0.0,
762
+ 0.0,
763
+ 0.0,
764
+ 0.0,
765
+ 0.0,
766
+ 0.0,
767
+ 0.0
768
+ ]
769
+ }
770
+ },
771
+ "berkeley_fanuc_manipulation": {
772
+ "action": {
773
+ "mask": [
774
+ true,
775
+ true,
776
+ true,
777
+ true,
778
+ true,
779
+ true,
780
+ false
781
+ ],
782
+ "max": [
783
+ 0.009999999776482582,
784
+ 0.009999999776482582,
785
+ 0.009999999776482582,
786
+ 0.03490658476948738,
787
+ 0.03490658476948738,
788
+ 0.03490658476948738,
789
+ 1.0
790
+ ],
791
+ "mean": [
792
+ 0.0007744057802483439,
793
+ -0.00031240080716088414,
794
+ -0.0015001941937953234,
795
+ -0.0007515158504247665,
796
+ -0.00015832878125365824,
797
+ 0.00014327642566058785,
798
+ 0.699295699596405
799
+ ],
800
+ "min": [
801
+ -0.009999999776482582,
802
+ -0.009999999776482582,
803
+ -0.009999999776482582,
804
+ -0.03490658476948738,
805
+ -0.03490658476948738,
806
+ -0.03490658476948738,
807
+ 0.0
808
+ ],
809
+ "q01": [
810
+ -0.009999999776482582,
811
+ -0.009999999776482582,
812
+ -0.009999999776482582,
813
+ -0.03490658476948738,
814
+ 0.0,
815
+ -0.03490658476948738,
816
+ 0.0
817
+ ],
818
+ "q99": [
819
+ 0.009999999776482582,
820
+ 0.009999999776482582,
821
+ 0.009999999776482582,
822
+ 0.03490658476948738,
823
+ 0.0,
824
+ 0.03490658476948738,
825
+ 1.0
826
+ ],
827
+ "std": [
828
+ 0.0034070091787725687,
829
+ 0.0049921851605176926,
830
+ 0.005344334989786148,
831
+ 0.00759894959628582,
832
+ 0.004081866703927517,
833
+ 0.008568956516683102,
834
+ 0.4586937427520752
835
+ ]
836
+ },
837
+ "num_trajectories": 415,
838
+ "num_transitions": 62613,
839
+ "proprio": {
840
+ "max": [
841
+ 0.0,
842
+ 0.0,
843
+ 0.0,
844
+ 0.0,
845
+ 0.0,
846
+ 0.0,
847
+ 0.0
848
+ ],
849
+ "mean": [
850
+ 0.0,
851
+ 0.0,
852
+ 0.0,
853
+ 0.0,
854
+ 0.0,
855
+ 0.0,
856
+ 0.0
857
+ ],
858
+ "min": [
859
+ 0.0,
860
+ 0.0,
861
+ 0.0,
862
+ 0.0,
863
+ 0.0,
864
+ 0.0,
865
+ 0.0
866
+ ],
867
+ "q01": [
868
+ 0.0,
869
+ 0.0,
870
+ 0.0,
871
+ 0.0,
872
+ 0.0,
873
+ 0.0,
874
+ 0.0
875
+ ],
876
+ "q99": [
877
+ 0.0,
878
+ 0.0,
879
+ 0.0,
880
+ 0.0,
881
+ 0.0,
882
+ 0.0,
883
+ 0.0
884
+ ],
885
+ "std": [
886
+ 0.0,
887
+ 0.0,
888
+ 0.0,
889
+ 0.0,
890
+ 0.0,
891
+ 0.0,
892
+ 0.0
893
+ ]
894
+ }
895
+ },
896
+ "bridge_orig": {
897
+ "action": {
898
+ "mask": [
899
+ true,
900
+ true,
901
+ true,
902
+ true,
903
+ true,
904
+ true,
905
+ false
906
+ ],
907
+ "max": [
908
+ 0.41691166162490845,
909
+ 0.25864794850349426,
910
+ 0.21218234300613403,
911
+ 3.122201919555664,
912
+ 1.8618112802505493,
913
+ 6.280478477478027,
914
+ 1.0
915
+ ],
916
+ "mean": [
917
+ 0.0002334194869035855,
918
+ 0.00013004911306779832,
919
+ -0.00012762474943883717,
920
+ -0.0001556558854645118,
921
+ -0.0004039328487124294,
922
+ 0.00023557482927571982,
923
+ 0.5764579176902771
924
+ ],
925
+ "min": [
926
+ -0.4007510244846344,
927
+ -0.13874775171279907,
928
+ -0.22553899884223938,
929
+ -3.2010786533355713,
930
+ -1.8618112802505493,
931
+ -6.279075622558594,
932
+ 0.0
933
+ ],
934
+ "q01": [
935
+ -0.02872725307941437,
936
+ -0.04170349963009357,
937
+ -0.026093858778476715,
938
+ -0.08092105075716972,
939
+ -0.09288699507713317,
940
+ -0.20718276381492615,
941
+ 0.0
942
+ ],
943
+ "q99": [
944
+ 0.028309678435325586,
945
+ 0.040855254605412394,
946
+ 0.040161586627364146,
947
+ 0.08192047759890528,
948
+ 0.07792850524187081,
949
+ 0.20382574498653397,
950
+ 1.0
951
+ ],
952
+ "std": [
953
+ 0.009765930473804474,
954
+ 0.013689135201275349,
955
+ 0.012667362578213215,
956
+ 0.028534092009067535,
957
+ 0.030637972056865692,
958
+ 0.07691419124603271,
959
+ 0.4973701536655426
960
+ ]
961
+ },
962
+ "num_trajectories": 60064,
963
+ "num_transitions": 2135463,
964
+ "proprio": {
965
+ "max": [
966
+ 0.0,
967
+ 0.0,
968
+ 0.0,
969
+ 0.0,
970
+ 0.0,
971
+ 0.0,
972
+ 0.0
973
+ ],
974
+ "mean": [
975
+ 0.0,
976
+ 0.0,
977
+ 0.0,
978
+ 0.0,
979
+ 0.0,
980
+ 0.0,
981
+ 0.0
982
+ ],
983
+ "min": [
984
+ 0.0,
985
+ 0.0,
986
+ 0.0,
987
+ 0.0,
988
+ 0.0,
989
+ 0.0,
990
+ 0.0
991
+ ],
992
+ "q01": [
993
+ 0.0,
994
+ 0.0,
995
+ 0.0,
996
+ 0.0,
997
+ 0.0,
998
+ 0.0,
999
+ 0.0
1000
+ ],
1001
+ "q99": [
1002
+ 0.0,
1003
+ 0.0,
1004
+ 0.0,
1005
+ 0.0,
1006
+ 0.0,
1007
+ 0.0,
1008
+ 0.0
1009
+ ],
1010
+ "std": [
1011
+ 0.0,
1012
+ 0.0,
1013
+ 0.0,
1014
+ 0.0,
1015
+ 0.0,
1016
+ 0.0,
1017
+ 0.0
1018
+ ]
1019
+ }
1020
+ },
1021
+ "cmu_stretch": {
1022
+ "action": {
1023
+ "mask": [
1024
+ true,
1025
+ true,
1026
+ true,
1027
+ true,
1028
+ true,
1029
+ true,
1030
+ false
1031
+ ],
1032
+ "max": [
1033
+ 0.02338407188653946,
1034
+ 0.0,
1035
+ 0.023404927924275398,
1036
+ 0.0,
1037
+ 0.0,
1038
+ 0.0,
1039
+ 1.0
1040
+ ],
1041
+ "mean": [
1042
+ 0.00036304505192674696,
1043
+ 0.0,
1044
+ 0.0016466958913952112,
1045
+ 0.0,
1046
+ 0.0,
1047
+ 0.0,
1048
+ 0.3987048268318176
1049
+ ],
1050
+ "min": [
1051
+ -0.019353797659277916,
1052
+ 0.0,
1053
+ -0.02019215188920498,
1054
+ 0.0,
1055
+ 0.0,
1056
+ 0.0,
1057
+ 0.0
1058
+ ],
1059
+ "q01": [
1060
+ -0.011175686959177256,
1061
+ 0.0,
1062
+ -0.0032206363626755773,
1063
+ 0.0,
1064
+ 0.0,
1065
+ 0.0,
1066
+ 0.0
1067
+ ],
1068
+ "q99": [
1069
+ 0.014501785952597848,
1070
+ 0.0,
1071
+ 0.015056106168776728,
1072
+ 0.0,
1073
+ 0.0,
1074
+ 0.0,
1075
+ 1.0
1076
+ ],
1077
+ "std": [
1078
+ 0.004081828519701958,
1079
+ 0.0,
1080
+ 0.0037743328139185905,
1081
+ 0.0,
1082
+ 0.0,
1083
+ 0.0,
1084
+ 0.48963725566864014
1085
+ ]
1086
+ },
1087
+ "num_trajectories": 135,
1088
+ "num_transitions": 25016,
1089
+ "proprio": {
1090
+ "max": [
1091
+ 0.0,
1092
+ 0.0,
1093
+ 0.0,
1094
+ 0.0,
1095
+ 0.0,
1096
+ 0.0,
1097
+ 0.0
1098
+ ],
1099
+ "mean": [
1100
+ 0.0,
1101
+ 0.0,
1102
+ 0.0,
1103
+ 0.0,
1104
+ 0.0,
1105
+ 0.0,
1106
+ 0.0
1107
+ ],
1108
+ "min": [
1109
+ 0.0,
1110
+ 0.0,
1111
+ 0.0,
1112
+ 0.0,
1113
+ 0.0,
1114
+ 0.0,
1115
+ 0.0
1116
+ ],
1117
+ "q01": [
1118
+ 0.0,
1119
+ 0.0,
1120
+ 0.0,
1121
+ 0.0,
1122
+ 0.0,
1123
+ 0.0,
1124
+ 0.0
1125
+ ],
1126
+ "q99": [
1127
+ 0.0,
1128
+ 0.0,
1129
+ 0.0,
1130
+ 0.0,
1131
+ 0.0,
1132
+ 0.0,
1133
+ 0.0
1134
+ ],
1135
+ "std": [
1136
+ 0.0,
1137
+ 0.0,
1138
+ 0.0,
1139
+ 0.0,
1140
+ 0.0,
1141
+ 0.0,
1142
+ 0.0
1143
+ ]
1144
+ }
1145
+ },
1146
+ "dlr_edan_shared_control_converted_externally_to_rlds": {
1147
+ "action": {
1148
+ "mask": [
1149
+ true,
1150
+ true,
1151
+ true,
1152
+ true,
1153
+ true,
1154
+ true,
1155
+ false
1156
+ ],
1157
+ "max": [
1158
+ 0.18991442024707794,
1159
+ 0.0739002525806427,
1160
+ 0.18064819276332855,
1161
+ 0.0866486132144928,
1162
+ 0.13464981317520142,
1163
+ 0.16910280287265778,
1164
+ 1.0
1165
+ ],
1166
+ "mean": [
1167
+ 0.006647810339927673,
1168
+ -0.0007657372043468058,
1169
+ 0.006522852927446365,
1170
+ 0.0011679717572405934,
1171
+ -0.006395625416189432,
1172
+ -0.011902998201549053,
1173
+ 0.6985887289047241
1174
+ ],
1175
+ "min": [
1176
+ -0.10054297000169754,
1177
+ -0.08427435159683228,
1178
+ -0.13533438742160797,
1179
+ -0.17556548118591309,
1180
+ -0.18485672771930695,
1181
+ -0.2680685818195343,
1182
+ 0.0
1183
+ ],
1184
+ "q01": [
1185
+ -0.02987122368067503,
1186
+ -0.06013262912631035,
1187
+ -0.08286409199237824,
1188
+ -0.05924444157630205,
1189
+ -0.15986866518855095,
1190
+ -0.15636983573436739,
1191
+ 0.0
1192
+ ],
1193
+ "q99": [
1194
+ 0.08832092039287087,
1195
+ 0.042126184627413736,
1196
+ 0.11311905644834042,
1197
+ 0.0643695573508739,
1198
+ 0.03941855944693088,
1199
+ 0.156646853685379,
1200
+ 1.0
1201
+ ],
1202
+ "std": [
1203
+ 0.021393608301877975,
1204
+ 0.01814231649041176,
1205
+ 0.03374375030398369,
1206
+ 0.01743541844189167,
1207
+ 0.03394376486539841,
1208
+ 0.04641875624656677,
1209
+ 0.4588589072227478
1210
+ ]
1211
+ },
1212
+ "num_trajectories": 104,
1213
+ "num_transitions": 8928,
1214
+ "proprio": {
1215
+ "max": [
1216
+ 0.0,
1217
+ 0.0,
1218
+ 0.0,
1219
+ 0.0,
1220
+ 0.0,
1221
+ 0.0,
1222
+ 0.0
1223
+ ],
1224
+ "mean": [
1225
+ 0.0,
1226
+ 0.0,
1227
+ 0.0,
1228
+ 0.0,
1229
+ 0.0,
1230
+ 0.0,
1231
+ 0.0
1232
+ ],
1233
+ "min": [
1234
+ 0.0,
1235
+ 0.0,
1236
+ 0.0,
1237
+ 0.0,
1238
+ 0.0,
1239
+ 0.0,
1240
+ 0.0
1241
+ ],
1242
+ "q01": [
1243
+ 0.0,
1244
+ 0.0,
1245
+ 0.0,
1246
+ 0.0,
1247
+ 0.0,
1248
+ 0.0,
1249
+ 0.0
1250
+ ],
1251
+ "q99": [
1252
+ 0.0,
1253
+ 0.0,
1254
+ 0.0,
1255
+ 0.0,
1256
+ 0.0,
1257
+ 0.0,
1258
+ 0.0
1259
+ ],
1260
+ "std": [
1261
+ 0.0,
1262
+ 0.0,
1263
+ 0.0,
1264
+ 0.0,
1265
+ 0.0,
1266
+ 0.0,
1267
+ 0.0
1268
+ ]
1269
+ }
1270
+ },
1271
+ "dobbe": {
1272
+ "action": {
1273
+ "mask": [
1274
+ true,
1275
+ true,
1276
+ true,
1277
+ true,
1278
+ true,
1279
+ true,
1280
+ false
1281
+ ],
1282
+ "max": [
1283
+ 38.590423583984375,
1284
+ 17.932697296142578,
1285
+ 4.843764305114746,
1286
+ 1.4372116327285767,
1287
+ 0.4340403974056244,
1288
+ 1.2057193517684937,
1289
+ 0.9998947381973267
1290
+ ],
1291
+ "mean": [
1292
+ -0.0001120665911003016,
1293
+ 0.0011229600058868527,
1294
+ -0.00010194431524723768,
1295
+ -7.371398532995954e-05,
1296
+ -0.00067531579406932,
1297
+ -5.6643435527803376e-05,
1298
+ 0.6318281888961792
1299
+ ],
1300
+ "min": [
1301
+ -5.700923442840576,
1302
+ -21.605947494506836,
1303
+ -123.72489929199219,
1304
+ -1.7229845523834229,
1305
+ -0.4998578727245331,
1306
+ -0.8867913484573364,
1307
+ 1.4196479014572105e-06
1308
+ ],
1309
+ "q01": [
1310
+ -0.01119564864784479,
1311
+ -0.014266146533191203,
1312
+ -0.0071747214533388615,
1313
+ -0.009444301575422287,
1314
+ -0.03990109823644161,
1315
+ -0.017422311007976532,
1316
+ 4.003279136668425e-05
1317
+ ],
1318
+ "q99": [
1319
+ 0.01015154086053368,
1320
+ 0.017181577533483497,
1321
+ 0.007216989761218411,
1322
+ 0.010380979906767595,
1323
+ 0.03556173853576176,
1324
+ 0.018032474815845446,
1325
+ 0.9982578039169312
1326
+ ],
1327
+ "std": [
1328
+ 0.04264938458800316,
1329
+ 0.04428559169173241,
1330
+ 0.12224084138870239,
1331
+ 0.005388413090258837,
1332
+ 0.011246449314057827,
1333
+ 0.006287882570177317,
1334
+ 0.39732322096824646
1335
+ ]
1336
+ },
1337
+ "num_trajectories": 5208,
1338
+ "num_transitions": 1139911,
1339
+ "proprio": {
1340
+ "max": [
1341
+ 0.0,
1342
+ 0.0,
1343
+ 0.0,
1344
+ 0.0,
1345
+ 0.0,
1346
+ 0.0,
1347
+ 0.0
1348
+ ],
1349
+ "mean": [
1350
+ 0.0,
1351
+ 0.0,
1352
+ 0.0,
1353
+ 0.0,
1354
+ 0.0,
1355
+ 0.0,
1356
+ 0.0
1357
+ ],
1358
+ "min": [
1359
+ 0.0,
1360
+ 0.0,
1361
+ 0.0,
1362
+ 0.0,
1363
+ 0.0,
1364
+ 0.0,
1365
+ 0.0
1366
+ ],
1367
+ "q01": [
1368
+ 0.0,
1369
+ 0.0,
1370
+ 0.0,
1371
+ 0.0,
1372
+ 0.0,
1373
+ 0.0,
1374
+ 0.0
1375
+ ],
1376
+ "q99": [
1377
+ 0.0,
1378
+ 0.0,
1379
+ 0.0,
1380
+ 0.0,
1381
+ 0.0,
1382
+ 0.0,
1383
+ 0.0
1384
+ ],
1385
+ "std": [
1386
+ 0.0,
1387
+ 0.0,
1388
+ 0.0,
1389
+ 0.0,
1390
+ 0.0,
1391
+ 0.0,
1392
+ 0.0
1393
+ ]
1394
+ }
1395
+ },
1396
+ "fmb_dataset": {
1397
+ "action": {
1398
+ "mask": [
1399
+ true,
1400
+ true,
1401
+ true,
1402
+ true,
1403
+ true,
1404
+ true,
1405
+ false
1406
+ ],
1407
+ "max": [
1408
+ 1.399999976158142,
1409
+ 1.0,
1410
+ 1.399999976158142,
1411
+ 1.0,
1412
+ 1.0,
1413
+ 1.0,
1414
+ 1.0
1415
+ ],
1416
+ "mean": [
1417
+ 0.059029702097177505,
1418
+ -0.06476633995771408,
1419
+ -0.09787475317716599,
1420
+ 0.004325388930737972,
1421
+ 0.00028963794466108084,
1422
+ -0.04457257315516472,
1423
+ 0.7336440086364746
1424
+ ],
1425
+ "min": [
1426
+ -1.399999976158142,
1427
+ -1.399999976158142,
1428
+ -1.0,
1429
+ -1.0,
1430
+ -1.0,
1431
+ -1.0,
1432
+ 0.0
1433
+ ],
1434
+ "q01": [
1435
+ -0.8257142901420593,
1436
+ -1.399999976158142,
1437
+ -1.0,
1438
+ -1.0,
1439
+ -0.3028571307659149,
1440
+ -1.0,
1441
+ 0.0
1442
+ ],
1443
+ "q99": [
1444
+ 1.0,
1445
+ 0.5257142782211304,
1446
+ 1.0,
1447
+ 1.0,
1448
+ 0.3400000035762787,
1449
+ 1.0,
1450
+ 1.0
1451
+ ],
1452
+ "std": [
1453
+ 0.28809213638305664,
1454
+ 0.2820415794849396,
1455
+ 0.4626740515232086,
1456
+ 0.3266514539718628,
1457
+ 0.10842999070882797,
1458
+ 0.3440099358558655,
1459
+ 0.4435282051563263
1460
+ ]
1461
+ },
1462
+ "num_trajectories": 8612,
1463
+ "num_transitions": 1137459,
1464
+ "proprio": {
1465
+ "max": [
1466
+ 0.0,
1467
+ 0.0,
1468
+ 0.0,
1469
+ 0.0,
1470
+ 0.0,
1471
+ 0.0,
1472
+ 0.0
1473
+ ],
1474
+ "mean": [
1475
+ 0.0,
1476
+ 0.0,
1477
+ 0.0,
1478
+ 0.0,
1479
+ 0.0,
1480
+ 0.0,
1481
+ 0.0
1482
+ ],
1483
+ "min": [
1484
+ 0.0,
1485
+ 0.0,
1486
+ 0.0,
1487
+ 0.0,
1488
+ 0.0,
1489
+ 0.0,
1490
+ 0.0
1491
+ ],
1492
+ "q01": [
1493
+ 0.0,
1494
+ 0.0,
1495
+ 0.0,
1496
+ 0.0,
1497
+ 0.0,
1498
+ 0.0,
1499
+ 0.0
1500
+ ],
1501
+ "q99": [
1502
+ 0.0,
1503
+ 0.0,
1504
+ 0.0,
1505
+ 0.0,
1506
+ 0.0,
1507
+ 0.0,
1508
+ 0.0
1509
+ ],
1510
+ "std": [
1511
+ 0.0,
1512
+ 0.0,
1513
+ 0.0,
1514
+ 0.0,
1515
+ 0.0,
1516
+ 0.0,
1517
+ 0.0
1518
+ ]
1519
+ }
1520
+ },
1521
+ "fractal20220817_data": {
1522
+ "action": {
1523
+ "mask": [
1524
+ true,
1525
+ true,
1526
+ true,
1527
+ true,
1528
+ true,
1529
+ true,
1530
+ false
1531
+ ],
1532
+ "max": [
1533
+ 2.9984593391418457,
1534
+ 22.09052848815918,
1535
+ 2.7507524490356445,
1536
+ 1.570636510848999,
1537
+ 1.5321086645126343,
1538
+ 1.5691522359848022,
1539
+ 1.0
1540
+ ],
1541
+ "mean": [
1542
+ 0.006987582892179489,
1543
+ 0.006265917327255011,
1544
+ -0.01262515690177679,
1545
+ 0.04333311319351196,
1546
+ -0.005756212864071131,
1547
+ 0.0009130256366916001,
1548
+ 0.5354204773902893
1549
+ ],
1550
+ "min": [
1551
+ -2.0204520225524902,
1552
+ -5.497899532318115,
1553
+ -2.031663417816162,
1554
+ -1.569917917251587,
1555
+ -1.569892168045044,
1556
+ -1.570419430732727,
1557
+ 0.0
1558
+ ],
1559
+ "q01": [
1560
+ -0.22453527510166169,
1561
+ -0.14820013284683228,
1562
+ -0.231589707583189,
1563
+ -0.3517994859814644,
1564
+ -0.4193011274933815,
1565
+ -0.43643461108207704,
1566
+ 0.0
1567
+ ],
1568
+ "q99": [
1569
+ 0.17824687153100965,
1570
+ 0.14938379630446405,
1571
+ 0.21842354819178575,
1572
+ 0.5892666035890578,
1573
+ 0.35272657424211445,
1574
+ 0.44796681255102094,
1575
+ 1.0
1576
+ ],
1577
+ "std": [
1578
+ 0.0692116990685463,
1579
+ 0.05970962345600128,
1580
+ 0.07353084534406662,
1581
+ 0.15610496699810028,
1582
+ 0.13164450228214264,
1583
+ 0.14593800902366638,
1584
+ 0.497110515832901
1585
+ ]
1586
+ },
1587
+ "num_trajectories": 87212,
1588
+ "num_transitions": 3786400,
1589
+ "proprio": {
1590
+ "max": [
1591
+ 0.0,
1592
+ 0.0,
1593
+ 0.0,
1594
+ 0.0,
1595
+ 0.0,
1596
+ 0.0,
1597
+ 0.0
1598
+ ],
1599
+ "mean": [
1600
+ 0.0,
1601
+ 0.0,
1602
+ 0.0,
1603
+ 0.0,
1604
+ 0.0,
1605
+ 0.0,
1606
+ 0.0
1607
+ ],
1608
+ "min": [
1609
+ 0.0,
1610
+ 0.0,
1611
+ 0.0,
1612
+ 0.0,
1613
+ 0.0,
1614
+ 0.0,
1615
+ 0.0
1616
+ ],
1617
+ "q01": [
1618
+ 0.0,
1619
+ 0.0,
1620
+ 0.0,
1621
+ 0.0,
1622
+ 0.0,
1623
+ 0.0,
1624
+ 0.0
1625
+ ],
1626
+ "q99": [
1627
+ 0.0,
1628
+ 0.0,
1629
+ 0.0,
1630
+ 0.0,
1631
+ 0.0,
1632
+ 0.0,
1633
+ 0.0
1634
+ ],
1635
+ "std": [
1636
+ 0.0,
1637
+ 0.0,
1638
+ 0.0,
1639
+ 0.0,
1640
+ 0.0,
1641
+ 0.0,
1642
+ 0.0
1643
+ ]
1644
+ }
1645
+ },
1646
+ "furniture_bench_dataset_converted_externally_to_rlds": {
1647
+ "action": {
1648
+ "mask": [
1649
+ true,
1650
+ true,
1651
+ true,
1652
+ true,
1653
+ true,
1654
+ true,
1655
+ false
1656
+ ],
1657
+ "max": [
1658
+ 0.10000000149011612,
1659
+ 0.10000000149011612,
1660
+ 0.10000000149011612,
1661
+ 0.8651833534240723,
1662
+ 1.0909736156463623,
1663
+ 2.863185405731201,
1664
+ 1.0
1665
+ ],
1666
+ "mean": [
1667
+ 0.00014610752987209707,
1668
+ 0.0010830952087417245,
1669
+ 0.0006224989192560315,
1670
+ -0.003303206292912364,
1671
+ -0.0026880695950239897,
1672
+ 0.018242603167891502,
1673
+ 0.48854944109916687
1674
+ ],
1675
+ "min": [
1676
+ -0.10495579987764359,
1677
+ -0.10939455777406693,
1678
+ -0.10000000149011612,
1679
+ -0.971906840801239,
1680
+ -1.0475432872772217,
1681
+ -3.06000018119812,
1682
+ 0.0
1683
+ ],
1684
+ "q01": [
1685
+ -0.053988199681043625,
1686
+ -0.05049169331789017,
1687
+ -0.032499241530895236,
1688
+ -0.1953887003660202,
1689
+ -0.41674559473991396,
1690
+ -0.8886768388748169,
1691
+ 0.0
1692
+ ],
1693
+ "q99": [
1694
+ 0.05414841488003723,
1695
+ 0.04965164884924884,
1696
+ 0.060055799782276154,
1697
+ 0.18231668293476103,
1698
+ 0.39867786407470646,
1699
+ 0.8772023963928218,
1700
+ 1.0
1701
+ ],
1702
+ "std": [
1703
+ 0.01610708422958851,
1704
+ 0.014891477301716805,
1705
+ 0.014014219865202904,
1706
+ 0.058274295181035995,
1707
+ 0.11417088657617569,
1708
+ 0.33479776978492737,
1709
+ 0.49991825222969055
1710
+ ]
1711
+ },
1712
+ "num_trajectories": 5100,
1713
+ "num_transitions": 3948057,
1714
+ "proprio": {
1715
+ "max": [
1716
+ 0.0,
1717
+ 0.0,
1718
+ 0.0,
1719
+ 0.0,
1720
+ 0.0,
1721
+ 0.0,
1722
+ 0.0
1723
+ ],
1724
+ "mean": [
1725
+ 0.0,
1726
+ 0.0,
1727
+ 0.0,
1728
+ 0.0,
1729
+ 0.0,
1730
+ 0.0,
1731
+ 0.0
1732
+ ],
1733
+ "min": [
1734
+ 0.0,
1735
+ 0.0,
1736
+ 0.0,
1737
+ 0.0,
1738
+ 0.0,
1739
+ 0.0,
1740
+ 0.0
1741
+ ],
1742
+ "q01": [
1743
+ 0.0,
1744
+ 0.0,
1745
+ 0.0,
1746
+ 0.0,
1747
+ 0.0,
1748
+ 0.0,
1749
+ 0.0
1750
+ ],
1751
+ "q99": [
1752
+ 0.0,
1753
+ 0.0,
1754
+ 0.0,
1755
+ 0.0,
1756
+ 0.0,
1757
+ 0.0,
1758
+ 0.0
1759
+ ],
1760
+ "std": [
1761
+ 0.0,
1762
+ 0.0,
1763
+ 0.0,
1764
+ 0.0,
1765
+ 0.0,
1766
+ 0.0,
1767
+ 0.0
1768
+ ]
1769
+ }
1770
+ },
1771
+ "iamlab_cmu_pickup_insert_converted_externally_to_rlds": {
1772
+ "action": {
1773
+ "mask": [
1774
+ true,
1775
+ true,
1776
+ true,
1777
+ true,
1778
+ true,
1779
+ true,
1780
+ false
1781
+ ],
1782
+ "max": [
1783
+ 0.6634981632232666,
1784
+ 0.23428471386432648,
1785
+ 0.4308285415172577,
1786
+ 3.1415927410125732,
1787
+ 0.13647015392780304,
1788
+ 3.141592502593994,
1789
+ 1.0
1790
+ ],
1791
+ "mean": [
1792
+ 0.5274372696876526,
1793
+ 0.02858201041817665,
1794
+ 0.18712575733661652,
1795
+ 1.2339589595794678,
1796
+ 0.03226623684167862,
1797
+ -1.4199490547180176,
1798
+ 0.5550631880760193
1799
+ ],
1800
+ "min": [
1801
+ 0.3071657121181488,
1802
+ -0.29754969477653503,
1803
+ 0.06578229367733002,
1804
+ -3.1415927410125732,
1805
+ -0.04584203287959099,
1806
+ -3.141592502593994,
1807
+ 0.0
1808
+ ],
1809
+ "q01": [
1810
+ 0.3148897051811218,
1811
+ -0.20317550599575043,
1812
+ 0.06785467118024827,
1813
+ -3.140952730178833,
1814
+ -0.029743434861302376,
1815
+ -3.141091251373291,
1816
+ 0.0
1817
+ ],
1818
+ "q99": [
1819
+ 0.6472805738449097,
1820
+ 0.20846802592277527,
1821
+ 0.36855655312538155,
1822
+ 3.1409926891326903,
1823
+ 0.11424950212240226,
1824
+ 3.1410969257354737,
1825
+ 1.0
1826
+ ],
1827
+ "std": [
1828
+ 0.08108345419168472,
1829
+ 0.1116757020354271,
1830
+ 0.07747554779052734,
1831
+ 2.8737246990203857,
1832
+ 0.02774704433977604,
1833
+ 2.7678682804107666,
1834
+ 0.49695101380348206
1835
+ ]
1836
+ },
1837
+ "num_trajectories": 631,
1838
+ "num_transitions": 146241,
1839
+ "proprio": {
1840
+ "max": [
1841
+ 0.0,
1842
+ 0.0,
1843
+ 0.0,
1844
+ 0.0,
1845
+ 0.0,
1846
+ 0.0,
1847
+ 0.0
1848
+ ],
1849
+ "mean": [
1850
+ 0.0,
1851
+ 0.0,
1852
+ 0.0,
1853
+ 0.0,
1854
+ 0.0,
1855
+ 0.0,
1856
+ 0.0
1857
+ ],
1858
+ "min": [
1859
+ 0.0,
1860
+ 0.0,
1861
+ 0.0,
1862
+ 0.0,
1863
+ 0.0,
1864
+ 0.0,
1865
+ 0.0
1866
+ ],
1867
+ "q01": [
1868
+ 0.0,
1869
+ 0.0,
1870
+ 0.0,
1871
+ 0.0,
1872
+ 0.0,
1873
+ 0.0,
1874
+ 0.0
1875
+ ],
1876
+ "q99": [
1877
+ 0.0,
1878
+ 0.0,
1879
+ 0.0,
1880
+ 0.0,
1881
+ 0.0,
1882
+ 0.0,
1883
+ 0.0
1884
+ ],
1885
+ "std": [
1886
+ 0.0,
1887
+ 0.0,
1888
+ 0.0,
1889
+ 0.0,
1890
+ 0.0,
1891
+ 0.0,
1892
+ 0.0
1893
+ ]
1894
+ }
1895
+ },
1896
+ "jaco_play": {
1897
+ "action": {
1898
+ "mask": [
1899
+ true,
1900
+ true,
1901
+ true,
1902
+ true,
1903
+ true,
1904
+ true,
1905
+ false
1906
+ ],
1907
+ "max": [
1908
+ 0.20000000298023224,
1909
+ 0.20000000298023224,
1910
+ 0.20000000298023224,
1911
+ 0.0,
1912
+ 0.0,
1913
+ 0.0,
1914
+ 1.0
1915
+ ],
1916
+ "mean": [
1917
+ 0.0009658430935814977,
1918
+ -0.00580078037455678,
1919
+ -0.00395062193274498,
1920
+ 0.0,
1921
+ 0.0,
1922
+ 0.0,
1923
+ 0.34934908151626587
1924
+ ],
1925
+ "min": [
1926
+ -0.20000000298023224,
1927
+ -0.20000000298023224,
1928
+ -0.20000000298023224,
1929
+ 0.0,
1930
+ 0.0,
1931
+ 0.0,
1932
+ 0.0
1933
+ ],
1934
+ "q01": [
1935
+ -0.20000000298023224,
1936
+ -0.20000000298023224,
1937
+ -0.20000000298023224,
1938
+ 0.0,
1939
+ 0.0,
1940
+ 0.0,
1941
+ 0.0
1942
+ ],
1943
+ "q99": [
1944
+ 0.20000000298023224,
1945
+ 0.20000000298023224,
1946
+ 0.20000000298023224,
1947
+ 0.0,
1948
+ 0.0,
1949
+ 0.0,
1950
+ 1.0
1951
+ ],
1952
+ "std": [
1953
+ 0.12235074490308762,
1954
+ 0.09678777307271957,
1955
+ 0.11155334860086441,
1956
+ 0.0,
1957
+ 0.0,
1958
+ 0.0,
1959
+ 0.4768252968788147
1960
+ ]
1961
+ },
1962
+ "num_trajectories": 1085,
1963
+ "num_transitions": 77965,
1964
+ "proprio": {
1965
+ "max": [
1966
+ 0.0,
1967
+ 0.0,
1968
+ 0.0,
1969
+ 0.0,
1970
+ 0.0,
1971
+ 0.0,
1972
+ 0.0
1973
+ ],
1974
+ "mean": [
1975
+ 0.0,
1976
+ 0.0,
1977
+ 0.0,
1978
+ 0.0,
1979
+ 0.0,
1980
+ 0.0,
1981
+ 0.0
1982
+ ],
1983
+ "min": [
1984
+ 0.0,
1985
+ 0.0,
1986
+ 0.0,
1987
+ 0.0,
1988
+ 0.0,
1989
+ 0.0,
1990
+ 0.0
1991
+ ],
1992
+ "q01": [
1993
+ 0.0,
1994
+ 0.0,
1995
+ 0.0,
1996
+ 0.0,
1997
+ 0.0,
1998
+ 0.0,
1999
+ 0.0
2000
+ ],
2001
+ "q99": [
2002
+ 0.0,
2003
+ 0.0,
2004
+ 0.0,
2005
+ 0.0,
2006
+ 0.0,
2007
+ 0.0,
2008
+ 0.0
2009
+ ],
2010
+ "std": [
2011
+ 0.0,
2012
+ 0.0,
2013
+ 0.0,
2014
+ 0.0,
2015
+ 0.0,
2016
+ 0.0,
2017
+ 0.0
2018
+ ]
2019
+ }
2020
+ },
2021
+ "kuka": {
2022
+ "action": {
2023
+ "mask": [
2024
+ true,
2025
+ true,
2026
+ true,
2027
+ true,
2028
+ true,
2029
+ true,
2030
+ false
2031
+ ],
2032
+ "max": [
2033
+ 0.1697135865688324,
2034
+ 0.2777623236179352,
2035
+ 0.43710532784461975,
2036
+ 0.0,
2037
+ 0.0,
2038
+ 1.9684287309646606,
2039
+ 1.0
2040
+ ],
2041
+ "mean": [
2042
+ -0.0004668905457947403,
2043
+ 0.00040138536132872105,
2044
+ -0.001280792523175478,
2045
+ 0.0,
2046
+ 0.0,
2047
+ -0.03722453489899635,
2048
+ 0.4131543040275574
2049
+ ],
2050
+ "min": [
2051
+ -0.159867063164711,
2052
+ -0.2892282009124756,
2053
+ -0.2795473635196686,
2054
+ 0.0,
2055
+ 0.0,
2056
+ -1.9875637292861938,
2057
+ 0.0
2058
+ ],
2059
+ "q01": [
2060
+ -0.06619441494345665,
2061
+ -0.08713878810405731,
2062
+ -0.15083016991615295,
2063
+ 0.0,
2064
+ 0.0,
2065
+ -0.5415697038173676,
2066
+ 0.0
2067
+ ],
2068
+ "q99": [
2069
+ 0.06601839080452929,
2070
+ 0.08732476785779003,
2071
+ 0.18168179214000715,
2072
+ 0.0,
2073
+ 0.0,
2074
+ 0.2923380345106127,
2075
+ 1.0
2076
+ ],
2077
+ "std": [
2078
+ 0.02083250693976879,
2079
+ 0.02915887162089348,
2080
+ 0.06422865390777588,
2081
+ 0.0,
2082
+ 0.0,
2083
+ 0.14224295318126678,
2084
+ 0.49086448550224304
2085
+ ]
2086
+ },
2087
+ "num_trajectories": 209880,
2088
+ "num_transitions": 2455879,
2089
+ "proprio": {
2090
+ "max": [
2091
+ 0.0,
2092
+ 0.0,
2093
+ 0.0,
2094
+ 0.0,
2095
+ 0.0,
2096
+ 0.0,
2097
+ 0.0
2098
+ ],
2099
+ "mean": [
2100
+ 0.0,
2101
+ 0.0,
2102
+ 0.0,
2103
+ 0.0,
2104
+ 0.0,
2105
+ 0.0,
2106
+ 0.0
2107
+ ],
2108
+ "min": [
2109
+ 0.0,
2110
+ 0.0,
2111
+ 0.0,
2112
+ 0.0,
2113
+ 0.0,
2114
+ 0.0,
2115
+ 0.0
2116
+ ],
2117
+ "q01": [
2118
+ 0.0,
2119
+ 0.0,
2120
+ 0.0,
2121
+ 0.0,
2122
+ 0.0,
2123
+ 0.0,
2124
+ 0.0
2125
+ ],
2126
+ "q99": [
2127
+ 0.0,
2128
+ 0.0,
2129
+ 0.0,
2130
+ 0.0,
2131
+ 0.0,
2132
+ 0.0,
2133
+ 0.0
2134
+ ],
2135
+ "std": [
2136
+ 0.0,
2137
+ 0.0,
2138
+ 0.0,
2139
+ 0.0,
2140
+ 0.0,
2141
+ 0.0,
2142
+ 0.0
2143
+ ]
2144
+ }
2145
+ },
2146
+ "nyu_franka_play_dataset_converted_externally_to_rlds": {
2147
+ "action": {
2148
+ "mask": [
2149
+ true,
2150
+ true,
2151
+ true,
2152
+ true,
2153
+ true,
2154
+ true,
2155
+ false
2156
+ ],
2157
+ "max": [
2158
+ 0.06424188613891602,
2159
+ 0.07027634978294373,
2160
+ 0.06129661202430725,
2161
+ 6.281067848205566,
2162
+ 0.1967729926109314,
2163
+ 0.26377415657043457,
2164
+ 1.0
2165
+ ],
2166
+ "mean": [
2167
+ 0.001021989737637341,
2168
+ -0.00012002651783404872,
2169
+ 0.00032894269679673016,
2170
+ 0.0015034361276775599,
2171
+ -0.002198522910475731,
2172
+ -0.001663230243138969,
2173
+ 0.7230083346366882
2174
+ ],
2175
+ "min": [
2176
+ -0.05952230095863342,
2177
+ -0.07232445478439331,
2178
+ -0.06730806827545166,
2179
+ -6.278434753417969,
2180
+ -0.21479034423828125,
2181
+ -0.3627619743347168,
2182
+ 0.0
2183
+ ],
2184
+ "q01": [
2185
+ -0.03199600875377655,
2186
+ -0.032861671447753905,
2187
+ -0.03368805110454559,
2188
+ -0.12080862045288086,
2189
+ -0.12175218224525451,
2190
+ -0.11370223641395569,
2191
+ 0.0
2192
+ ],
2193
+ "q99": [
2194
+ 0.03101520001888276,
2195
+ 0.0373908892273903,
2196
+ 0.03646374464035038,
2197
+ 0.11764093399047852,
2198
+ 0.1258920183777809,
2199
+ 0.09366151213645942,
2200
+ 1.0
2201
+ ],
2202
+ "std": [
2203
+ 0.01327415369451046,
2204
+ 0.013215910643339157,
2205
+ 0.012822109274566174,
2206
+ 0.2732451558113098,
2207
+ 0.057022541761398315,
2208
+ 0.039172880351543427,
2209
+ 0.44752755761146545
2210
+ ]
2211
+ },
2212
+ "num_trajectories": 456,
2213
+ "num_transitions": 44875,
2214
+ "proprio": {
2215
+ "max": [
2216
+ 0.0,
2217
+ 0.0,
2218
+ 0.0,
2219
+ 0.0,
2220
+ 0.0,
2221
+ 0.0,
2222
+ 0.0
2223
+ ],
2224
+ "mean": [
2225
+ 0.0,
2226
+ 0.0,
2227
+ 0.0,
2228
+ 0.0,
2229
+ 0.0,
2230
+ 0.0,
2231
+ 0.0
2232
+ ],
2233
+ "min": [
2234
+ 0.0,
2235
+ 0.0,
2236
+ 0.0,
2237
+ 0.0,
2238
+ 0.0,
2239
+ 0.0,
2240
+ 0.0
2241
+ ],
2242
+ "q01": [
2243
+ 0.0,
2244
+ 0.0,
2245
+ 0.0,
2246
+ 0.0,
2247
+ 0.0,
2248
+ 0.0,
2249
+ 0.0
2250
+ ],
2251
+ "q99": [
2252
+ 0.0,
2253
+ 0.0,
2254
+ 0.0,
2255
+ 0.0,
2256
+ 0.0,
2257
+ 0.0,
2258
+ 0.0
2259
+ ],
2260
+ "std": [
2261
+ 0.0,
2262
+ 0.0,
2263
+ 0.0,
2264
+ 0.0,
2265
+ 0.0,
2266
+ 0.0,
2267
+ 0.0
2268
+ ]
2269
+ }
2270
+ },
2271
+ "roboturk": {
2272
+ "action": {
2273
+ "mask": [
2274
+ true,
2275
+ true,
2276
+ true,
2277
+ true,
2278
+ true,
2279
+ true,
2280
+ false
2281
+ ],
2282
+ "max": [
2283
+ 0.39124172925949097,
2284
+ 0.4601028263568878,
2285
+ 0.4870833456516266,
2286
+ 1.816888689994812,
2287
+ 1.8240282535552979,
2288
+ 1.4824820756912231,
2289
+ 1.0
2290
+ ],
2291
+ "mean": [
2292
+ 0.0014448732836171985,
2293
+ -0.0015945249469950795,
2294
+ -0.0011753785656765103,
2295
+ 0.0023012510500848293,
2296
+ -0.0009382463176734746,
2297
+ -0.00011485807772260159,
2298
+ 0.5746025443077087
2299
+ ],
2300
+ "min": [
2301
+ -0.6546999216079712,
2302
+ -0.6365841031074524,
2303
+ -0.4217723608016968,
2304
+ -1.6695482730865479,
2305
+ -1.8023357391357422,
2306
+ -1.4630827903747559,
2307
+ 0.0
2308
+ ],
2309
+ "q01": [
2310
+ -0.1342635464668274,
2311
+ -0.19996687173843383,
2312
+ -0.1482972100377083,
2313
+ -0.20720748245716095,
2314
+ -0.09676413893699647,
2315
+ -0.18075634717941286,
2316
+ 0.0
2317
+ ],
2318
+ "q99": [
2319
+ 0.14956976801157001,
2320
+ 0.1805950567126275,
2321
+ 0.18841815620660796,
2322
+ 0.21615413755178453,
2323
+ 0.09457383215427405,
2324
+ 0.18543301910162005,
2325
+ 1.0
2326
+ ],
2327
+ "std": [
2328
+ 0.04935386776924133,
2329
+ 0.0635455846786499,
2330
+ 0.061164740473032,
2331
+ 0.09553450345993042,
2332
+ 0.08420111238956451,
2333
+ 0.06517903506755829,
2334
+ 0.49452081322669983
2335
+ ]
2336
+ },
2337
+ "num_trajectories": 1995,
2338
+ "num_transitions": 187507,
2339
+ "proprio": {
2340
+ "max": [
2341
+ 0.0,
2342
+ 0.0,
2343
+ 0.0,
2344
+ 0.0,
2345
+ 0.0,
2346
+ 0.0,
2347
+ 0.0
2348
+ ],
2349
+ "mean": [
2350
+ 0.0,
2351
+ 0.0,
2352
+ 0.0,
2353
+ 0.0,
2354
+ 0.0,
2355
+ 0.0,
2356
+ 0.0
2357
+ ],
2358
+ "min": [
2359
+ 0.0,
2360
+ 0.0,
2361
+ 0.0,
2362
+ 0.0,
2363
+ 0.0,
2364
+ 0.0,
2365
+ 0.0
2366
+ ],
2367
+ "q01": [
2368
+ 0.0,
2369
+ 0.0,
2370
+ 0.0,
2371
+ 0.0,
2372
+ 0.0,
2373
+ 0.0,
2374
+ 0.0
2375
+ ],
2376
+ "q99": [
2377
+ 0.0,
2378
+ 0.0,
2379
+ 0.0,
2380
+ 0.0,
2381
+ 0.0,
2382
+ 0.0,
2383
+ 0.0
2384
+ ],
2385
+ "std": [
2386
+ 0.0,
2387
+ 0.0,
2388
+ 0.0,
2389
+ 0.0,
2390
+ 0.0,
2391
+ 0.0,
2392
+ 0.0
2393
+ ]
2394
+ }
2395
+ },
2396
+ "stanford_hydra_dataset_converted_externally_to_rlds": {
2397
+ "action": {
2398
+ "mask": [
2399
+ true,
2400
+ true,
2401
+ true,
2402
+ true,
2403
+ true,
2404
+ true,
2405
+ false
2406
+ ],
2407
+ "max": [
2408
+ 0.02499854564666748,
2409
+ 0.02499903365969658,
2410
+ 0.024999922141432762,
2411
+ 0.24974457919597626,
2412
+ 0.24997030198574066,
2413
+ 0.24999946355819702,
2414
+ 1.0
2415
+ ],
2416
+ "mean": [
2417
+ 0.0007790001109242439,
2418
+ 0.00013707754260394722,
2419
+ -0.0002548607881180942,
2420
+ 0.0012903271708637476,
2421
+ -0.004751681815832853,
2422
+ 0.002692886395379901,
2423
+ 0.48855218291282654
2424
+ ],
2425
+ "min": [
2426
+ -0.024999044835567474,
2427
+ -0.024999700486660004,
2428
+ -0.02499929815530777,
2429
+ -0.24993225932121277,
2430
+ -0.2499666064977646,
2431
+ -0.2499932497739792,
2432
+ 0.0
2433
+ ],
2434
+ "q01": [
2435
+ -0.019992006458342076,
2436
+ -0.02415412735193968,
2437
+ -0.022941758055239916,
2438
+ -0.11085530579090118,
2439
+ -0.12024572037160397,
2440
+ -0.13314770206809043,
2441
+ 0.0
2442
+ ],
2443
+ "q99": [
2444
+ 0.022886231057345868,
2445
+ 0.022358838934451335,
2446
+ 0.02410089675337076,
2447
+ 0.12370114490389822,
2448
+ 0.11323311634361738,
2449
+ 0.18474749639630164,
2450
+ 1.0
2451
+ ],
2452
+ "std": [
2453
+ 0.008022161200642586,
2454
+ 0.009131459519267082,
2455
+ 0.009574338793754578,
2456
+ 0.04122216999530792,
2457
+ 0.0384303517639637,
2458
+ 0.04606688767671585,
2459
+ 0.49976691603660583
2460
+ ]
2461
+ },
2462
+ "num_trajectories": 570,
2463
+ "num_transitions": 358234,
2464
+ "proprio": {
2465
+ "max": [
2466
+ 0.0,
2467
+ 0.0,
2468
+ 0.0,
2469
+ 0.0,
2470
+ 0.0,
2471
+ 0.0,
2472
+ 0.0
2473
+ ],
2474
+ "mean": [
2475
+ 0.0,
2476
+ 0.0,
2477
+ 0.0,
2478
+ 0.0,
2479
+ 0.0,
2480
+ 0.0,
2481
+ 0.0
2482
+ ],
2483
+ "min": [
2484
+ 0.0,
2485
+ 0.0,
2486
+ 0.0,
2487
+ 0.0,
2488
+ 0.0,
2489
+ 0.0,
2490
+ 0.0
2491
+ ],
2492
+ "q01": [
2493
+ 0.0,
2494
+ 0.0,
2495
+ 0.0,
2496
+ 0.0,
2497
+ 0.0,
2498
+ 0.0,
2499
+ 0.0
2500
+ ],
2501
+ "q99": [
2502
+ 0.0,
2503
+ 0.0,
2504
+ 0.0,
2505
+ 0.0,
2506
+ 0.0,
2507
+ 0.0,
2508
+ 0.0
2509
+ ],
2510
+ "std": [
2511
+ 0.0,
2512
+ 0.0,
2513
+ 0.0,
2514
+ 0.0,
2515
+ 0.0,
2516
+ 0.0,
2517
+ 0.0
2518
+ ]
2519
+ }
2520
+ },
2521
+ "taco_play": {
2522
+ "action": {
2523
+ "mask": [
2524
+ true,
2525
+ true,
2526
+ true,
2527
+ true,
2528
+ true,
2529
+ true,
2530
+ false
2531
+ ],
2532
+ "max": [
2533
+ 1.4915844202041626,
2534
+ 2.1842432022094727,
2535
+ 2.6836395263671875,
2536
+ 5.035226821899414,
2537
+ 2.665864944458008,
2538
+ 4.250768661499023,
2539
+ 1.0
2540
+ ],
2541
+ "mean": [
2542
+ -0.003845922416076064,
2543
+ 0.009671456180512905,
2544
+ 0.012780580669641495,
2545
+ -0.005403771996498108,
2546
+ -0.009606587700545788,
2547
+ -0.002480733208358288,
2548
+ 0.4263913035392761
2549
+ ],
2550
+ "min": [
2551
+ -4.242457866668701,
2552
+ -3.192805051803589,
2553
+ -1.3371467590332031,
2554
+ -4.202683448791504,
2555
+ -2.6722638607025146,
2556
+ -3.3467135429382324,
2557
+ 0.0
2558
+ ],
2559
+ "q01": [
2560
+ -0.7106140398979186,
2561
+ -1.056944659948349,
2562
+ -0.5878450274467468,
2563
+ -0.7682853937149048,
2564
+ -0.7180147767066956,
2565
+ -1.5527938604354858,
2566
+ 0.0
2567
+ ],
2568
+ "q99": [
2569
+ 0.6482916426658629,
2570
+ 1.0051310062408447,
2571
+ 0.9480248689651489,
2572
+ 0.6926478147506714,
2573
+ 0.6351067513227462,
2574
+ 1.628010264635086,
2575
+ 1.0
2576
+ ],
2577
+ "std": [
2578
+ 0.23254038393497467,
2579
+ 0.36298269033432007,
2580
+ 0.28692901134490967,
2581
+ 0.2617705166339874,
2582
+ 0.2438892275094986,
2583
+ 0.5216503143310547,
2584
+ 0.4946896731853485
2585
+ ]
2586
+ },
2587
+ "num_trajectories": 3603,
2588
+ "num_transitions": 237798,
2589
+ "proprio": {
2590
+ "max": [
2591
+ 0.0,
2592
+ 0.0,
2593
+ 0.0,
2594
+ 0.0,
2595
+ 0.0,
2596
+ 0.0,
2597
+ 0.0
2598
+ ],
2599
+ "mean": [
2600
+ 0.0,
2601
+ 0.0,
2602
+ 0.0,
2603
+ 0.0,
2604
+ 0.0,
2605
+ 0.0,
2606
+ 0.0
2607
+ ],
2608
+ "min": [
2609
+ 0.0,
2610
+ 0.0,
2611
+ 0.0,
2612
+ 0.0,
2613
+ 0.0,
2614
+ 0.0,
2615
+ 0.0
2616
+ ],
2617
+ "q01": [
2618
+ 0.0,
2619
+ 0.0,
2620
+ 0.0,
2621
+ 0.0,
2622
+ 0.0,
2623
+ 0.0,
2624
+ 0.0
2625
+ ],
2626
+ "q99": [
2627
+ 0.0,
2628
+ 0.0,
2629
+ 0.0,
2630
+ 0.0,
2631
+ 0.0,
2632
+ 0.0,
2633
+ 0.0
2634
+ ],
2635
+ "std": [
2636
+ 0.0,
2637
+ 0.0,
2638
+ 0.0,
2639
+ 0.0,
2640
+ 0.0,
2641
+ 0.0,
2642
+ 0.0
2643
+ ]
2644
+ }
2645
+ },
2646
+ "toto": {
2647
+ "action": {
2648
+ "mask": [
2649
+ true,
2650
+ true,
2651
+ true,
2652
+ true,
2653
+ true,
2654
+ true,
2655
+ false
2656
+ ],
2657
+ "max": [
2658
+ 0.6839867234230042,
2659
+ 0.4454185664653778,
2660
+ 0.7984078526496887,
2661
+ 2.120781660079956,
2662
+ 1.371164321899414,
2663
+ 1.4118704795837402,
2664
+ 0.0
2665
+ ],
2666
+ "mean": [
2667
+ 0.38542115688323975,
2668
+ 0.007769413758069277,
2669
+ 0.3632740378379822,
2670
+ -0.6652036905288696,
2671
+ 0.1890396922826767,
2672
+ 0.03298724442720413,
2673
+ 0.0
2674
+ ],
2675
+ "min": [
2676
+ 0.09922284632921219,
2677
+ -0.5180193781852722,
2678
+ 0.13791072368621826,
2679
+ -2.635117530822754,
2680
+ -1.0734480619430542,
2681
+ -1.9282547235488892,
2682
+ 0.0
2683
+ ],
2684
+ "q01": [
2685
+ 0.1756722891330719,
2686
+ -0.3077590811252594,
2687
+ 0.235383919775486,
2688
+ -2.0908505964279174,
2689
+ -0.6191593289375306,
2690
+ -0.7488683319091797,
2691
+ 0.0
2692
+ ],
2693
+ "q99": [
2694
+ 0.6136963081359863,
2695
+ 0.33704194784164443,
2696
+ 0.6681221985816956,
2697
+ 0.7422861719131538,
2698
+ 0.7955395007133507,
2699
+ 0.740464625358582,
2700
+ 0.0
2701
+ ],
2702
+ "std": [
2703
+ 0.12211652100086212,
2704
+ 0.19378550350666046,
2705
+ 0.10178236663341522,
2706
+ 0.5725259184837341,
2707
+ 0.29884573817253113,
2708
+ 0.3259911835193634,
2709
+ 0.0
2710
+ ]
2711
+ },
2712
+ "num_trajectories": 1003,
2713
+ "num_transitions": 325699,
2714
+ "proprio": {
2715
+ "max": [
2716
+ 0.0,
2717
+ 0.0,
2718
+ 0.0,
2719
+ 0.0,
2720
+ 0.0,
2721
+ 0.0,
2722
+ 0.0
2723
+ ],
2724
+ "mean": [
2725
+ 0.0,
2726
+ 0.0,
2727
+ 0.0,
2728
+ 0.0,
2729
+ 0.0,
2730
+ 0.0,
2731
+ 0.0
2732
+ ],
2733
+ "min": [
2734
+ 0.0,
2735
+ 0.0,
2736
+ 0.0,
2737
+ 0.0,
2738
+ 0.0,
2739
+ 0.0,
2740
+ 0.0
2741
+ ],
2742
+ "q01": [
2743
+ 0.0,
2744
+ 0.0,
2745
+ 0.0,
2746
+ 0.0,
2747
+ 0.0,
2748
+ 0.0,
2749
+ 0.0
2750
+ ],
2751
+ "q99": [
2752
+ 0.0,
2753
+ 0.0,
2754
+ 0.0,
2755
+ 0.0,
2756
+ 0.0,
2757
+ 0.0,
2758
+ 0.0
2759
+ ],
2760
+ "std": [
2761
+ 0.0,
2762
+ 0.0,
2763
+ 0.0,
2764
+ 0.0,
2765
+ 0.0,
2766
+ 0.0,
2767
+ 0.0
2768
+ ]
2769
+ }
2770
+ },
2771
+ "ucsd_kitchen_dataset_converted_externally_to_rlds": {
2772
+ "action": {
2773
+ "mask": [
2774
+ true,
2775
+ true,
2776
+ true,
2777
+ true,
2778
+ true,
2779
+ true,
2780
+ false
2781
+ ],
2782
+ "max": [
2783
+ 678.0,
2784
+ 400.0,
2785
+ 507.0,
2786
+ 180.00001525878906,
2787
+ 6.000013828277588,
2788
+ 116.99998474121094,
2789
+ 1.0
2790
+ ],
2791
+ "mean": [
2792
+ 410.37567138671875,
2793
+ 116.9518814086914,
2794
+ 192.35032653808594,
2795
+ -121.22441864013672,
2796
+ -33.84893035888672,
2797
+ 50.016136169433594,
2798
+ 0.741813600063324
2799
+ ],
2800
+ "min": [
2801
+ 172.0,
2802
+ -166.0,
2803
+ -99.99999237060547,
2804
+ -180.00001525878906,
2805
+ -89.0,
2806
+ -96.00010681152344,
2807
+ 0.0
2808
+ ],
2809
+ "q01": [
2810
+ 200.00001052856445,
2811
+ -102.31004211425781,
2812
+ -94.99993370056153,
2813
+ -180.00001525878906,
2814
+ -88.00001525878906,
2815
+ -38.999977111816406,
2816
+ 0.0
2817
+ ],
2818
+ "q99": [
2819
+ 637.0,
2820
+ 368.30999999999995,
2821
+ 493.0,
2822
+ 180.00001525878906,
2823
+ 0.999983012676239,
2824
+ 105.00001525878906,
2825
+ 1.0
2826
+ ],
2827
+ "std": [
2828
+ 122.81494903564453,
2829
+ 108.8009033203125,
2830
+ 130.303466796875,
2831
+ 116.28205108642578,
2832
+ 27.621843338012695,
2833
+ 41.02094650268555,
2834
+ 0.43763357400894165
2835
+ ]
2836
+ },
2837
+ "num_trajectories": 150,
2838
+ "num_transitions": 3970,
2839
+ "proprio": {
2840
+ "max": [
2841
+ 0.0,
2842
+ 0.0,
2843
+ 0.0,
2844
+ 0.0,
2845
+ 0.0,
2846
+ 0.0,
2847
+ 0.0
2848
+ ],
2849
+ "mean": [
2850
+ 0.0,
2851
+ 0.0,
2852
+ 0.0,
2853
+ 0.0,
2854
+ 0.0,
2855
+ 0.0,
2856
+ 0.0
2857
+ ],
2858
+ "min": [
2859
+ 0.0,
2860
+ 0.0,
2861
+ 0.0,
2862
+ 0.0,
2863
+ 0.0,
2864
+ 0.0,
2865
+ 0.0
2866
+ ],
2867
+ "q01": [
2868
+ 0.0,
2869
+ 0.0,
2870
+ 0.0,
2871
+ 0.0,
2872
+ 0.0,
2873
+ 0.0,
2874
+ 0.0
2875
+ ],
2876
+ "q99": [
2877
+ 0.0,
2878
+ 0.0,
2879
+ 0.0,
2880
+ 0.0,
2881
+ 0.0,
2882
+ 0.0,
2883
+ 0.0
2884
+ ],
2885
+ "std": [
2886
+ 0.0,
2887
+ 0.0,
2888
+ 0.0,
2889
+ 0.0,
2890
+ 0.0,
2891
+ 0.0,
2892
+ 0.0
2893
+ ]
2894
+ }
2895
+ },
2896
+ "utaustin_mutex": {
2897
+ "action": {
2898
+ "mask": [
2899
+ true,
2900
+ true,
2901
+ true,
2902
+ true,
2903
+ true,
2904
+ true,
2905
+ false
2906
+ ],
2907
+ "max": [
2908
+ 1.0,
2909
+ 1.0,
2910
+ 1.0,
2911
+ 0.375,
2912
+ 0.375,
2913
+ 0.375,
2914
+ 1.0
2915
+ ],
2916
+ "mean": [
2917
+ 0.06176406890153885,
2918
+ -0.005005486309528351,
2919
+ 0.10216785222291946,
2920
+ -0.03314131125807762,
2921
+ 0.013895004987716675,
2922
+ -0.011317633092403412,
2923
+ 0.5038976669311523
2924
+ ],
2925
+ "min": [
2926
+ -1.0,
2927
+ -1.0,
2928
+ -1.0,
2929
+ -0.375,
2930
+ -0.375,
2931
+ -0.375,
2932
+ 0.0
2933
+ ],
2934
+ "q01": [
2935
+ -0.4285714328289032,
2936
+ -0.9800000190734863,
2937
+ -0.5571428537368774,
2938
+ -0.375,
2939
+ -0.15642857551574707,
2940
+ -0.335357129573822,
2941
+ 0.0
2942
+ ],
2943
+ "q99": [
2944
+ 0.5914285778999329,
2945
+ 0.9714285731315613,
2946
+ 1.0,
2947
+ 0.3278571367263794,
2948
+ 0.207857146859169,
2949
+ 0.25607141852378845,
2950
+ 1.0
2951
+ ],
2952
+ "std": [
2953
+ 0.1875014752149582,
2954
+ 0.4468473494052887,
2955
+ 0.3792876601219177,
2956
+ 0.14097853004932404,
2957
+ 0.06453701853752136,
2958
+ 0.11765272170305252,
2959
+ 0.501045286655426
2960
+ ]
2961
+ },
2962
+ "num_trajectories": 1500,
2963
+ "num_transitions": 361883,
2964
+ "proprio": {
2965
+ "max": [
2966
+ 0.0,
2967
+ 0.0,
2968
+ 0.0,
2969
+ 0.0,
2970
+ 0.0,
2971
+ 0.0,
2972
+ 0.0
2973
+ ],
2974
+ "mean": [
2975
+ 0.0,
2976
+ 0.0,
2977
+ 0.0,
2978
+ 0.0,
2979
+ 0.0,
2980
+ 0.0,
2981
+ 0.0
2982
+ ],
2983
+ "min": [
2984
+ 0.0,
2985
+ 0.0,
2986
+ 0.0,
2987
+ 0.0,
2988
+ 0.0,
2989
+ 0.0,
2990
+ 0.0
2991
+ ],
2992
+ "q01": [
2993
+ 0.0,
2994
+ 0.0,
2995
+ 0.0,
2996
+ 0.0,
2997
+ 0.0,
2998
+ 0.0,
2999
+ 0.0
3000
+ ],
3001
+ "q99": [
3002
+ 0.0,
3003
+ 0.0,
3004
+ 0.0,
3005
+ 0.0,
3006
+ 0.0,
3007
+ 0.0,
3008
+ 0.0
3009
+ ],
3010
+ "std": [
3011
+ 0.0,
3012
+ 0.0,
3013
+ 0.0,
3014
+ 0.0,
3015
+ 0.0,
3016
+ 0.0,
3017
+ 0.0
3018
+ ]
3019
+ }
3020
+ },
3021
+ "viola": {
3022
+ "action": {
3023
+ "mask": [
3024
+ true,
3025
+ true,
3026
+ true,
3027
+ true,
3028
+ true,
3029
+ true,
3030
+ false
3031
+ ],
3032
+ "max": [
3033
+ 1.0,
3034
+ 1.0,
3035
+ 1.0,
3036
+ 0.375,
3037
+ 0.36321428418159485,
3038
+ 0.375,
3039
+ 1.0
3040
+ ],
3041
+ "mean": [
3042
+ 0.04761844128370285,
3043
+ -0.029204415157437325,
3044
+ 0.05586736649274826,
3045
+ -0.002618510741740465,
3046
+ 0.006867344491183758,
3047
+ -0.01682133786380291,
3048
+ 0.7323777675628662
3049
+ ],
3050
+ "min": [
3051
+ -1.0,
3052
+ -1.0,
3053
+ -1.0,
3054
+ -0.375,
3055
+ -0.375,
3056
+ -0.375,
3057
+ 0.0
3058
+ ],
3059
+ "q01": [
3060
+ -0.9628571271896362,
3061
+ -1.0,
3062
+ -1.0,
3063
+ -0.26249998807907104,
3064
+ -0.21321429312229156,
3065
+ -0.3385714292526245,
3066
+ 0.0
3067
+ ],
3068
+ "q99": [
3069
+ 0.9114285707473755,
3070
+ 0.868571400642395,
3071
+ 1.0,
3072
+ 0.2817857265472412,
3073
+ 0.2239285707473755,
3074
+ 0.3557142913341522,
3075
+ 1.0
3076
+ ],
3077
+ "std": [
3078
+ 0.39157867431640625,
3079
+ 0.4076525568962097,
3080
+ 0.40077948570251465,
3081
+ 0.10023996233940125,
3082
+ 0.0844319611787796,
3083
+ 0.10375042259693146,
3084
+ 0.44260647892951965
3085
+ ]
3086
+ },
3087
+ "num_trajectories": 150,
3088
+ "num_transitions": 76324,
3089
+ "proprio": {
3090
+ "max": [
3091
+ 0.0,
3092
+ 0.0,
3093
+ 0.0,
3094
+ 0.0,
3095
+ 0.0,
3096
+ 0.0,
3097
+ 0.0
3098
+ ],
3099
+ "mean": [
3100
+ 0.0,
3101
+ 0.0,
3102
+ 0.0,
3103
+ 0.0,
3104
+ 0.0,
3105
+ 0.0,
3106
+ 0.0
3107
+ ],
3108
+ "min": [
3109
+ 0.0,
3110
+ 0.0,
3111
+ 0.0,
3112
+ 0.0,
3113
+ 0.0,
3114
+ 0.0,
3115
+ 0.0
3116
+ ],
3117
+ "q01": [
3118
+ 0.0,
3119
+ 0.0,
3120
+ 0.0,
3121
+ 0.0,
3122
+ 0.0,
3123
+ 0.0,
3124
+ 0.0
3125
+ ],
3126
+ "q99": [
3127
+ 0.0,
3128
+ 0.0,
3129
+ 0.0,
3130
+ 0.0,
3131
+ 0.0,
3132
+ 0.0,
3133
+ 0.0
3134
+ ],
3135
+ "std": [
3136
+ 0.0,
3137
+ 0.0,
3138
+ 0.0,
3139
+ 0.0,
3140
+ 0.0,
3141
+ 0.0,
3142
+ 0.0
3143
+ ]
3144
+ }
3145
+ }
3146
+ },
3147
+ "output_projector_states": false,
3148
+ "pad_to_multiple_of": 64,
3149
+ "pad_token_id": 32000,
3150
+ "text_config": {
3151
+ "model_type": "llama",
3152
+ "pad_token_id": 32000,
3153
+ "torch_dtype": "bfloat16",
3154
+ "vocab_size": 32064
3155
+ },
3156
+ "timm_model_ids": [
3157
+ "vit_large_patch14_reg4_dinov2.lvd142m",
3158
+ "vit_so400m_patch14_siglip_224"
3159
+ ],
3160
+ "timm_override_act_layers": [
3161
+ null,
3162
+ null
3163
+ ],
3164
+ "torch_dtype": "bfloat16",
3165
+ "transformers_version": "4.40.1",
3166
+ "use_fused_vision_backbone": true,
3167
+ "vision_backbone_id": "dinosiglip-vit-so-224px"
3168
+ }
configuration_prismatic.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ configuration_prismatic.py
3
+
4
+ HuggingFace-style configuration definition for Prismatic VLMs, inheriting from `transformers.PretrainedConfig`.
5
+ Default configuration specifies `siglip-224px+7b`.
6
+ """
7
+
8
+ from typing import Any, Dict, List, Optional
9
+
10
+ from transformers import PretrainedConfig
11
+ from transformers.models.auto import CONFIG_MAPPING
12
+
13
+ # === Utilities for Mapping Prismatic names to HF names ===
14
+ # fmt: off
15
+ VISION_BACKBONE_TO_RESOLUTION: Dict[str, List[int]] = {
16
+ "clip-vit-l": [224], "siglip-vit-so400m": [224], "dinov2-vit-l": [224], "in1k-vit-l": [224],
17
+
18
+ "clip-vit-l-336px": [336],
19
+ "siglip-vit-so400m-384px": [384],
20
+
21
+ "dinoclip-vit-l-336px": [336, 336],
22
+ "dinosiglip-vit-so-224px": [224, 224],
23
+ "dinosiglip-vit-so-384px": [384, 384],
24
+ }
25
+ VISION_BACKBONE_TO_TIMM_ID: Dict[str, List[str]] = {
26
+ "clip-vit-l": ["vit_large_patch14_clip_224.openai"],
27
+ "clip-vit-l-336px": ["vit_large_patch14_clip_336.openai"],
28
+
29
+ "dinov2-vit-l": ["vit_large_patch14_reg4_dinov2.lvd142m"],
30
+ "in1k-vit-l": ["vit_large_patch16_224.augreg_in21k_ft_in1k"],
31
+
32
+ "siglip-vit-so400m": ["vit_so400m_patch14_siglip_224"],
33
+ "siglip-vit-so400m-384px": ["vit_so400m_patch14_siglip_384"],
34
+
35
+ "dinoclip-vit-l-336px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_large_patch14_clip_336.openai"],
36
+ "dinosiglip-vit-so-224px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_224"],
37
+ "dinosiglip-vit-so-384px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_384"],
38
+ }
39
+ TIMM_OVERRIDE_ACT_LAYER: Dict[str, List[Optional[str]]] = {
40
+ "clip-vit-l": ["quick_gelu"], "clip-vit-l-336px": ["quick_gelu"],
41
+ "dinov2-vit-l": [None], "in1k-vit-l": [None],
42
+ "siglip-vit-so400m": [None], "siglip-vit-so400m-384px": [None],
43
+ "dinoclip-vit-l-336px": [None, "quick_gelu"],
44
+ "dinosiglip-vit-so-224px": [None, None], "dinosiglip-vit-so-384px": [None, None]
45
+ }
46
+
47
+ LLM_BACKBONE_TO_HF_PATH = {
48
+ "llama2-7b-pure": "meta-llama/Llama-2-7b-hf", "llama2-13b-pure": "meta-llama/Llama-2-13b-hf",
49
+ "llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf", "llama2-13b-chat": "meta-llama/Llama-2-13b-chat-hf",
50
+
51
+ "vicuna-v15-7b": "lmsys/vicuna-7b-v1.5", "vicuna-v15-13b": "lmsys/vicuna-13b-v1.5",
52
+
53
+ "mistral-v0.1-7b-pure": "mistralai/Mistral-7B-v0.1",
54
+ "mistral-v0.1-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1",
55
+
56
+ "phi-2-3b": "microsoft/phi-2",
57
+ }
58
+ LLM_BACKBONE_TO_HF_METACLASS = {
59
+ "llama2-7b-pure": "llama", "llama2-13b-pure": "llama", "llama2-7b-chat": "llama", "llama2-13b-chat": "llama",
60
+ "vicuna-v15-7b": "llama", "vicuna-v15-13b": "llama",
61
+
62
+ "mistral-v0.1-7b-pure": "mistral", "mistral-v0.1-7b-instruct": "mistral",
63
+
64
+ "phi-2-3b": "phi",
65
+ }
66
+
67
+ VALID_VISION_BACKBONES = set(VISION_BACKBONE_TO_RESOLUTION.keys())
68
+ VALID_LLM_BACKBONES = set(LLM_BACKBONE_TO_HF_PATH)
69
+ # fmt: on
70
+
71
+
72
+ class PrismaticConfig(PretrainedConfig):
73
+ model_type: str = "prismatic"
74
+ is_composition: bool = False
75
+
76
+ def __init__(
77
+ self,
78
+ vision_backbone_id: str = "siglip-vit-so400m",
79
+ llm_backbone_id: str = "vicuna-v15-7b",
80
+ arch_specifier: str = "no-align+gelu-mlp",
81
+ use_fused_vision_backbone: Optional[bool] = None,
82
+ image_resize_strategy: str = "letterbox",
83
+ text_config: Optional[Dict[str, Any]] = None,
84
+ llm_max_length: int = 2048,
85
+ pad_token_id: int = 32000,
86
+ pad_to_multiple_of: int = 64,
87
+ output_projector_states: bool = False,
88
+ **kwargs: str,
89
+ ) -> None:
90
+ if vision_backbone_id not in VALID_VISION_BACKBONES:
91
+ raise ValueError(f"Vision backbone `{vision_backbone_id}` not in {VALID_VISION_BACKBONES = }")
92
+
93
+ if llm_backbone_id not in VALID_LLM_BACKBONES:
94
+ raise ValueError(f"LLM backbone `{llm_backbone_id}` not in {VALID_LLM_BACKBONES = }")
95
+
96
+ # Set Prismatic Configuration Fields
97
+ self.vision_backbone_id = vision_backbone_id
98
+ self.llm_backbone_id = llm_backbone_id
99
+ self.arch_specifier = arch_specifier
100
+ self.output_projector_states = output_projector_states
101
+
102
+ # [Contract] All vision backbone parameters are lists =>> supports fused backbones with different preprocessing
103
+ self.use_fused_vision_backbone = (
104
+ use_fused_vision_backbone
105
+ if use_fused_vision_backbone is not None
106
+ else any(self.vision_backbone_id.startswith(v) for v in ["dinoclip", "dinosiglip"])
107
+ )
108
+
109
+ self.timm_model_ids = VISION_BACKBONE_TO_TIMM_ID[self.vision_backbone_id]
110
+ self.timm_override_act_layers = TIMM_OVERRIDE_ACT_LAYER[self.vision_backbone_id]
111
+ self.image_sizes = VISION_BACKBONE_TO_RESOLUTION[self.vision_backbone_id]
112
+ self.image_resize_strategy = image_resize_strategy
113
+
114
+ self.hf_llm_id = LLM_BACKBONE_TO_HF_PATH[self.llm_backbone_id]
115
+ self.llm_max_length = llm_max_length
116
+ self.pad_token_id, self.pad_to_multiple_of = pad_token_id, pad_to_multiple_of
117
+
118
+ # [IMPORTANT] HF Utilities actually look for a `text_config` field... we need to use that specific naming!
119
+ self.text_config = (
120
+ CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]](**text_config)
121
+ if text_config is not None
122
+ else CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]]()
123
+ )
124
+
125
+ # Dispatch **kwargs to super() =>> note that `pad_token_id` collides, so we pass it in here as well...
126
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
127
+
128
+
129
+ class OpenVLAConfig(PrismaticConfig):
130
+ model_type: str = "openvla"
131
+
132
+ def __init__(
133
+ self,
134
+ norm_stats: Optional[Dict[str, Dict[str, Dict[str, Dict[str, List[float]]]]]] = None,
135
+ n_action_bins: int = 256,
136
+ **kwargs: str,
137
+ ) -> None:
138
+ self.norm_stats, self.n_action_bins = norm_stats, n_action_bins
139
+
140
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 32000,
6
+ "transformers_version": "4.40.1"
7
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10d8636256018712c5e5c823d12e22b5797f99bb721bd123bf6bf2379892be85
3
+ size 6948961960
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2050b14f21d48904d269f48d5a980fecea87cd7b36641d9b0f015e72d1fe216a
3
+ size 6971232040
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea65305a1577f36f721965bf84c8caec0a948ce7ce84d754701637376c531fef
3
+ size 1162406824
model.safetensors.index.json ADDED
@@ -0,0 +1,989 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15082474368
4
+ },
5
+ "weight_map": {
6
+ "language_model.lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
27
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
28
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
31
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00003.safetensors",
36
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
37
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
38
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
39
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
40
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
41
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
42
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
43
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
44
+ "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
47
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
50
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
51
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
52
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
53
+ "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
144
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
145
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
147
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
148
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
153
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
154
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
155
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
156
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
157
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00003.safetensors",
162
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
163
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
164
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
165
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
166
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
167
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
168
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
169
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
170
+ "language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00003.safetensors",
171
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
172
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
173
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
174
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
175
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
176
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
177
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
178
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
179
+ "language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00003.safetensors",
180
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
181
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
182
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
183
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
184
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
185
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
186
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
187
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
188
+ "language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00003.safetensors",
189
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
190
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
191
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
192
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
193
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
194
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
195
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
196
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
197
+ "language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00003.safetensors",
198
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
199
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
200
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
201
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
202
+ "language_model.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
203
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
204
+ "language_model.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
205
+ "language_model.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
206
+ "language_model.model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
209
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
210
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
212
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
213
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
214
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
215
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "language_model.model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "language_model.model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "language_model.model.norm.weight": "model-00003-of-00003.safetensors",
297
+ "projector.fc1.bias": "model-00001-of-00003.safetensors",
298
+ "projector.fc1.weight": "model-00001-of-00003.safetensors",
299
+ "projector.fc2.bias": "model-00001-of-00003.safetensors",
300
+ "projector.fc2.weight": "model-00001-of-00003.safetensors",
301
+ "projector.fc3.bias": "model-00001-of-00003.safetensors",
302
+ "projector.fc3.weight": "model-00001-of-00003.safetensors",
303
+ "vision_backbone.featurizer.blocks.0.attn.proj.bias": "model-00001-of-00003.safetensors",
304
+ "vision_backbone.featurizer.blocks.0.attn.proj.weight": "model-00001-of-00003.safetensors",
305
+ "vision_backbone.featurizer.blocks.0.attn.qkv.bias": "model-00001-of-00003.safetensors",
306
+ "vision_backbone.featurizer.blocks.0.attn.qkv.weight": "model-00001-of-00003.safetensors",
307
+ "vision_backbone.featurizer.blocks.0.ls1.scale_factor": "model-00001-of-00003.safetensors",
308
+ "vision_backbone.featurizer.blocks.0.ls2.scale_factor": "model-00001-of-00003.safetensors",
309
+ "vision_backbone.featurizer.blocks.0.mlp.fc1.bias": "model-00001-of-00003.safetensors",
310
+ "vision_backbone.featurizer.blocks.0.mlp.fc1.weight": "model-00001-of-00003.safetensors",
311
+ "vision_backbone.featurizer.blocks.0.mlp.fc2.bias": "model-00001-of-00003.safetensors",
312
+ "vision_backbone.featurizer.blocks.0.mlp.fc2.weight": "model-00001-of-00003.safetensors",
313
+ "vision_backbone.featurizer.blocks.0.norm1.bias": "model-00001-of-00003.safetensors",
314
+ "vision_backbone.featurizer.blocks.0.norm1.weight": "model-00001-of-00003.safetensors",
315
+ "vision_backbone.featurizer.blocks.0.norm2.bias": "model-00001-of-00003.safetensors",
316
+ "vision_backbone.featurizer.blocks.0.norm2.weight": "model-00001-of-00003.safetensors",
317
+ "vision_backbone.featurizer.blocks.1.attn.proj.bias": "model-00001-of-00003.safetensors",
318
+ "vision_backbone.featurizer.blocks.1.attn.proj.weight": "model-00001-of-00003.safetensors",
319
+ "vision_backbone.featurizer.blocks.1.attn.qkv.bias": "model-00001-of-00003.safetensors",
320
+ "vision_backbone.featurizer.blocks.1.attn.qkv.weight": "model-00001-of-00003.safetensors",
321
+ "vision_backbone.featurizer.blocks.1.ls1.scale_factor": "model-00001-of-00003.safetensors",
322
+ "vision_backbone.featurizer.blocks.1.ls2.scale_factor": "model-00001-of-00003.safetensors",
323
+ "vision_backbone.featurizer.blocks.1.mlp.fc1.bias": "model-00001-of-00003.safetensors",
324
+ "vision_backbone.featurizer.blocks.1.mlp.fc1.weight": "model-00001-of-00003.safetensors",
325
+ "vision_backbone.featurizer.blocks.1.mlp.fc2.bias": "model-00001-of-00003.safetensors",
326
+ "vision_backbone.featurizer.blocks.1.mlp.fc2.weight": "model-00001-of-00003.safetensors",
327
+ "vision_backbone.featurizer.blocks.1.norm1.bias": "model-00001-of-00003.safetensors",
328
+ "vision_backbone.featurizer.blocks.1.norm1.weight": "model-00001-of-00003.safetensors",
329
+ "vision_backbone.featurizer.blocks.1.norm2.bias": "model-00001-of-00003.safetensors",
330
+ "vision_backbone.featurizer.blocks.1.norm2.weight": "model-00001-of-00003.safetensors",
331
+ "vision_backbone.featurizer.blocks.10.attn.proj.bias": "model-00001-of-00003.safetensors",
332
+ "vision_backbone.featurizer.blocks.10.attn.proj.weight": "model-00001-of-00003.safetensors",
333
+ "vision_backbone.featurizer.blocks.10.attn.qkv.bias": "model-00001-of-00003.safetensors",
334
+ "vision_backbone.featurizer.blocks.10.attn.qkv.weight": "model-00001-of-00003.safetensors",
335
+ "vision_backbone.featurizer.blocks.10.ls1.scale_factor": "model-00001-of-00003.safetensors",
336
+ "vision_backbone.featurizer.blocks.10.ls2.scale_factor": "model-00001-of-00003.safetensors",
337
+ "vision_backbone.featurizer.blocks.10.mlp.fc1.bias": "model-00001-of-00003.safetensors",
338
+ "vision_backbone.featurizer.blocks.10.mlp.fc1.weight": "model-00001-of-00003.safetensors",
339
+ "vision_backbone.featurizer.blocks.10.mlp.fc2.bias": "model-00001-of-00003.safetensors",
340
+ "vision_backbone.featurizer.blocks.10.mlp.fc2.weight": "model-00001-of-00003.safetensors",
341
+ "vision_backbone.featurizer.blocks.10.norm1.bias": "model-00001-of-00003.safetensors",
342
+ "vision_backbone.featurizer.blocks.10.norm1.weight": "model-00001-of-00003.safetensors",
343
+ "vision_backbone.featurizer.blocks.10.norm2.bias": "model-00001-of-00003.safetensors",
344
+ "vision_backbone.featurizer.blocks.10.norm2.weight": "model-00001-of-00003.safetensors",
345
+ "vision_backbone.featurizer.blocks.11.attn.proj.bias": "model-00001-of-00003.safetensors",
346
+ "vision_backbone.featurizer.blocks.11.attn.proj.weight": "model-00001-of-00003.safetensors",
347
+ "vision_backbone.featurizer.blocks.11.attn.qkv.bias": "model-00001-of-00003.safetensors",
348
+ "vision_backbone.featurizer.blocks.11.attn.qkv.weight": "model-00001-of-00003.safetensors",
349
+ "vision_backbone.featurizer.blocks.11.ls1.scale_factor": "model-00001-of-00003.safetensors",
350
+ "vision_backbone.featurizer.blocks.11.ls2.scale_factor": "model-00001-of-00003.safetensors",
351
+ "vision_backbone.featurizer.blocks.11.mlp.fc1.bias": "model-00001-of-00003.safetensors",
352
+ "vision_backbone.featurizer.blocks.11.mlp.fc1.weight": "model-00001-of-00003.safetensors",
353
+ "vision_backbone.featurizer.blocks.11.mlp.fc2.bias": "model-00001-of-00003.safetensors",
354
+ "vision_backbone.featurizer.blocks.11.mlp.fc2.weight": "model-00001-of-00003.safetensors",
355
+ "vision_backbone.featurizer.blocks.11.norm1.bias": "model-00001-of-00003.safetensors",
356
+ "vision_backbone.featurizer.blocks.11.norm1.weight": "model-00001-of-00003.safetensors",
357
+ "vision_backbone.featurizer.blocks.11.norm2.bias": "model-00001-of-00003.safetensors",
358
+ "vision_backbone.featurizer.blocks.11.norm2.weight": "model-00001-of-00003.safetensors",
359
+ "vision_backbone.featurizer.blocks.12.attn.proj.bias": "model-00001-of-00003.safetensors",
360
+ "vision_backbone.featurizer.blocks.12.attn.proj.weight": "model-00001-of-00003.safetensors",
361
+ "vision_backbone.featurizer.blocks.12.attn.qkv.bias": "model-00001-of-00003.safetensors",
362
+ "vision_backbone.featurizer.blocks.12.attn.qkv.weight": "model-00001-of-00003.safetensors",
363
+ "vision_backbone.featurizer.blocks.12.ls1.scale_factor": "model-00001-of-00003.safetensors",
364
+ "vision_backbone.featurizer.blocks.12.ls2.scale_factor": "model-00001-of-00003.safetensors",
365
+ "vision_backbone.featurizer.blocks.12.mlp.fc1.bias": "model-00001-of-00003.safetensors",
366
+ "vision_backbone.featurizer.blocks.12.mlp.fc1.weight": "model-00001-of-00003.safetensors",
367
+ "vision_backbone.featurizer.blocks.12.mlp.fc2.bias": "model-00001-of-00003.safetensors",
368
+ "vision_backbone.featurizer.blocks.12.mlp.fc2.weight": "model-00001-of-00003.safetensors",
369
+ "vision_backbone.featurizer.blocks.12.norm1.bias": "model-00001-of-00003.safetensors",
370
+ "vision_backbone.featurizer.blocks.12.norm1.weight": "model-00001-of-00003.safetensors",
371
+ "vision_backbone.featurizer.blocks.12.norm2.bias": "model-00001-of-00003.safetensors",
372
+ "vision_backbone.featurizer.blocks.12.norm2.weight": "model-00001-of-00003.safetensors",
373
+ "vision_backbone.featurizer.blocks.13.attn.proj.bias": "model-00001-of-00003.safetensors",
374
+ "vision_backbone.featurizer.blocks.13.attn.proj.weight": "model-00001-of-00003.safetensors",
375
+ "vision_backbone.featurizer.blocks.13.attn.qkv.bias": "model-00001-of-00003.safetensors",
376
+ "vision_backbone.featurizer.blocks.13.attn.qkv.weight": "model-00001-of-00003.safetensors",
377
+ "vision_backbone.featurizer.blocks.13.ls1.scale_factor": "model-00001-of-00003.safetensors",
378
+ "vision_backbone.featurizer.blocks.13.ls2.scale_factor": "model-00001-of-00003.safetensors",
379
+ "vision_backbone.featurizer.blocks.13.mlp.fc1.bias": "model-00001-of-00003.safetensors",
380
+ "vision_backbone.featurizer.blocks.13.mlp.fc1.weight": "model-00001-of-00003.safetensors",
381
+ "vision_backbone.featurizer.blocks.13.mlp.fc2.bias": "model-00001-of-00003.safetensors",
382
+ "vision_backbone.featurizer.blocks.13.mlp.fc2.weight": "model-00001-of-00003.safetensors",
383
+ "vision_backbone.featurizer.blocks.13.norm1.bias": "model-00001-of-00003.safetensors",
384
+ "vision_backbone.featurizer.blocks.13.norm1.weight": "model-00001-of-00003.safetensors",
385
+ "vision_backbone.featurizer.blocks.13.norm2.bias": "model-00001-of-00003.safetensors",
386
+ "vision_backbone.featurizer.blocks.13.norm2.weight": "model-00001-of-00003.safetensors",
387
+ "vision_backbone.featurizer.blocks.14.attn.proj.bias": "model-00001-of-00003.safetensors",
388
+ "vision_backbone.featurizer.blocks.14.attn.proj.weight": "model-00001-of-00003.safetensors",
389
+ "vision_backbone.featurizer.blocks.14.attn.qkv.bias": "model-00001-of-00003.safetensors",
390
+ "vision_backbone.featurizer.blocks.14.attn.qkv.weight": "model-00001-of-00003.safetensors",
391
+ "vision_backbone.featurizer.blocks.14.ls1.scale_factor": "model-00001-of-00003.safetensors",
392
+ "vision_backbone.featurizer.blocks.14.ls2.scale_factor": "model-00001-of-00003.safetensors",
393
+ "vision_backbone.featurizer.blocks.14.mlp.fc1.bias": "model-00001-of-00003.safetensors",
394
+ "vision_backbone.featurizer.blocks.14.mlp.fc1.weight": "model-00001-of-00003.safetensors",
395
+ "vision_backbone.featurizer.blocks.14.mlp.fc2.bias": "model-00001-of-00003.safetensors",
396
+ "vision_backbone.featurizer.blocks.14.mlp.fc2.weight": "model-00001-of-00003.safetensors",
397
+ "vision_backbone.featurizer.blocks.14.norm1.bias": "model-00001-of-00003.safetensors",
398
+ "vision_backbone.featurizer.blocks.14.norm1.weight": "model-00001-of-00003.safetensors",
399
+ "vision_backbone.featurizer.blocks.14.norm2.bias": "model-00001-of-00003.safetensors",
400
+ "vision_backbone.featurizer.blocks.14.norm2.weight": "model-00001-of-00003.safetensors",
401
+ "vision_backbone.featurizer.blocks.15.attn.proj.bias": "model-00001-of-00003.safetensors",
402
+ "vision_backbone.featurizer.blocks.15.attn.proj.weight": "model-00001-of-00003.safetensors",
403
+ "vision_backbone.featurizer.blocks.15.attn.qkv.bias": "model-00001-of-00003.safetensors",
404
+ "vision_backbone.featurizer.blocks.15.attn.qkv.weight": "model-00001-of-00003.safetensors",
405
+ "vision_backbone.featurizer.blocks.15.ls1.scale_factor": "model-00001-of-00003.safetensors",
406
+ "vision_backbone.featurizer.blocks.15.ls2.scale_factor": "model-00001-of-00003.safetensors",
407
+ "vision_backbone.featurizer.blocks.15.mlp.fc1.bias": "model-00001-of-00003.safetensors",
408
+ "vision_backbone.featurizer.blocks.15.mlp.fc1.weight": "model-00001-of-00003.safetensors",
409
+ "vision_backbone.featurizer.blocks.15.mlp.fc2.bias": "model-00001-of-00003.safetensors",
410
+ "vision_backbone.featurizer.blocks.15.mlp.fc2.weight": "model-00001-of-00003.safetensors",
411
+ "vision_backbone.featurizer.blocks.15.norm1.bias": "model-00001-of-00003.safetensors",
412
+ "vision_backbone.featurizer.blocks.15.norm1.weight": "model-00001-of-00003.safetensors",
413
+ "vision_backbone.featurizer.blocks.15.norm2.bias": "model-00001-of-00003.safetensors",
414
+ "vision_backbone.featurizer.blocks.15.norm2.weight": "model-00001-of-00003.safetensors",
415
+ "vision_backbone.featurizer.blocks.16.attn.proj.bias": "model-00001-of-00003.safetensors",
416
+ "vision_backbone.featurizer.blocks.16.attn.proj.weight": "model-00001-of-00003.safetensors",
417
+ "vision_backbone.featurizer.blocks.16.attn.qkv.bias": "model-00001-of-00003.safetensors",
418
+ "vision_backbone.featurizer.blocks.16.attn.qkv.weight": "model-00001-of-00003.safetensors",
419
+ "vision_backbone.featurizer.blocks.16.ls1.scale_factor": "model-00001-of-00003.safetensors",
420
+ "vision_backbone.featurizer.blocks.16.ls2.scale_factor": "model-00001-of-00003.safetensors",
421
+ "vision_backbone.featurizer.blocks.16.mlp.fc1.bias": "model-00001-of-00003.safetensors",
422
+ "vision_backbone.featurizer.blocks.16.mlp.fc1.weight": "model-00001-of-00003.safetensors",
423
+ "vision_backbone.featurizer.blocks.16.mlp.fc2.bias": "model-00001-of-00003.safetensors",
424
+ "vision_backbone.featurizer.blocks.16.mlp.fc2.weight": "model-00001-of-00003.safetensors",
425
+ "vision_backbone.featurizer.blocks.16.norm1.bias": "model-00001-of-00003.safetensors",
426
+ "vision_backbone.featurizer.blocks.16.norm1.weight": "model-00001-of-00003.safetensors",
427
+ "vision_backbone.featurizer.blocks.16.norm2.bias": "model-00001-of-00003.safetensors",
428
+ "vision_backbone.featurizer.blocks.16.norm2.weight": "model-00001-of-00003.safetensors",
429
+ "vision_backbone.featurizer.blocks.17.attn.proj.bias": "model-00001-of-00003.safetensors",
430
+ "vision_backbone.featurizer.blocks.17.attn.proj.weight": "model-00001-of-00003.safetensors",
431
+ "vision_backbone.featurizer.blocks.17.attn.qkv.bias": "model-00001-of-00003.safetensors",
432
+ "vision_backbone.featurizer.blocks.17.attn.qkv.weight": "model-00001-of-00003.safetensors",
433
+ "vision_backbone.featurizer.blocks.17.ls1.scale_factor": "model-00001-of-00003.safetensors",
434
+ "vision_backbone.featurizer.blocks.17.ls2.scale_factor": "model-00001-of-00003.safetensors",
435
+ "vision_backbone.featurizer.blocks.17.mlp.fc1.bias": "model-00001-of-00003.safetensors",
436
+ "vision_backbone.featurizer.blocks.17.mlp.fc1.weight": "model-00001-of-00003.safetensors",
437
+ "vision_backbone.featurizer.blocks.17.mlp.fc2.bias": "model-00001-of-00003.safetensors",
438
+ "vision_backbone.featurizer.blocks.17.mlp.fc2.weight": "model-00001-of-00003.safetensors",
439
+ "vision_backbone.featurizer.blocks.17.norm1.bias": "model-00001-of-00003.safetensors",
440
+ "vision_backbone.featurizer.blocks.17.norm1.weight": "model-00001-of-00003.safetensors",
441
+ "vision_backbone.featurizer.blocks.17.norm2.bias": "model-00001-of-00003.safetensors",
442
+ "vision_backbone.featurizer.blocks.17.norm2.weight": "model-00001-of-00003.safetensors",
443
+ "vision_backbone.featurizer.blocks.18.attn.proj.bias": "model-00001-of-00003.safetensors",
444
+ "vision_backbone.featurizer.blocks.18.attn.proj.weight": "model-00001-of-00003.safetensors",
445
+ "vision_backbone.featurizer.blocks.18.attn.qkv.bias": "model-00001-of-00003.safetensors",
446
+ "vision_backbone.featurizer.blocks.18.attn.qkv.weight": "model-00001-of-00003.safetensors",
447
+ "vision_backbone.featurizer.blocks.18.ls1.scale_factor": "model-00001-of-00003.safetensors",
448
+ "vision_backbone.featurizer.blocks.18.ls2.scale_factor": "model-00001-of-00003.safetensors",
449
+ "vision_backbone.featurizer.blocks.18.mlp.fc1.bias": "model-00001-of-00003.safetensors",
450
+ "vision_backbone.featurizer.blocks.18.mlp.fc1.weight": "model-00001-of-00003.safetensors",
451
+ "vision_backbone.featurizer.blocks.18.mlp.fc2.bias": "model-00001-of-00003.safetensors",
452
+ "vision_backbone.featurizer.blocks.18.mlp.fc2.weight": "model-00001-of-00003.safetensors",
453
+ "vision_backbone.featurizer.blocks.18.norm1.bias": "model-00001-of-00003.safetensors",
454
+ "vision_backbone.featurizer.blocks.18.norm1.weight": "model-00001-of-00003.safetensors",
455
+ "vision_backbone.featurizer.blocks.18.norm2.bias": "model-00001-of-00003.safetensors",
456
+ "vision_backbone.featurizer.blocks.18.norm2.weight": "model-00001-of-00003.safetensors",
457
+ "vision_backbone.featurizer.blocks.19.attn.proj.bias": "model-00001-of-00003.safetensors",
458
+ "vision_backbone.featurizer.blocks.19.attn.proj.weight": "model-00001-of-00003.safetensors",
459
+ "vision_backbone.featurizer.blocks.19.attn.qkv.bias": "model-00001-of-00003.safetensors",
460
+ "vision_backbone.featurizer.blocks.19.attn.qkv.weight": "model-00001-of-00003.safetensors",
461
+ "vision_backbone.featurizer.blocks.19.ls1.scale_factor": "model-00001-of-00003.safetensors",
462
+ "vision_backbone.featurizer.blocks.19.ls2.scale_factor": "model-00001-of-00003.safetensors",
463
+ "vision_backbone.featurizer.blocks.19.mlp.fc1.bias": "model-00001-of-00003.safetensors",
464
+ "vision_backbone.featurizer.blocks.19.mlp.fc1.weight": "model-00001-of-00003.safetensors",
465
+ "vision_backbone.featurizer.blocks.19.mlp.fc2.bias": "model-00001-of-00003.safetensors",
466
+ "vision_backbone.featurizer.blocks.19.mlp.fc2.weight": "model-00001-of-00003.safetensors",
467
+ "vision_backbone.featurizer.blocks.19.norm1.bias": "model-00001-of-00003.safetensors",
468
+ "vision_backbone.featurizer.blocks.19.norm1.weight": "model-00001-of-00003.safetensors",
469
+ "vision_backbone.featurizer.blocks.19.norm2.bias": "model-00001-of-00003.safetensors",
470
+ "vision_backbone.featurizer.blocks.19.norm2.weight": "model-00001-of-00003.safetensors",
471
+ "vision_backbone.featurizer.blocks.2.attn.proj.bias": "model-00001-of-00003.safetensors",
472
+ "vision_backbone.featurizer.blocks.2.attn.proj.weight": "model-00001-of-00003.safetensors",
473
+ "vision_backbone.featurizer.blocks.2.attn.qkv.bias": "model-00001-of-00003.safetensors",
474
+ "vision_backbone.featurizer.blocks.2.attn.qkv.weight": "model-00001-of-00003.safetensors",
475
+ "vision_backbone.featurizer.blocks.2.ls1.scale_factor": "model-00001-of-00003.safetensors",
476
+ "vision_backbone.featurizer.blocks.2.ls2.scale_factor": "model-00001-of-00003.safetensors",
477
+ "vision_backbone.featurizer.blocks.2.mlp.fc1.bias": "model-00001-of-00003.safetensors",
478
+ "vision_backbone.featurizer.blocks.2.mlp.fc1.weight": "model-00001-of-00003.safetensors",
479
+ "vision_backbone.featurizer.blocks.2.mlp.fc2.bias": "model-00001-of-00003.safetensors",
480
+ "vision_backbone.featurizer.blocks.2.mlp.fc2.weight": "model-00001-of-00003.safetensors",
481
+ "vision_backbone.featurizer.blocks.2.norm1.bias": "model-00001-of-00003.safetensors",
482
+ "vision_backbone.featurizer.blocks.2.norm1.weight": "model-00001-of-00003.safetensors",
483
+ "vision_backbone.featurizer.blocks.2.norm2.bias": "model-00001-of-00003.safetensors",
484
+ "vision_backbone.featurizer.blocks.2.norm2.weight": "model-00001-of-00003.safetensors",
485
+ "vision_backbone.featurizer.blocks.20.attn.proj.bias": "model-00001-of-00003.safetensors",
486
+ "vision_backbone.featurizer.blocks.20.attn.proj.weight": "model-00001-of-00003.safetensors",
487
+ "vision_backbone.featurizer.blocks.20.attn.qkv.bias": "model-00001-of-00003.safetensors",
488
+ "vision_backbone.featurizer.blocks.20.attn.qkv.weight": "model-00001-of-00003.safetensors",
489
+ "vision_backbone.featurizer.blocks.20.ls1.scale_factor": "model-00001-of-00003.safetensors",
490
+ "vision_backbone.featurizer.blocks.20.ls2.scale_factor": "model-00001-of-00003.safetensors",
491
+ "vision_backbone.featurizer.blocks.20.mlp.fc1.bias": "model-00001-of-00003.safetensors",
492
+ "vision_backbone.featurizer.blocks.20.mlp.fc1.weight": "model-00001-of-00003.safetensors",
493
+ "vision_backbone.featurizer.blocks.20.mlp.fc2.bias": "model-00001-of-00003.safetensors",
494
+ "vision_backbone.featurizer.blocks.20.mlp.fc2.weight": "model-00001-of-00003.safetensors",
495
+ "vision_backbone.featurizer.blocks.20.norm1.bias": "model-00001-of-00003.safetensors",
496
+ "vision_backbone.featurizer.blocks.20.norm1.weight": "model-00001-of-00003.safetensors",
497
+ "vision_backbone.featurizer.blocks.20.norm2.bias": "model-00001-of-00003.safetensors",
498
+ "vision_backbone.featurizer.blocks.20.norm2.weight": "model-00001-of-00003.safetensors",
499
+ "vision_backbone.featurizer.blocks.21.attn.proj.bias": "model-00001-of-00003.safetensors",
500
+ "vision_backbone.featurizer.blocks.21.attn.proj.weight": "model-00001-of-00003.safetensors",
501
+ "vision_backbone.featurizer.blocks.21.attn.qkv.bias": "model-00001-of-00003.safetensors",
502
+ "vision_backbone.featurizer.blocks.21.attn.qkv.weight": "model-00001-of-00003.safetensors",
503
+ "vision_backbone.featurizer.blocks.21.ls1.scale_factor": "model-00001-of-00003.safetensors",
504
+ "vision_backbone.featurizer.blocks.21.ls2.scale_factor": "model-00001-of-00003.safetensors",
505
+ "vision_backbone.featurizer.blocks.21.mlp.fc1.bias": "model-00001-of-00003.safetensors",
506
+ "vision_backbone.featurizer.blocks.21.mlp.fc1.weight": "model-00001-of-00003.safetensors",
507
+ "vision_backbone.featurizer.blocks.21.mlp.fc2.bias": "model-00001-of-00003.safetensors",
508
+ "vision_backbone.featurizer.blocks.21.mlp.fc2.weight": "model-00001-of-00003.safetensors",
509
+ "vision_backbone.featurizer.blocks.21.norm1.bias": "model-00001-of-00003.safetensors",
510
+ "vision_backbone.featurizer.blocks.21.norm1.weight": "model-00001-of-00003.safetensors",
511
+ "vision_backbone.featurizer.blocks.21.norm2.bias": "model-00001-of-00003.safetensors",
512
+ "vision_backbone.featurizer.blocks.21.norm2.weight": "model-00001-of-00003.safetensors",
513
+ "vision_backbone.featurizer.blocks.22.attn.proj.bias": "model-00001-of-00003.safetensors",
514
+ "vision_backbone.featurizer.blocks.22.attn.proj.weight": "model-00001-of-00003.safetensors",
515
+ "vision_backbone.featurizer.blocks.22.attn.qkv.bias": "model-00001-of-00003.safetensors",
516
+ "vision_backbone.featurizer.blocks.22.attn.qkv.weight": "model-00001-of-00003.safetensors",
517
+ "vision_backbone.featurizer.blocks.22.ls1.scale_factor": "model-00001-of-00003.safetensors",
518
+ "vision_backbone.featurizer.blocks.22.ls2.scale_factor": "model-00001-of-00003.safetensors",
519
+ "vision_backbone.featurizer.blocks.22.mlp.fc1.bias": "model-00001-of-00003.safetensors",
520
+ "vision_backbone.featurizer.blocks.22.mlp.fc1.weight": "model-00001-of-00003.safetensors",
521
+ "vision_backbone.featurizer.blocks.22.mlp.fc2.bias": "model-00001-of-00003.safetensors",
522
+ "vision_backbone.featurizer.blocks.22.mlp.fc2.weight": "model-00001-of-00003.safetensors",
523
+ "vision_backbone.featurizer.blocks.22.norm1.bias": "model-00001-of-00003.safetensors",
524
+ "vision_backbone.featurizer.blocks.22.norm1.weight": "model-00001-of-00003.safetensors",
525
+ "vision_backbone.featurizer.blocks.22.norm2.bias": "model-00001-of-00003.safetensors",
526
+ "vision_backbone.featurizer.blocks.22.norm2.weight": "model-00001-of-00003.safetensors",
527
+ "vision_backbone.featurizer.blocks.23.attn.proj.bias": "model-00001-of-00003.safetensors",
528
+ "vision_backbone.featurizer.blocks.23.attn.proj.weight": "model-00001-of-00003.safetensors",
529
+ "vision_backbone.featurizer.blocks.23.attn.qkv.bias": "model-00001-of-00003.safetensors",
530
+ "vision_backbone.featurizer.blocks.23.attn.qkv.weight": "model-00001-of-00003.safetensors",
531
+ "vision_backbone.featurizer.blocks.23.ls1.scale_factor": "model-00001-of-00003.safetensors",
532
+ "vision_backbone.featurizer.blocks.23.ls2.scale_factor": "model-00001-of-00003.safetensors",
533
+ "vision_backbone.featurizer.blocks.23.mlp.fc1.bias": "model-00001-of-00003.safetensors",
534
+ "vision_backbone.featurizer.blocks.23.mlp.fc1.weight": "model-00001-of-00003.safetensors",
535
+ "vision_backbone.featurizer.blocks.23.mlp.fc2.bias": "model-00001-of-00003.safetensors",
536
+ "vision_backbone.featurizer.blocks.23.mlp.fc2.weight": "model-00001-of-00003.safetensors",
537
+ "vision_backbone.featurizer.blocks.23.norm1.bias": "model-00001-of-00003.safetensors",
538
+ "vision_backbone.featurizer.blocks.23.norm1.weight": "model-00001-of-00003.safetensors",
539
+ "vision_backbone.featurizer.blocks.23.norm2.bias": "model-00001-of-00003.safetensors",
540
+ "vision_backbone.featurizer.blocks.23.norm2.weight": "model-00001-of-00003.safetensors",
541
+ "vision_backbone.featurizer.blocks.3.attn.proj.bias": "model-00001-of-00003.safetensors",
542
+ "vision_backbone.featurizer.blocks.3.attn.proj.weight": "model-00001-of-00003.safetensors",
543
+ "vision_backbone.featurizer.blocks.3.attn.qkv.bias": "model-00001-of-00003.safetensors",
544
+ "vision_backbone.featurizer.blocks.3.attn.qkv.weight": "model-00001-of-00003.safetensors",
545
+ "vision_backbone.featurizer.blocks.3.ls1.scale_factor": "model-00001-of-00003.safetensors",
546
+ "vision_backbone.featurizer.blocks.3.ls2.scale_factor": "model-00001-of-00003.safetensors",
547
+ "vision_backbone.featurizer.blocks.3.mlp.fc1.bias": "model-00001-of-00003.safetensors",
548
+ "vision_backbone.featurizer.blocks.3.mlp.fc1.weight": "model-00001-of-00003.safetensors",
549
+ "vision_backbone.featurizer.blocks.3.mlp.fc2.bias": "model-00001-of-00003.safetensors",
550
+ "vision_backbone.featurizer.blocks.3.mlp.fc2.weight": "model-00001-of-00003.safetensors",
551
+ "vision_backbone.featurizer.blocks.3.norm1.bias": "model-00001-of-00003.safetensors",
552
+ "vision_backbone.featurizer.blocks.3.norm1.weight": "model-00001-of-00003.safetensors",
553
+ "vision_backbone.featurizer.blocks.3.norm2.bias": "model-00001-of-00003.safetensors",
554
+ "vision_backbone.featurizer.blocks.3.norm2.weight": "model-00001-of-00003.safetensors",
555
+ "vision_backbone.featurizer.blocks.4.attn.proj.bias": "model-00001-of-00003.safetensors",
556
+ "vision_backbone.featurizer.blocks.4.attn.proj.weight": "model-00001-of-00003.safetensors",
557
+ "vision_backbone.featurizer.blocks.4.attn.qkv.bias": "model-00001-of-00003.safetensors",
558
+ "vision_backbone.featurizer.blocks.4.attn.qkv.weight": "model-00001-of-00003.safetensors",
559
+ "vision_backbone.featurizer.blocks.4.ls1.scale_factor": "model-00001-of-00003.safetensors",
560
+ "vision_backbone.featurizer.blocks.4.ls2.scale_factor": "model-00001-of-00003.safetensors",
561
+ "vision_backbone.featurizer.blocks.4.mlp.fc1.bias": "model-00001-of-00003.safetensors",
562
+ "vision_backbone.featurizer.blocks.4.mlp.fc1.weight": "model-00001-of-00003.safetensors",
563
+ "vision_backbone.featurizer.blocks.4.mlp.fc2.bias": "model-00001-of-00003.safetensors",
564
+ "vision_backbone.featurizer.blocks.4.mlp.fc2.weight": "model-00001-of-00003.safetensors",
565
+ "vision_backbone.featurizer.blocks.4.norm1.bias": "model-00001-of-00003.safetensors",
566
+ "vision_backbone.featurizer.blocks.4.norm1.weight": "model-00001-of-00003.safetensors",
567
+ "vision_backbone.featurizer.blocks.4.norm2.bias": "model-00001-of-00003.safetensors",
568
+ "vision_backbone.featurizer.blocks.4.norm2.weight": "model-00001-of-00003.safetensors",
569
+ "vision_backbone.featurizer.blocks.5.attn.proj.bias": "model-00001-of-00003.safetensors",
570
+ "vision_backbone.featurizer.blocks.5.attn.proj.weight": "model-00001-of-00003.safetensors",
571
+ "vision_backbone.featurizer.blocks.5.attn.qkv.bias": "model-00001-of-00003.safetensors",
572
+ "vision_backbone.featurizer.blocks.5.attn.qkv.weight": "model-00001-of-00003.safetensors",
573
+ "vision_backbone.featurizer.blocks.5.ls1.scale_factor": "model-00001-of-00003.safetensors",
574
+ "vision_backbone.featurizer.blocks.5.ls2.scale_factor": "model-00001-of-00003.safetensors",
575
+ "vision_backbone.featurizer.blocks.5.mlp.fc1.bias": "model-00001-of-00003.safetensors",
576
+ "vision_backbone.featurizer.blocks.5.mlp.fc1.weight": "model-00001-of-00003.safetensors",
577
+ "vision_backbone.featurizer.blocks.5.mlp.fc2.bias": "model-00001-of-00003.safetensors",
578
+ "vision_backbone.featurizer.blocks.5.mlp.fc2.weight": "model-00001-of-00003.safetensors",
579
+ "vision_backbone.featurizer.blocks.5.norm1.bias": "model-00001-of-00003.safetensors",
580
+ "vision_backbone.featurizer.blocks.5.norm1.weight": "model-00001-of-00003.safetensors",
581
+ "vision_backbone.featurizer.blocks.5.norm2.bias": "model-00001-of-00003.safetensors",
582
+ "vision_backbone.featurizer.blocks.5.norm2.weight": "model-00001-of-00003.safetensors",
583
+ "vision_backbone.featurizer.blocks.6.attn.proj.bias": "model-00001-of-00003.safetensors",
584
+ "vision_backbone.featurizer.blocks.6.attn.proj.weight": "model-00001-of-00003.safetensors",
585
+ "vision_backbone.featurizer.blocks.6.attn.qkv.bias": "model-00001-of-00003.safetensors",
586
+ "vision_backbone.featurizer.blocks.6.attn.qkv.weight": "model-00001-of-00003.safetensors",
587
+ "vision_backbone.featurizer.blocks.6.ls1.scale_factor": "model-00001-of-00003.safetensors",
588
+ "vision_backbone.featurizer.blocks.6.ls2.scale_factor": "model-00001-of-00003.safetensors",
589
+ "vision_backbone.featurizer.blocks.6.mlp.fc1.bias": "model-00001-of-00003.safetensors",
590
+ "vision_backbone.featurizer.blocks.6.mlp.fc1.weight": "model-00001-of-00003.safetensors",
591
+ "vision_backbone.featurizer.blocks.6.mlp.fc2.bias": "model-00001-of-00003.safetensors",
592
+ "vision_backbone.featurizer.blocks.6.mlp.fc2.weight": "model-00001-of-00003.safetensors",
593
+ "vision_backbone.featurizer.blocks.6.norm1.bias": "model-00001-of-00003.safetensors",
594
+ "vision_backbone.featurizer.blocks.6.norm1.weight": "model-00001-of-00003.safetensors",
595
+ "vision_backbone.featurizer.blocks.6.norm2.bias": "model-00001-of-00003.safetensors",
596
+ "vision_backbone.featurizer.blocks.6.norm2.weight": "model-00001-of-00003.safetensors",
597
+ "vision_backbone.featurizer.blocks.7.attn.proj.bias": "model-00001-of-00003.safetensors",
598
+ "vision_backbone.featurizer.blocks.7.attn.proj.weight": "model-00001-of-00003.safetensors",
599
+ "vision_backbone.featurizer.blocks.7.attn.qkv.bias": "model-00001-of-00003.safetensors",
600
+ "vision_backbone.featurizer.blocks.7.attn.qkv.weight": "model-00001-of-00003.safetensors",
601
+ "vision_backbone.featurizer.blocks.7.ls1.scale_factor": "model-00001-of-00003.safetensors",
602
+ "vision_backbone.featurizer.blocks.7.ls2.scale_factor": "model-00001-of-00003.safetensors",
603
+ "vision_backbone.featurizer.blocks.7.mlp.fc1.bias": "model-00001-of-00003.safetensors",
604
+ "vision_backbone.featurizer.blocks.7.mlp.fc1.weight": "model-00001-of-00003.safetensors",
605
+ "vision_backbone.featurizer.blocks.7.mlp.fc2.bias": "model-00001-of-00003.safetensors",
606
+ "vision_backbone.featurizer.blocks.7.mlp.fc2.weight": "model-00001-of-00003.safetensors",
607
+ "vision_backbone.featurizer.blocks.7.norm1.bias": "model-00001-of-00003.safetensors",
608
+ "vision_backbone.featurizer.blocks.7.norm1.weight": "model-00001-of-00003.safetensors",
609
+ "vision_backbone.featurizer.blocks.7.norm2.bias": "model-00001-of-00003.safetensors",
610
+ "vision_backbone.featurizer.blocks.7.norm2.weight": "model-00001-of-00003.safetensors",
611
+ "vision_backbone.featurizer.blocks.8.attn.proj.bias": "model-00001-of-00003.safetensors",
612
+ "vision_backbone.featurizer.blocks.8.attn.proj.weight": "model-00001-of-00003.safetensors",
613
+ "vision_backbone.featurizer.blocks.8.attn.qkv.bias": "model-00001-of-00003.safetensors",
614
+ "vision_backbone.featurizer.blocks.8.attn.qkv.weight": "model-00001-of-00003.safetensors",
615
+ "vision_backbone.featurizer.blocks.8.ls1.scale_factor": "model-00001-of-00003.safetensors",
616
+ "vision_backbone.featurizer.blocks.8.ls2.scale_factor": "model-00001-of-00003.safetensors",
617
+ "vision_backbone.featurizer.blocks.8.mlp.fc1.bias": "model-00001-of-00003.safetensors",
618
+ "vision_backbone.featurizer.blocks.8.mlp.fc1.weight": "model-00001-of-00003.safetensors",
619
+ "vision_backbone.featurizer.blocks.8.mlp.fc2.bias": "model-00001-of-00003.safetensors",
620
+ "vision_backbone.featurizer.blocks.8.mlp.fc2.weight": "model-00001-of-00003.safetensors",
621
+ "vision_backbone.featurizer.blocks.8.norm1.bias": "model-00001-of-00003.safetensors",
622
+ "vision_backbone.featurizer.blocks.8.norm1.weight": "model-00001-of-00003.safetensors",
623
+ "vision_backbone.featurizer.blocks.8.norm2.bias": "model-00001-of-00003.safetensors",
624
+ "vision_backbone.featurizer.blocks.8.norm2.weight": "model-00001-of-00003.safetensors",
625
+ "vision_backbone.featurizer.blocks.9.attn.proj.bias": "model-00001-of-00003.safetensors",
626
+ "vision_backbone.featurizer.blocks.9.attn.proj.weight": "model-00001-of-00003.safetensors",
627
+ "vision_backbone.featurizer.blocks.9.attn.qkv.bias": "model-00001-of-00003.safetensors",
628
+ "vision_backbone.featurizer.blocks.9.attn.qkv.weight": "model-00001-of-00003.safetensors",
629
+ "vision_backbone.featurizer.blocks.9.ls1.scale_factor": "model-00001-of-00003.safetensors",
630
+ "vision_backbone.featurizer.blocks.9.ls2.scale_factor": "model-00001-of-00003.safetensors",
631
+ "vision_backbone.featurizer.blocks.9.mlp.fc1.bias": "model-00001-of-00003.safetensors",
632
+ "vision_backbone.featurizer.blocks.9.mlp.fc1.weight": "model-00001-of-00003.safetensors",
633
+ "vision_backbone.featurizer.blocks.9.mlp.fc2.bias": "model-00001-of-00003.safetensors",
634
+ "vision_backbone.featurizer.blocks.9.mlp.fc2.weight": "model-00001-of-00003.safetensors",
635
+ "vision_backbone.featurizer.blocks.9.norm1.bias": "model-00001-of-00003.safetensors",
636
+ "vision_backbone.featurizer.blocks.9.norm1.weight": "model-00001-of-00003.safetensors",
637
+ "vision_backbone.featurizer.blocks.9.norm2.bias": "model-00001-of-00003.safetensors",
638
+ "vision_backbone.featurizer.blocks.9.norm2.weight": "model-00001-of-00003.safetensors",
639
+ "vision_backbone.featurizer.cls_token": "model-00001-of-00003.safetensors",
640
+ "vision_backbone.featurizer.norm.bias": "model-00001-of-00003.safetensors",
641
+ "vision_backbone.featurizer.norm.weight": "model-00001-of-00003.safetensors",
642
+ "vision_backbone.featurizer.patch_embed.proj.bias": "model-00001-of-00003.safetensors",
643
+ "vision_backbone.featurizer.patch_embed.proj.weight": "model-00001-of-00003.safetensors",
644
+ "vision_backbone.featurizer.pos_embed": "model-00001-of-00003.safetensors",
645
+ "vision_backbone.featurizer.reg_token": "model-00001-of-00003.safetensors",
646
+ "vision_backbone.fused_featurizer.attn_pool.kv.bias": "model-00001-of-00003.safetensors",
647
+ "vision_backbone.fused_featurizer.attn_pool.kv.weight": "model-00001-of-00003.safetensors",
648
+ "vision_backbone.fused_featurizer.attn_pool.latent": "model-00001-of-00003.safetensors",
649
+ "vision_backbone.fused_featurizer.attn_pool.mlp.fc1.bias": "model-00001-of-00003.safetensors",
650
+ "vision_backbone.fused_featurizer.attn_pool.mlp.fc1.weight": "model-00001-of-00003.safetensors",
651
+ "vision_backbone.fused_featurizer.attn_pool.mlp.fc2.bias": "model-00001-of-00003.safetensors",
652
+ "vision_backbone.fused_featurizer.attn_pool.mlp.fc2.weight": "model-00001-of-00003.safetensors",
653
+ "vision_backbone.fused_featurizer.attn_pool.norm.bias": "model-00001-of-00003.safetensors",
654
+ "vision_backbone.fused_featurizer.attn_pool.norm.weight": "model-00001-of-00003.safetensors",
655
+ "vision_backbone.fused_featurizer.attn_pool.proj.bias": "model-00001-of-00003.safetensors",
656
+ "vision_backbone.fused_featurizer.attn_pool.proj.weight": "model-00001-of-00003.safetensors",
657
+ "vision_backbone.fused_featurizer.attn_pool.q.bias": "model-00001-of-00003.safetensors",
658
+ "vision_backbone.fused_featurizer.attn_pool.q.weight": "model-00001-of-00003.safetensors",
659
+ "vision_backbone.fused_featurizer.blocks.0.attn.proj.bias": "model-00001-of-00003.safetensors",
660
+ "vision_backbone.fused_featurizer.blocks.0.attn.proj.weight": "model-00001-of-00003.safetensors",
661
+ "vision_backbone.fused_featurizer.blocks.0.attn.qkv.bias": "model-00001-of-00003.safetensors",
662
+ "vision_backbone.fused_featurizer.blocks.0.attn.qkv.weight": "model-00001-of-00003.safetensors",
663
+ "vision_backbone.fused_featurizer.blocks.0.mlp.fc1.bias": "model-00001-of-00003.safetensors",
664
+ "vision_backbone.fused_featurizer.blocks.0.mlp.fc1.weight": "model-00001-of-00003.safetensors",
665
+ "vision_backbone.fused_featurizer.blocks.0.mlp.fc2.bias": "model-00001-of-00003.safetensors",
666
+ "vision_backbone.fused_featurizer.blocks.0.mlp.fc2.weight": "model-00001-of-00003.safetensors",
667
+ "vision_backbone.fused_featurizer.blocks.0.norm1.bias": "model-00001-of-00003.safetensors",
668
+ "vision_backbone.fused_featurizer.blocks.0.norm1.weight": "model-00001-of-00003.safetensors",
669
+ "vision_backbone.fused_featurizer.blocks.0.norm2.bias": "model-00001-of-00003.safetensors",
670
+ "vision_backbone.fused_featurizer.blocks.0.norm2.weight": "model-00001-of-00003.safetensors",
671
+ "vision_backbone.fused_featurizer.blocks.1.attn.proj.bias": "model-00001-of-00003.safetensors",
672
+ "vision_backbone.fused_featurizer.blocks.1.attn.proj.weight": "model-00001-of-00003.safetensors",
673
+ "vision_backbone.fused_featurizer.blocks.1.attn.qkv.bias": "model-00001-of-00003.safetensors",
674
+ "vision_backbone.fused_featurizer.blocks.1.attn.qkv.weight": "model-00001-of-00003.safetensors",
675
+ "vision_backbone.fused_featurizer.blocks.1.mlp.fc1.bias": "model-00001-of-00003.safetensors",
676
+ "vision_backbone.fused_featurizer.blocks.1.mlp.fc1.weight": "model-00001-of-00003.safetensors",
677
+ "vision_backbone.fused_featurizer.blocks.1.mlp.fc2.bias": "model-00001-of-00003.safetensors",
678
+ "vision_backbone.fused_featurizer.blocks.1.mlp.fc2.weight": "model-00001-of-00003.safetensors",
679
+ "vision_backbone.fused_featurizer.blocks.1.norm1.bias": "model-00001-of-00003.safetensors",
680
+ "vision_backbone.fused_featurizer.blocks.1.norm1.weight": "model-00001-of-00003.safetensors",
681
+ "vision_backbone.fused_featurizer.blocks.1.norm2.bias": "model-00001-of-00003.safetensors",
682
+ "vision_backbone.fused_featurizer.blocks.1.norm2.weight": "model-00001-of-00003.safetensors",
683
+ "vision_backbone.fused_featurizer.blocks.10.attn.proj.bias": "model-00001-of-00003.safetensors",
684
+ "vision_backbone.fused_featurizer.blocks.10.attn.proj.weight": "model-00001-of-00003.safetensors",
685
+ "vision_backbone.fused_featurizer.blocks.10.attn.qkv.bias": "model-00001-of-00003.safetensors",
686
+ "vision_backbone.fused_featurizer.blocks.10.attn.qkv.weight": "model-00001-of-00003.safetensors",
687
+ "vision_backbone.fused_featurizer.blocks.10.mlp.fc1.bias": "model-00001-of-00003.safetensors",
688
+ "vision_backbone.fused_featurizer.blocks.10.mlp.fc1.weight": "model-00001-of-00003.safetensors",
689
+ "vision_backbone.fused_featurizer.blocks.10.mlp.fc2.bias": "model-00001-of-00003.safetensors",
690
+ "vision_backbone.fused_featurizer.blocks.10.mlp.fc2.weight": "model-00001-of-00003.safetensors",
691
+ "vision_backbone.fused_featurizer.blocks.10.norm1.bias": "model-00001-of-00003.safetensors",
692
+ "vision_backbone.fused_featurizer.blocks.10.norm1.weight": "model-00001-of-00003.safetensors",
693
+ "vision_backbone.fused_featurizer.blocks.10.norm2.bias": "model-00001-of-00003.safetensors",
694
+ "vision_backbone.fused_featurizer.blocks.10.norm2.weight": "model-00001-of-00003.safetensors",
695
+ "vision_backbone.fused_featurizer.blocks.11.attn.proj.bias": "model-00001-of-00003.safetensors",
696
+ "vision_backbone.fused_featurizer.blocks.11.attn.proj.weight": "model-00001-of-00003.safetensors",
697
+ "vision_backbone.fused_featurizer.blocks.11.attn.qkv.bias": "model-00001-of-00003.safetensors",
698
+ "vision_backbone.fused_featurizer.blocks.11.attn.qkv.weight": "model-00001-of-00003.safetensors",
699
+ "vision_backbone.fused_featurizer.blocks.11.mlp.fc1.bias": "model-00001-of-00003.safetensors",
700
+ "vision_backbone.fused_featurizer.blocks.11.mlp.fc1.weight": "model-00001-of-00003.safetensors",
701
+ "vision_backbone.fused_featurizer.blocks.11.mlp.fc2.bias": "model-00001-of-00003.safetensors",
702
+ "vision_backbone.fused_featurizer.blocks.11.mlp.fc2.weight": "model-00001-of-00003.safetensors",
703
+ "vision_backbone.fused_featurizer.blocks.11.norm1.bias": "model-00001-of-00003.safetensors",
704
+ "vision_backbone.fused_featurizer.blocks.11.norm1.weight": "model-00001-of-00003.safetensors",
705
+ "vision_backbone.fused_featurizer.blocks.11.norm2.bias": "model-00001-of-00003.safetensors",
706
+ "vision_backbone.fused_featurizer.blocks.11.norm2.weight": "model-00001-of-00003.safetensors",
707
+ "vision_backbone.fused_featurizer.blocks.12.attn.proj.bias": "model-00001-of-00003.safetensors",
708
+ "vision_backbone.fused_featurizer.blocks.12.attn.proj.weight": "model-00001-of-00003.safetensors",
709
+ "vision_backbone.fused_featurizer.blocks.12.attn.qkv.bias": "model-00001-of-00003.safetensors",
710
+ "vision_backbone.fused_featurizer.blocks.12.attn.qkv.weight": "model-00001-of-00003.safetensors",
711
+ "vision_backbone.fused_featurizer.blocks.12.mlp.fc1.bias": "model-00001-of-00003.safetensors",
712
+ "vision_backbone.fused_featurizer.blocks.12.mlp.fc1.weight": "model-00001-of-00003.safetensors",
713
+ "vision_backbone.fused_featurizer.blocks.12.mlp.fc2.bias": "model-00001-of-00003.safetensors",
714
+ "vision_backbone.fused_featurizer.blocks.12.mlp.fc2.weight": "model-00001-of-00003.safetensors",
715
+ "vision_backbone.fused_featurizer.blocks.12.norm1.bias": "model-00001-of-00003.safetensors",
716
+ "vision_backbone.fused_featurizer.blocks.12.norm1.weight": "model-00001-of-00003.safetensors",
717
+ "vision_backbone.fused_featurizer.blocks.12.norm2.bias": "model-00001-of-00003.safetensors",
718
+ "vision_backbone.fused_featurizer.blocks.12.norm2.weight": "model-00001-of-00003.safetensors",
719
+ "vision_backbone.fused_featurizer.blocks.13.attn.proj.bias": "model-00001-of-00003.safetensors",
720
+ "vision_backbone.fused_featurizer.blocks.13.attn.proj.weight": "model-00001-of-00003.safetensors",
721
+ "vision_backbone.fused_featurizer.blocks.13.attn.qkv.bias": "model-00001-of-00003.safetensors",
722
+ "vision_backbone.fused_featurizer.blocks.13.attn.qkv.weight": "model-00001-of-00003.safetensors",
723
+ "vision_backbone.fused_featurizer.blocks.13.mlp.fc1.bias": "model-00001-of-00003.safetensors",
724
+ "vision_backbone.fused_featurizer.blocks.13.mlp.fc1.weight": "model-00001-of-00003.safetensors",
725
+ "vision_backbone.fused_featurizer.blocks.13.mlp.fc2.bias": "model-00001-of-00003.safetensors",
726
+ "vision_backbone.fused_featurizer.blocks.13.mlp.fc2.weight": "model-00001-of-00003.safetensors",
727
+ "vision_backbone.fused_featurizer.blocks.13.norm1.bias": "model-00001-of-00003.safetensors",
728
+ "vision_backbone.fused_featurizer.blocks.13.norm1.weight": "model-00001-of-00003.safetensors",
729
+ "vision_backbone.fused_featurizer.blocks.13.norm2.bias": "model-00001-of-00003.safetensors",
730
+ "vision_backbone.fused_featurizer.blocks.13.norm2.weight": "model-00001-of-00003.safetensors",
731
+ "vision_backbone.fused_featurizer.blocks.14.attn.proj.bias": "model-00001-of-00003.safetensors",
732
+ "vision_backbone.fused_featurizer.blocks.14.attn.proj.weight": "model-00001-of-00003.safetensors",
733
+ "vision_backbone.fused_featurizer.blocks.14.attn.qkv.bias": "model-00001-of-00003.safetensors",
734
+ "vision_backbone.fused_featurizer.blocks.14.attn.qkv.weight": "model-00001-of-00003.safetensors",
735
+ "vision_backbone.fused_featurizer.blocks.14.mlp.fc1.bias": "model-00001-of-00003.safetensors",
736
+ "vision_backbone.fused_featurizer.blocks.14.mlp.fc1.weight": "model-00001-of-00003.safetensors",
737
+ "vision_backbone.fused_featurizer.blocks.14.mlp.fc2.bias": "model-00001-of-00003.safetensors",
738
+ "vision_backbone.fused_featurizer.blocks.14.mlp.fc2.weight": "model-00001-of-00003.safetensors",
739
+ "vision_backbone.fused_featurizer.blocks.14.norm1.bias": "model-00001-of-00003.safetensors",
740
+ "vision_backbone.fused_featurizer.blocks.14.norm1.weight": "model-00001-of-00003.safetensors",
741
+ "vision_backbone.fused_featurizer.blocks.14.norm2.bias": "model-00001-of-00003.safetensors",
742
+ "vision_backbone.fused_featurizer.blocks.14.norm2.weight": "model-00001-of-00003.safetensors",
743
+ "vision_backbone.fused_featurizer.blocks.15.attn.proj.bias": "model-00001-of-00003.safetensors",
744
+ "vision_backbone.fused_featurizer.blocks.15.attn.proj.weight": "model-00001-of-00003.safetensors",
745
+ "vision_backbone.fused_featurizer.blocks.15.attn.qkv.bias": "model-00001-of-00003.safetensors",
746
+ "vision_backbone.fused_featurizer.blocks.15.attn.qkv.weight": "model-00001-of-00003.safetensors",
747
+ "vision_backbone.fused_featurizer.blocks.15.mlp.fc1.bias": "model-00001-of-00003.safetensors",
748
+ "vision_backbone.fused_featurizer.blocks.15.mlp.fc1.weight": "model-00001-of-00003.safetensors",
749
+ "vision_backbone.fused_featurizer.blocks.15.mlp.fc2.bias": "model-00001-of-00003.safetensors",
750
+ "vision_backbone.fused_featurizer.blocks.15.mlp.fc2.weight": "model-00001-of-00003.safetensors",
751
+ "vision_backbone.fused_featurizer.blocks.15.norm1.bias": "model-00001-of-00003.safetensors",
752
+ "vision_backbone.fused_featurizer.blocks.15.norm1.weight": "model-00001-of-00003.safetensors",
753
+ "vision_backbone.fused_featurizer.blocks.15.norm2.bias": "model-00001-of-00003.safetensors",
754
+ "vision_backbone.fused_featurizer.blocks.15.norm2.weight": "model-00001-of-00003.safetensors",
755
+ "vision_backbone.fused_featurizer.blocks.16.attn.proj.bias": "model-00001-of-00003.safetensors",
756
+ "vision_backbone.fused_featurizer.blocks.16.attn.proj.weight": "model-00001-of-00003.safetensors",
757
+ "vision_backbone.fused_featurizer.blocks.16.attn.qkv.bias": "model-00001-of-00003.safetensors",
758
+ "vision_backbone.fused_featurizer.blocks.16.attn.qkv.weight": "model-00001-of-00003.safetensors",
759
+ "vision_backbone.fused_featurizer.blocks.16.mlp.fc1.bias": "model-00001-of-00003.safetensors",
760
+ "vision_backbone.fused_featurizer.blocks.16.mlp.fc1.weight": "model-00001-of-00003.safetensors",
761
+ "vision_backbone.fused_featurizer.blocks.16.mlp.fc2.bias": "model-00001-of-00003.safetensors",
762
+ "vision_backbone.fused_featurizer.blocks.16.mlp.fc2.weight": "model-00001-of-00003.safetensors",
763
+ "vision_backbone.fused_featurizer.blocks.16.norm1.bias": "model-00001-of-00003.safetensors",
764
+ "vision_backbone.fused_featurizer.blocks.16.norm1.weight": "model-00001-of-00003.safetensors",
765
+ "vision_backbone.fused_featurizer.blocks.16.norm2.bias": "model-00001-of-00003.safetensors",
766
+ "vision_backbone.fused_featurizer.blocks.16.norm2.weight": "model-00001-of-00003.safetensors",
767
+ "vision_backbone.fused_featurizer.blocks.17.attn.proj.bias": "model-00001-of-00003.safetensors",
768
+ "vision_backbone.fused_featurizer.blocks.17.attn.proj.weight": "model-00001-of-00003.safetensors",
769
+ "vision_backbone.fused_featurizer.blocks.17.attn.qkv.bias": "model-00001-of-00003.safetensors",
770
+ "vision_backbone.fused_featurizer.blocks.17.attn.qkv.weight": "model-00001-of-00003.safetensors",
771
+ "vision_backbone.fused_featurizer.blocks.17.mlp.fc1.bias": "model-00001-of-00003.safetensors",
772
+ "vision_backbone.fused_featurizer.blocks.17.mlp.fc1.weight": "model-00001-of-00003.safetensors",
773
+ "vision_backbone.fused_featurizer.blocks.17.mlp.fc2.bias": "model-00001-of-00003.safetensors",
774
+ "vision_backbone.fused_featurizer.blocks.17.mlp.fc2.weight": "model-00001-of-00003.safetensors",
775
+ "vision_backbone.fused_featurizer.blocks.17.norm1.bias": "model-00001-of-00003.safetensors",
776
+ "vision_backbone.fused_featurizer.blocks.17.norm1.weight": "model-00001-of-00003.safetensors",
777
+ "vision_backbone.fused_featurizer.blocks.17.norm2.bias": "model-00001-of-00003.safetensors",
778
+ "vision_backbone.fused_featurizer.blocks.17.norm2.weight": "model-00001-of-00003.safetensors",
779
+ "vision_backbone.fused_featurizer.blocks.18.attn.proj.bias": "model-00001-of-00003.safetensors",
780
+ "vision_backbone.fused_featurizer.blocks.18.attn.proj.weight": "model-00001-of-00003.safetensors",
781
+ "vision_backbone.fused_featurizer.blocks.18.attn.qkv.bias": "model-00001-of-00003.safetensors",
782
+ "vision_backbone.fused_featurizer.blocks.18.attn.qkv.weight": "model-00001-of-00003.safetensors",
783
+ "vision_backbone.fused_featurizer.blocks.18.mlp.fc1.bias": "model-00001-of-00003.safetensors",
784
+ "vision_backbone.fused_featurizer.blocks.18.mlp.fc1.weight": "model-00001-of-00003.safetensors",
785
+ "vision_backbone.fused_featurizer.blocks.18.mlp.fc2.bias": "model-00001-of-00003.safetensors",
786
+ "vision_backbone.fused_featurizer.blocks.18.mlp.fc2.weight": "model-00001-of-00003.safetensors",
787
+ "vision_backbone.fused_featurizer.blocks.18.norm1.bias": "model-00001-of-00003.safetensors",
788
+ "vision_backbone.fused_featurizer.blocks.18.norm1.weight": "model-00001-of-00003.safetensors",
789
+ "vision_backbone.fused_featurizer.blocks.18.norm2.bias": "model-00001-of-00003.safetensors",
790
+ "vision_backbone.fused_featurizer.blocks.18.norm2.weight": "model-00001-of-00003.safetensors",
791
+ "vision_backbone.fused_featurizer.blocks.19.attn.proj.bias": "model-00001-of-00003.safetensors",
792
+ "vision_backbone.fused_featurizer.blocks.19.attn.proj.weight": "model-00001-of-00003.safetensors",
793
+ "vision_backbone.fused_featurizer.blocks.19.attn.qkv.bias": "model-00001-of-00003.safetensors",
794
+ "vision_backbone.fused_featurizer.blocks.19.attn.qkv.weight": "model-00001-of-00003.safetensors",
795
+ "vision_backbone.fused_featurizer.blocks.19.mlp.fc1.bias": "model-00001-of-00003.safetensors",
796
+ "vision_backbone.fused_featurizer.blocks.19.mlp.fc1.weight": "model-00001-of-00003.safetensors",
797
+ "vision_backbone.fused_featurizer.blocks.19.mlp.fc2.bias": "model-00001-of-00003.safetensors",
798
+ "vision_backbone.fused_featurizer.blocks.19.mlp.fc2.weight": "model-00001-of-00003.safetensors",
799
+ "vision_backbone.fused_featurizer.blocks.19.norm1.bias": "model-00001-of-00003.safetensors",
800
+ "vision_backbone.fused_featurizer.blocks.19.norm1.weight": "model-00001-of-00003.safetensors",
801
+ "vision_backbone.fused_featurizer.blocks.19.norm2.bias": "model-00001-of-00003.safetensors",
802
+ "vision_backbone.fused_featurizer.blocks.19.norm2.weight": "model-00001-of-00003.safetensors",
803
+ "vision_backbone.fused_featurizer.blocks.2.attn.proj.bias": "model-00001-of-00003.safetensors",
804
+ "vision_backbone.fused_featurizer.blocks.2.attn.proj.weight": "model-00001-of-00003.safetensors",
805
+ "vision_backbone.fused_featurizer.blocks.2.attn.qkv.bias": "model-00001-of-00003.safetensors",
806
+ "vision_backbone.fused_featurizer.blocks.2.attn.qkv.weight": "model-00001-of-00003.safetensors",
807
+ "vision_backbone.fused_featurizer.blocks.2.mlp.fc1.bias": "model-00001-of-00003.safetensors",
808
+ "vision_backbone.fused_featurizer.blocks.2.mlp.fc1.weight": "model-00001-of-00003.safetensors",
809
+ "vision_backbone.fused_featurizer.blocks.2.mlp.fc2.bias": "model-00001-of-00003.safetensors",
810
+ "vision_backbone.fused_featurizer.blocks.2.mlp.fc2.weight": "model-00001-of-00003.safetensors",
811
+ "vision_backbone.fused_featurizer.blocks.2.norm1.bias": "model-00001-of-00003.safetensors",
812
+ "vision_backbone.fused_featurizer.blocks.2.norm1.weight": "model-00001-of-00003.safetensors",
813
+ "vision_backbone.fused_featurizer.blocks.2.norm2.bias": "model-00001-of-00003.safetensors",
814
+ "vision_backbone.fused_featurizer.blocks.2.norm2.weight": "model-00001-of-00003.safetensors",
815
+ "vision_backbone.fused_featurizer.blocks.20.attn.proj.bias": "model-00001-of-00003.safetensors",
816
+ "vision_backbone.fused_featurizer.blocks.20.attn.proj.weight": "model-00001-of-00003.safetensors",
817
+ "vision_backbone.fused_featurizer.blocks.20.attn.qkv.bias": "model-00001-of-00003.safetensors",
818
+ "vision_backbone.fused_featurizer.blocks.20.attn.qkv.weight": "model-00001-of-00003.safetensors",
819
+ "vision_backbone.fused_featurizer.blocks.20.mlp.fc1.bias": "model-00001-of-00003.safetensors",
820
+ "vision_backbone.fused_featurizer.blocks.20.mlp.fc1.weight": "model-00001-of-00003.safetensors",
821
+ "vision_backbone.fused_featurizer.blocks.20.mlp.fc2.bias": "model-00001-of-00003.safetensors",
822
+ "vision_backbone.fused_featurizer.blocks.20.mlp.fc2.weight": "model-00001-of-00003.safetensors",
823
+ "vision_backbone.fused_featurizer.blocks.20.norm1.bias": "model-00001-of-00003.safetensors",
824
+ "vision_backbone.fused_featurizer.blocks.20.norm1.weight": "model-00001-of-00003.safetensors",
825
+ "vision_backbone.fused_featurizer.blocks.20.norm2.bias": "model-00001-of-00003.safetensors",
826
+ "vision_backbone.fused_featurizer.blocks.20.norm2.weight": "model-00001-of-00003.safetensors",
827
+ "vision_backbone.fused_featurizer.blocks.21.attn.proj.bias": "model-00001-of-00003.safetensors",
828
+ "vision_backbone.fused_featurizer.blocks.21.attn.proj.weight": "model-00001-of-00003.safetensors",
829
+ "vision_backbone.fused_featurizer.blocks.21.attn.qkv.bias": "model-00001-of-00003.safetensors",
830
+ "vision_backbone.fused_featurizer.blocks.21.attn.qkv.weight": "model-00001-of-00003.safetensors",
831
+ "vision_backbone.fused_featurizer.blocks.21.mlp.fc1.bias": "model-00001-of-00003.safetensors",
832
+ "vision_backbone.fused_featurizer.blocks.21.mlp.fc1.weight": "model-00001-of-00003.safetensors",
833
+ "vision_backbone.fused_featurizer.blocks.21.mlp.fc2.bias": "model-00001-of-00003.safetensors",
834
+ "vision_backbone.fused_featurizer.blocks.21.mlp.fc2.weight": "model-00001-of-00003.safetensors",
835
+ "vision_backbone.fused_featurizer.blocks.21.norm1.bias": "model-00001-of-00003.safetensors",
836
+ "vision_backbone.fused_featurizer.blocks.21.norm1.weight": "model-00001-of-00003.safetensors",
837
+ "vision_backbone.fused_featurizer.blocks.21.norm2.bias": "model-00001-of-00003.safetensors",
838
+ "vision_backbone.fused_featurizer.blocks.21.norm2.weight": "model-00001-of-00003.safetensors",
839
+ "vision_backbone.fused_featurizer.blocks.22.attn.proj.bias": "model-00001-of-00003.safetensors",
840
+ "vision_backbone.fused_featurizer.blocks.22.attn.proj.weight": "model-00001-of-00003.safetensors",
841
+ "vision_backbone.fused_featurizer.blocks.22.attn.qkv.bias": "model-00001-of-00003.safetensors",
842
+ "vision_backbone.fused_featurizer.blocks.22.attn.qkv.weight": "model-00001-of-00003.safetensors",
843
+ "vision_backbone.fused_featurizer.blocks.22.mlp.fc1.bias": "model-00001-of-00003.safetensors",
844
+ "vision_backbone.fused_featurizer.blocks.22.mlp.fc1.weight": "model-00001-of-00003.safetensors",
845
+ "vision_backbone.fused_featurizer.blocks.22.mlp.fc2.bias": "model-00001-of-00003.safetensors",
846
+ "vision_backbone.fused_featurizer.blocks.22.mlp.fc2.weight": "model-00001-of-00003.safetensors",
847
+ "vision_backbone.fused_featurizer.blocks.22.norm1.bias": "model-00001-of-00003.safetensors",
848
+ "vision_backbone.fused_featurizer.blocks.22.norm1.weight": "model-00001-of-00003.safetensors",
849
+ "vision_backbone.fused_featurizer.blocks.22.norm2.bias": "model-00001-of-00003.safetensors",
850
+ "vision_backbone.fused_featurizer.blocks.22.norm2.weight": "model-00001-of-00003.safetensors",
851
+ "vision_backbone.fused_featurizer.blocks.23.attn.proj.bias": "model-00001-of-00003.safetensors",
852
+ "vision_backbone.fused_featurizer.blocks.23.attn.proj.weight": "model-00001-of-00003.safetensors",
853
+ "vision_backbone.fused_featurizer.blocks.23.attn.qkv.bias": "model-00001-of-00003.safetensors",
854
+ "vision_backbone.fused_featurizer.blocks.23.attn.qkv.weight": "model-00001-of-00003.safetensors",
855
+ "vision_backbone.fused_featurizer.blocks.23.mlp.fc1.bias": "model-00001-of-00003.safetensors",
856
+ "vision_backbone.fused_featurizer.blocks.23.mlp.fc1.weight": "model-00001-of-00003.safetensors",
857
+ "vision_backbone.fused_featurizer.blocks.23.mlp.fc2.bias": "model-00001-of-00003.safetensors",
858
+ "vision_backbone.fused_featurizer.blocks.23.mlp.fc2.weight": "model-00001-of-00003.safetensors",
859
+ "vision_backbone.fused_featurizer.blocks.23.norm1.bias": "model-00001-of-00003.safetensors",
860
+ "vision_backbone.fused_featurizer.blocks.23.norm1.weight": "model-00001-of-00003.safetensors",
861
+ "vision_backbone.fused_featurizer.blocks.23.norm2.bias": "model-00001-of-00003.safetensors",
862
+ "vision_backbone.fused_featurizer.blocks.23.norm2.weight": "model-00001-of-00003.safetensors",
863
+ "vision_backbone.fused_featurizer.blocks.24.attn.proj.bias": "model-00001-of-00003.safetensors",
864
+ "vision_backbone.fused_featurizer.blocks.24.attn.proj.weight": "model-00001-of-00003.safetensors",
865
+ "vision_backbone.fused_featurizer.blocks.24.attn.qkv.bias": "model-00001-of-00003.safetensors",
866
+ "vision_backbone.fused_featurizer.blocks.24.attn.qkv.weight": "model-00001-of-00003.safetensors",
867
+ "vision_backbone.fused_featurizer.blocks.24.mlp.fc1.bias": "model-00001-of-00003.safetensors",
868
+ "vision_backbone.fused_featurizer.blocks.24.mlp.fc1.weight": "model-00001-of-00003.safetensors",
869
+ "vision_backbone.fused_featurizer.blocks.24.mlp.fc2.bias": "model-00001-of-00003.safetensors",
870
+ "vision_backbone.fused_featurizer.blocks.24.mlp.fc2.weight": "model-00001-of-00003.safetensors",
871
+ "vision_backbone.fused_featurizer.blocks.24.norm1.bias": "model-00001-of-00003.safetensors",
872
+ "vision_backbone.fused_featurizer.blocks.24.norm1.weight": "model-00001-of-00003.safetensors",
873
+ "vision_backbone.fused_featurizer.blocks.24.norm2.bias": "model-00001-of-00003.safetensors",
874
+ "vision_backbone.fused_featurizer.blocks.24.norm2.weight": "model-00001-of-00003.safetensors",
875
+ "vision_backbone.fused_featurizer.blocks.25.attn.proj.bias": "model-00001-of-00003.safetensors",
876
+ "vision_backbone.fused_featurizer.blocks.25.attn.proj.weight": "model-00001-of-00003.safetensors",
877
+ "vision_backbone.fused_featurizer.blocks.25.attn.qkv.bias": "model-00001-of-00003.safetensors",
878
+ "vision_backbone.fused_featurizer.blocks.25.attn.qkv.weight": "model-00001-of-00003.safetensors",
879
+ "vision_backbone.fused_featurizer.blocks.25.mlp.fc1.bias": "model-00001-of-00003.safetensors",
880
+ "vision_backbone.fused_featurizer.blocks.25.mlp.fc1.weight": "model-00001-of-00003.safetensors",
881
+ "vision_backbone.fused_featurizer.blocks.25.mlp.fc2.bias": "model-00001-of-00003.safetensors",
882
+ "vision_backbone.fused_featurizer.blocks.25.mlp.fc2.weight": "model-00001-of-00003.safetensors",
883
+ "vision_backbone.fused_featurizer.blocks.25.norm1.bias": "model-00001-of-00003.safetensors",
884
+ "vision_backbone.fused_featurizer.blocks.25.norm1.weight": "model-00001-of-00003.safetensors",
885
+ "vision_backbone.fused_featurizer.blocks.25.norm2.bias": "model-00001-of-00003.safetensors",
886
+ "vision_backbone.fused_featurizer.blocks.25.norm2.weight": "model-00001-of-00003.safetensors",
887
+ "vision_backbone.fused_featurizer.blocks.26.attn.proj.bias": "model-00001-of-00003.safetensors",
888
+ "vision_backbone.fused_featurizer.blocks.26.attn.proj.weight": "model-00001-of-00003.safetensors",
889
+ "vision_backbone.fused_featurizer.blocks.26.attn.qkv.bias": "model-00001-of-00003.safetensors",
890
+ "vision_backbone.fused_featurizer.blocks.26.attn.qkv.weight": "model-00001-of-00003.safetensors",
891
+ "vision_backbone.fused_featurizer.blocks.26.mlp.fc1.bias": "model-00001-of-00003.safetensors",
892
+ "vision_backbone.fused_featurizer.blocks.26.mlp.fc1.weight": "model-00001-of-00003.safetensors",
893
+ "vision_backbone.fused_featurizer.blocks.26.mlp.fc2.bias": "model-00001-of-00003.safetensors",
894
+ "vision_backbone.fused_featurizer.blocks.26.mlp.fc2.weight": "model-00001-of-00003.safetensors",
895
+ "vision_backbone.fused_featurizer.blocks.26.norm1.bias": "model-00001-of-00003.safetensors",
896
+ "vision_backbone.fused_featurizer.blocks.26.norm1.weight": "model-00001-of-00003.safetensors",
897
+ "vision_backbone.fused_featurizer.blocks.26.norm2.bias": "model-00001-of-00003.safetensors",
898
+ "vision_backbone.fused_featurizer.blocks.26.norm2.weight": "model-00001-of-00003.safetensors",
899
+ "vision_backbone.fused_featurizer.blocks.3.attn.proj.bias": "model-00001-of-00003.safetensors",
900
+ "vision_backbone.fused_featurizer.blocks.3.attn.proj.weight": "model-00001-of-00003.safetensors",
901
+ "vision_backbone.fused_featurizer.blocks.3.attn.qkv.bias": "model-00001-of-00003.safetensors",
902
+ "vision_backbone.fused_featurizer.blocks.3.attn.qkv.weight": "model-00001-of-00003.safetensors",
903
+ "vision_backbone.fused_featurizer.blocks.3.mlp.fc1.bias": "model-00001-of-00003.safetensors",
904
+ "vision_backbone.fused_featurizer.blocks.3.mlp.fc1.weight": "model-00001-of-00003.safetensors",
905
+ "vision_backbone.fused_featurizer.blocks.3.mlp.fc2.bias": "model-00001-of-00003.safetensors",
906
+ "vision_backbone.fused_featurizer.blocks.3.mlp.fc2.weight": "model-00001-of-00003.safetensors",
907
+ "vision_backbone.fused_featurizer.blocks.3.norm1.bias": "model-00001-of-00003.safetensors",
908
+ "vision_backbone.fused_featurizer.blocks.3.norm1.weight": "model-00001-of-00003.safetensors",
909
+ "vision_backbone.fused_featurizer.blocks.3.norm2.bias": "model-00001-of-00003.safetensors",
910
+ "vision_backbone.fused_featurizer.blocks.3.norm2.weight": "model-00001-of-00003.safetensors",
911
+ "vision_backbone.fused_featurizer.blocks.4.attn.proj.bias": "model-00001-of-00003.safetensors",
912
+ "vision_backbone.fused_featurizer.blocks.4.attn.proj.weight": "model-00001-of-00003.safetensors",
913
+ "vision_backbone.fused_featurizer.blocks.4.attn.qkv.bias": "model-00001-of-00003.safetensors",
914
+ "vision_backbone.fused_featurizer.blocks.4.attn.qkv.weight": "model-00001-of-00003.safetensors",
915
+ "vision_backbone.fused_featurizer.blocks.4.mlp.fc1.bias": "model-00001-of-00003.safetensors",
916
+ "vision_backbone.fused_featurizer.blocks.4.mlp.fc1.weight": "model-00001-of-00003.safetensors",
917
+ "vision_backbone.fused_featurizer.blocks.4.mlp.fc2.bias": "model-00001-of-00003.safetensors",
918
+ "vision_backbone.fused_featurizer.blocks.4.mlp.fc2.weight": "model-00001-of-00003.safetensors",
919
+ "vision_backbone.fused_featurizer.blocks.4.norm1.bias": "model-00001-of-00003.safetensors",
920
+ "vision_backbone.fused_featurizer.blocks.4.norm1.weight": "model-00001-of-00003.safetensors",
921
+ "vision_backbone.fused_featurizer.blocks.4.norm2.bias": "model-00001-of-00003.safetensors",
922
+ "vision_backbone.fused_featurizer.blocks.4.norm2.weight": "model-00001-of-00003.safetensors",
923
+ "vision_backbone.fused_featurizer.blocks.5.attn.proj.bias": "model-00001-of-00003.safetensors",
924
+ "vision_backbone.fused_featurizer.blocks.5.attn.proj.weight": "model-00001-of-00003.safetensors",
925
+ "vision_backbone.fused_featurizer.blocks.5.attn.qkv.bias": "model-00001-of-00003.safetensors",
926
+ "vision_backbone.fused_featurizer.blocks.5.attn.qkv.weight": "model-00001-of-00003.safetensors",
927
+ "vision_backbone.fused_featurizer.blocks.5.mlp.fc1.bias": "model-00001-of-00003.safetensors",
928
+ "vision_backbone.fused_featurizer.blocks.5.mlp.fc1.weight": "model-00001-of-00003.safetensors",
929
+ "vision_backbone.fused_featurizer.blocks.5.mlp.fc2.bias": "model-00001-of-00003.safetensors",
930
+ "vision_backbone.fused_featurizer.blocks.5.mlp.fc2.weight": "model-00001-of-00003.safetensors",
931
+ "vision_backbone.fused_featurizer.blocks.5.norm1.bias": "model-00001-of-00003.safetensors",
932
+ "vision_backbone.fused_featurizer.blocks.5.norm1.weight": "model-00001-of-00003.safetensors",
933
+ "vision_backbone.fused_featurizer.blocks.5.norm2.bias": "model-00001-of-00003.safetensors",
934
+ "vision_backbone.fused_featurizer.blocks.5.norm2.weight": "model-00001-of-00003.safetensors",
935
+ "vision_backbone.fused_featurizer.blocks.6.attn.proj.bias": "model-00001-of-00003.safetensors",
936
+ "vision_backbone.fused_featurizer.blocks.6.attn.proj.weight": "model-00001-of-00003.safetensors",
937
+ "vision_backbone.fused_featurizer.blocks.6.attn.qkv.bias": "model-00001-of-00003.safetensors",
938
+ "vision_backbone.fused_featurizer.blocks.6.attn.qkv.weight": "model-00001-of-00003.safetensors",
939
+ "vision_backbone.fused_featurizer.blocks.6.mlp.fc1.bias": "model-00001-of-00003.safetensors",
940
+ "vision_backbone.fused_featurizer.blocks.6.mlp.fc1.weight": "model-00001-of-00003.safetensors",
941
+ "vision_backbone.fused_featurizer.blocks.6.mlp.fc2.bias": "model-00001-of-00003.safetensors",
942
+ "vision_backbone.fused_featurizer.blocks.6.mlp.fc2.weight": "model-00001-of-00003.safetensors",
943
+ "vision_backbone.fused_featurizer.blocks.6.norm1.bias": "model-00001-of-00003.safetensors",
944
+ "vision_backbone.fused_featurizer.blocks.6.norm1.weight": "model-00001-of-00003.safetensors",
945
+ "vision_backbone.fused_featurizer.blocks.6.norm2.bias": "model-00001-of-00003.safetensors",
946
+ "vision_backbone.fused_featurizer.blocks.6.norm2.weight": "model-00001-of-00003.safetensors",
947
+ "vision_backbone.fused_featurizer.blocks.7.attn.proj.bias": "model-00001-of-00003.safetensors",
948
+ "vision_backbone.fused_featurizer.blocks.7.attn.proj.weight": "model-00001-of-00003.safetensors",
949
+ "vision_backbone.fused_featurizer.blocks.7.attn.qkv.bias": "model-00001-of-00003.safetensors",
950
+ "vision_backbone.fused_featurizer.blocks.7.attn.qkv.weight": "model-00001-of-00003.safetensors",
951
+ "vision_backbone.fused_featurizer.blocks.7.mlp.fc1.bias": "model-00001-of-00003.safetensors",
952
+ "vision_backbone.fused_featurizer.blocks.7.mlp.fc1.weight": "model-00001-of-00003.safetensors",
953
+ "vision_backbone.fused_featurizer.blocks.7.mlp.fc2.bias": "model-00001-of-00003.safetensors",
954
+ "vision_backbone.fused_featurizer.blocks.7.mlp.fc2.weight": "model-00001-of-00003.safetensors",
955
+ "vision_backbone.fused_featurizer.blocks.7.norm1.bias": "model-00001-of-00003.safetensors",
956
+ "vision_backbone.fused_featurizer.blocks.7.norm1.weight": "model-00001-of-00003.safetensors",
957
+ "vision_backbone.fused_featurizer.blocks.7.norm2.bias": "model-00001-of-00003.safetensors",
958
+ "vision_backbone.fused_featurizer.blocks.7.norm2.weight": "model-00001-of-00003.safetensors",
959
+ "vision_backbone.fused_featurizer.blocks.8.attn.proj.bias": "model-00001-of-00003.safetensors",
960
+ "vision_backbone.fused_featurizer.blocks.8.attn.proj.weight": "model-00001-of-00003.safetensors",
961
+ "vision_backbone.fused_featurizer.blocks.8.attn.qkv.bias": "model-00001-of-00003.safetensors",
962
+ "vision_backbone.fused_featurizer.blocks.8.attn.qkv.weight": "model-00001-of-00003.safetensors",
963
+ "vision_backbone.fused_featurizer.blocks.8.mlp.fc1.bias": "model-00001-of-00003.safetensors",
964
+ "vision_backbone.fused_featurizer.blocks.8.mlp.fc1.weight": "model-00001-of-00003.safetensors",
965
+ "vision_backbone.fused_featurizer.blocks.8.mlp.fc2.bias": "model-00001-of-00003.safetensors",
966
+ "vision_backbone.fused_featurizer.blocks.8.mlp.fc2.weight": "model-00001-of-00003.safetensors",
967
+ "vision_backbone.fused_featurizer.blocks.8.norm1.bias": "model-00001-of-00003.safetensors",
968
+ "vision_backbone.fused_featurizer.blocks.8.norm1.weight": "model-00001-of-00003.safetensors",
969
+ "vision_backbone.fused_featurizer.blocks.8.norm2.bias": "model-00001-of-00003.safetensors",
970
+ "vision_backbone.fused_featurizer.blocks.8.norm2.weight": "model-00001-of-00003.safetensors",
971
+ "vision_backbone.fused_featurizer.blocks.9.attn.proj.bias": "model-00001-of-00003.safetensors",
972
+ "vision_backbone.fused_featurizer.blocks.9.attn.proj.weight": "model-00001-of-00003.safetensors",
973
+ "vision_backbone.fused_featurizer.blocks.9.attn.qkv.bias": "model-00001-of-00003.safetensors",
974
+ "vision_backbone.fused_featurizer.blocks.9.attn.qkv.weight": "model-00001-of-00003.safetensors",
975
+ "vision_backbone.fused_featurizer.blocks.9.mlp.fc1.bias": "model-00001-of-00003.safetensors",
976
+ "vision_backbone.fused_featurizer.blocks.9.mlp.fc1.weight": "model-00001-of-00003.safetensors",
977
+ "vision_backbone.fused_featurizer.blocks.9.mlp.fc2.bias": "model-00001-of-00003.safetensors",
978
+ "vision_backbone.fused_featurizer.blocks.9.mlp.fc2.weight": "model-00001-of-00003.safetensors",
979
+ "vision_backbone.fused_featurizer.blocks.9.norm1.bias": "model-00001-of-00003.safetensors",
980
+ "vision_backbone.fused_featurizer.blocks.9.norm1.weight": "model-00001-of-00003.safetensors",
981
+ "vision_backbone.fused_featurizer.blocks.9.norm2.bias": "model-00001-of-00003.safetensors",
982
+ "vision_backbone.fused_featurizer.blocks.9.norm2.weight": "model-00001-of-00003.safetensors",
983
+ "vision_backbone.fused_featurizer.norm.bias": "model-00001-of-00003.safetensors",
984
+ "vision_backbone.fused_featurizer.norm.weight": "model-00001-of-00003.safetensors",
985
+ "vision_backbone.fused_featurizer.patch_embed.proj.bias": "model-00001-of-00003.safetensors",
986
+ "vision_backbone.fused_featurizer.patch_embed.proj.weight": "model-00001-of-00003.safetensors",
987
+ "vision_backbone.fused_featurizer.pos_embed": "model-00001-of-00003.safetensors"
988
+ }
989
+ }
modeling_prismatic.py ADDED
@@ -0,0 +1,1085 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ modeling_prismatic.py
3
+
4
+ Core HuggingFace-style PrismaticPreTrainedModel and PrismaticForConditionalGeneration class definitions.
5
+ Inherits from the default `transformers.PretrainedModel`. Meant to be standalone and self-contained,
6
+ but exactly replicate the logic in `prismatic.models.vlms.prismatic.py`.
7
+ """
8
+
9
+ import logging
10
+ from dataclasses import dataclass
11
+ from functools import partial
12
+ from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union
13
+
14
+ import numpy as np
15
+ import timm
16
+ import tokenizers
17
+ import torch
18
+ import torch.nn as nn
19
+ import transformers
20
+ from timm.models.vision_transformer import LayerScale
21
+ from transformers import AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
22
+ from transformers.modeling_outputs import ModelOutput
23
+
24
+ from prismatic.training.train_utils import (
25
+ get_current_action_mask,
26
+ get_next_actions_mask,
27
+ )
28
+ from prismatic.vla.constants import (
29
+ ACTION_DIM,
30
+ ACTION_PROPRIO_NORMALIZATION_TYPE,
31
+ ACTION_TOKEN_BEGIN_IDX,
32
+ IGNORE_INDEX,
33
+ NUM_ACTIONS_CHUNK,
34
+ STOP_INDEX,
35
+ NormalizationType,
36
+ )
37
+
38
+ from .configuration_prismatic import OpenVLAConfig, PrismaticConfig
39
+
40
+ # Set up logger
41
+ logger = logging.getLogger(__name__)
42
+
43
+
44
+ # === Utility Functions for Monkey-Patching ===
45
+ def unpack_tuple(fn: Callable[[Any], Tuple[Any]]) -> Callable[[Any], Any]:
46
+ def wrapper(*args: Any, **kwargs: Any) -> Any:
47
+ result = fn(*args, **kwargs)
48
+ return result[0] if isinstance(result, tuple) else result
49
+
50
+ return wrapper
51
+
52
+
53
+ # HF Transformers overwrites parameters with names containing `gamma`; we're going to patch VisionBackbone.LayerScale.
54
+ # =>> TIMM :: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L109
55
+ # =>> Transformers :: https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L3960
56
+ def _ls_new_forward(self, x: torch.Tensor) -> torch.Tensor:
57
+ return x.mul_(self.scale_factor) if self.inplace else x * self.scale_factor
58
+
59
+
60
+ def ls_apply_patch(ls_module: LayerScale):
61
+ ls_module.scale_factor = nn.Parameter(ls_module.gamma.clone())
62
+ ls_module.forward = _ls_new_forward.__get__(ls_module, LayerScale)
63
+ del ls_module.gamma
64
+
65
+
66
+ # === Prismatic Vision Backbone (nn.Module) Definitions (w/ Fused Backbone Support) ===
67
+ class PrismaticVisionBackbone(nn.Module):
68
+ """
69
+ Vision backbone for Prismatic models that handles image feature extraction.
70
+
71
+ Supports both single backbone (e.g., SigLIP) and fused backbone (e.g., SigLIP + DINOv2) configurations.
72
+ For fused backbones, features from both models are concatenated along the feature dimension.
73
+ """
74
+
75
+ def __init__(
76
+ self,
77
+ use_fused_vision_backbone: bool,
78
+ image_sizes: List[int],
79
+ timm_model_ids: List[str],
80
+ timm_override_act_layers: List[Optional[str]],
81
+ ) -> None:
82
+ """
83
+ Initialize the vision backbone.
84
+
85
+ Args:
86
+ use_fused_vision_backbone: Whether to use two backbones and fuse their features
87
+ image_sizes: List of image sizes for each backbone
88
+ timm_model_ids: List of TIMM model IDs to use for each backbone
89
+ timm_override_act_layers: List of activation layer overrides for each backbone
90
+ """
91
+ super().__init__()
92
+ self.use_fused_vision_backbone = use_fused_vision_backbone
93
+ self.num_images_in_input = 1 # Default value, can be overridden later
94
+
95
+ # Validate number of (fused) vision backbones
96
+ if len(timm_model_ids) > 2:
97
+ raise ValueError("Prismatic models only support up to 2 (fused) vision backbones!")
98
+
99
+ # Create primary featurizer
100
+ self.featurizer = self._create_featurizer(
101
+ model_id=timm_model_ids[0], img_size=image_sizes[0], act_layer=timm_override_act_layers[0]
102
+ )
103
+ self.embed_dim = self.featurizer.embed_dim
104
+
105
+ # Create secondary featurizer if using fused backbone
106
+ if self.use_fused_vision_backbone:
107
+ self.fused_featurizer = self._create_featurizer(
108
+ model_id=timm_model_ids[1], img_size=image_sizes[1], act_layer=timm_override_act_layers[1]
109
+ )
110
+ self.embed_dim += self.fused_featurizer.embed_dim
111
+
112
+ # Patch LayerScale modules for HF compatibility
113
+ self._patch_layer_scales()
114
+
115
+ def _create_featurizer(self, model_id: str, img_size: int, act_layer: Optional[str]) -> nn.Module:
116
+ """
117
+ Create a TIMM-based featurizer model with appropriate configurations.
118
+
119
+ Args:
120
+ model_id: The TIMM model ID to load
121
+ img_size: Input image size for the model
122
+ act_layer: Override for the activation layer type
123
+
124
+ Returns:
125
+ A configured featurizer model
126
+ """
127
+ featurizer = timm.create_model(
128
+ model_id,
129
+ pretrained=False,
130
+ num_classes=0,
131
+ img_size=img_size,
132
+ act_layer=act_layer,
133
+ )
134
+
135
+ # Monkey-patch the forward function to extract the second-to-last layer features
136
+ num_blocks = len(featurizer.blocks)
137
+ featurizer.forward = unpack_tuple(partial(featurizer.get_intermediate_layers, n={num_blocks - 2}))
138
+
139
+ return featurizer
140
+
141
+ def _patch_layer_scales(self) -> None:
142
+ """
143
+ Patch all LayerScale modules to be compatible with HF's parameter naming.
144
+
145
+ HF Transformers overwrites parameters with names containing 'gamma',
146
+ so we need to rename and modify the forward method.
147
+ """
148
+ # Patch primary featurizer
149
+ for module in self.featurizer.modules():
150
+ if isinstance(module, LayerScale):
151
+ ls_apply_patch(module)
152
+
153
+ # Patch secondary featurizer if it exists
154
+ if self.use_fused_vision_backbone:
155
+ for module in self.fused_featurizer.modules():
156
+ if isinstance(module, LayerScale):
157
+ ls_apply_patch(module)
158
+
159
+ def get_num_patches(self) -> int:
160
+ """
161
+ Returns the number of vision patches output by the vision backbone.
162
+
163
+ Returns:
164
+ Number of patches per image
165
+ """
166
+ return self.featurizer.patch_embed.num_patches
167
+
168
+ def get_num_images_in_input(self) -> int:
169
+ """
170
+ Returns the number of input images for the vision backbone.
171
+
172
+ Returns:
173
+ Number of images expected in the input
174
+ """
175
+ return self.num_images_in_input
176
+
177
+ def set_num_images_in_input(self, num_images_in_input: int) -> None:
178
+ """
179
+ Sets the number of input images for the vision backbone.
180
+
181
+ Args:
182
+ num_images_in_input: Number of images to expect in the input
183
+ """
184
+ self.num_images_in_input = num_images_in_input
185
+
186
+ def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
187
+ """
188
+ Implements the forward pass for the vision backbone.
189
+
190
+ If `self.use_fused_vision_backbone == True`, uses both SigLIP and DINOv2 transformers to extract visual features
191
+ (otherwise uses SigLIP only). Allows multi-image inputs (but only for fused vision backbone).
192
+
193
+ Args:
194
+ pixel_values (torch.Tensor): Pixels for input image(s), (B, C, H, W).
195
+ """
196
+ if self.num_images_in_input == 1:
197
+ if not self.use_fused_vision_backbone:
198
+ return self.featurizer(pixel_values)
199
+
200
+ # Split `pixel_values :: [bsz, 2 * 3, resolution, resolution]` =>> featurize =>> channel stack
201
+ img, img_fused = torch.split(pixel_values, [3, 3], dim=1)
202
+ patches, patches_fused = self.featurizer(img), self.fused_featurizer(img_fused)
203
+
204
+ return torch.cat([patches, patches_fused], dim=2)
205
+
206
+ else:
207
+ assert self.use_fused_vision_backbone, "Multi-image inputs require using fused backbone!"
208
+
209
+ # Split `pixel_values` into individual images (each with 6 channels: 3 for SigLIP + 3 for DINOv2)
210
+ images = torch.split(pixel_values, [6] * self.num_images_in_input, dim=1)
211
+
212
+ # Process each image and collect patches
213
+ all_patches = []
214
+ for img in images:
215
+ # Split each image further into two stacks of channels (each with 3 channels)
216
+ img_regular, img_fused = torch.split(img, [3, 3], dim=1)
217
+
218
+ # Get patches from both SigLIP and DINOv2 vision transformers
219
+ patches = self.featurizer(img_regular)
220
+ patches_fused = self.fused_featurizer(img_fused)
221
+
222
+ # Concatenate SigLIP and DINOv2 patches along the hidden dimension
223
+ combined_patches = torch.cat([patches, patches_fused], dim=2)
224
+ all_patches.append(combined_patches)
225
+
226
+ # Concatenate all patches along the patch dimension
227
+ return torch.cat(all_patches, dim=1)
228
+
229
+
230
+ # === Prismatic Projector (nn.Module) Definitions ===
231
+ class PrismaticProjector(nn.Module):
232
+ def __init__(self, use_fused_vision_backbone: bool, vision_dim: int, llm_dim: int) -> None:
233
+ super().__init__()
234
+ self.use_fused_vision_backbone = use_fused_vision_backbone
235
+ self.vision_dim, self.llm_dim = vision_dim, llm_dim
236
+
237
+ # Switch on `use_fused_vision_backbone` =>> use slightly different MLPs and projection factors!
238
+ if not self.use_fused_vision_backbone:
239
+ self.fc1 = nn.Linear(self.vision_dim, self.llm_dim, bias=True)
240
+ self.fc2 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
241
+ self.act_fn1 = nn.GELU()
242
+ else:
243
+ initial_projection_dim = 4 * vision_dim
244
+ self.fc1 = nn.Linear(self.vision_dim, initial_projection_dim, bias=True)
245
+ self.fc2 = nn.Linear(initial_projection_dim, self.llm_dim, bias=True)
246
+ self.fc3 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
247
+ self.act_fn1 = nn.GELU()
248
+ self.act_fn2 = nn.GELU()
249
+
250
+ def forward(self, img_patches: torch.Tensor) -> torch.Tensor:
251
+ if not self.use_fused_vision_backbone:
252
+ projected_features = self.fc1(img_patches)
253
+ projected_features = self.act_fn1(projected_features)
254
+ projected_features = self.fc2(projected_features)
255
+ else:
256
+ projected_features = self.fc1(img_patches)
257
+ projected_features = self.act_fn1(projected_features)
258
+ projected_features = self.fc2(projected_features)
259
+ projected_features = self.act_fn2(projected_features)
260
+ projected_features = self.fc3(projected_features)
261
+
262
+ return projected_features
263
+
264
+
265
+ # === Main HF Class Definitions ===
266
+ @dataclass
267
+ class PrismaticCausalLMOutputWithPast(ModelOutput):
268
+ """Base class for Prismatic casual (visually-conditioned) language model outputs; also exposes visual features."""
269
+
270
+ loss: Optional[torch.FloatTensor] = None
271
+ logits: torch.FloatTensor = None
272
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
273
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
274
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
275
+
276
+ # Additions for VLMs
277
+ projector_features: Optional[torch.FloatTensor] = None
278
+
279
+
280
+ class PrismaticPreTrainedModel(PreTrainedModel):
281
+ config_class: PretrainedConfig = PrismaticConfig
282
+ base_model_prefix: str = "model"
283
+ supports_gradient_checkpointing: bool = True
284
+
285
+ _no_split_modules: ClassVar[List[str]] = ["PrismaticProjector"]
286
+ _skip_keys_device_placement: str = "past_key_values"
287
+ _supports_flash_attn_2: bool = True
288
+
289
+ def _init_weights(self, module: nn.Module) -> None:
290
+ # Important :: this HF ported version is *not* meant for training from scratch; only inference and fine-tuning!
291
+ # => As such, this init_weights code is not correct; if training VLMs from scratch, use the main codebase at
292
+ # https://github.com/TRI-ML/prismatic-vlms
293
+ std = (
294
+ self.config.initializer_range
295
+ if hasattr(self.config, "initializer_range")
296
+ else self.config.text_config.initializer_range
297
+ )
298
+
299
+ if hasattr(module, "class_embedding"):
300
+ module.class_embedding.data.normal_(mean=0.0, std=std)
301
+
302
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
303
+ module.weight.data.normal_(mean=0.0, std=std)
304
+ if module.bias is not None:
305
+ module.bias.data.zero_()
306
+ elif isinstance(module, nn.Embedding):
307
+ module.weight.data.normal_(mean=0.0, std=std)
308
+ if module.padding_idx is not None:
309
+ module.weight.data[module.padding_idx].zero_()
310
+
311
+ @property
312
+ def _supports_sdpa(self) -> bool:
313
+ """Check LLM supports SDPA Attention"""
314
+ return self.language_model._supports_sdpa
315
+
316
+
317
+ class PrismaticForConditionalGeneration(PrismaticPreTrainedModel):
318
+ def __init__(self, config: PrismaticConfig) -> None:
319
+ super().__init__(config)
320
+
321
+ # [Validation] Lightweight Validate on `config` Fields + Dependency Versions
322
+ if config.use_fused_vision_backbone is None:
323
+ raise ValueError("Missing config field `use_fused_vision_backbone`")
324
+
325
+ if timm.__version__ not in {"0.9.10", "0.9.11", "0.9.12", "0.9.16"}:
326
+ raise NotImplementedError(
327
+ "TIMM Version must be >= 0.9.10 and < 1.0.0 (breaking); please raise a GitHub Issue "
328
+ "if you urgently need support for latest TIMM versions."
329
+ )
330
+
331
+ if (transformers.__version__ != "4.40.1") or (tokenizers.__version__ != "0.19.1"):
332
+ logger.warning(
333
+ f"Expected `transformers==4.40.1` and `tokenizers==0.19.1` but got "
334
+ f"`transformers=={transformers.__version__}` and `tokenizers=={tokenizers.__version__}`; "
335
+ f"there might be inference-time regressions due to dependency changes. If in doubt, please"
336
+ f"use the above versions."
337
+ )
338
+
339
+ # Instantiate PrismaticVisionBackbone (w/ Potential Fused Backbone)
340
+ self.vision_backbone = PrismaticVisionBackbone(
341
+ config.use_fused_vision_backbone, config.image_sizes, config.timm_model_ids, config.timm_override_act_layers
342
+ )
343
+
344
+ # Create Multimodal Projector
345
+ self.projector = PrismaticProjector(
346
+ config.use_fused_vision_backbone,
347
+ vision_dim=self.vision_backbone.embed_dim,
348
+ llm_dim=config.text_config.hidden_size,
349
+ )
350
+
351
+ # Instantiate LLM Backbone
352
+ self.language_model = AutoModelForCausalLM.from_config(
353
+ config.text_config, attn_implementation=config._attn_implementation
354
+ )
355
+ self.vocab_size = config.text_config.vocab_size
356
+ self.pad_token_id = config.pad_token_id
357
+ self.llm_dim = config.text_config.hidden_size
358
+
359
+ # HF Boilerplate =>> initializes weights via `_init_weights()` and sets gradient checkpointing
360
+ self.post_init()
361
+
362
+ # === `PreTrainedModel` Boilerplate ===
363
+ def get_input_embeddings(self) -> nn.Module:
364
+ return self.language_model.get_input_embeddings()
365
+
366
+ def set_input_embeddings(self, value: nn.Module) -> None:
367
+ self.language_model.set_input_embeddings(value)
368
+
369
+ def get_output_embeddings(self) -> nn.Module:
370
+ return self.language_model.get_output_embeddings()
371
+
372
+ def set_output_embeddings(self, new_embeddings: nn.Module) -> None:
373
+ self.language_model.set_output_embeddings(new_embeddings)
374
+
375
+ def get_decoder(self) -> nn.Module:
376
+ return self.language_model.get_decoder()
377
+
378
+ def set_decoder(self, decoder: nn.Module) -> None:
379
+ self.language_model.set_decoder(decoder)
380
+
381
+ def tie_weights(self) -> None:
382
+ self.language_model.tie_weights() # Note: `Llama-2` and `Mistral` don't tie weights (no-op)
383
+
384
+ def resize_token_embeddings(
385
+ self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
386
+ ) -> nn.Embedding:
387
+ updated_embeddings = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
388
+
389
+ # Update config/instance variables
390
+ self.config.text_config.vocab_size = updated_embeddings.num_embeddings
391
+ self.vocab_size = updated_embeddings.num_embeddings
392
+
393
+ return updated_embeddings
394
+
395
+ def _replace_input_embeddings(self, input_embeddings, all_actions_mask, noisy_action_features):
396
+ """
397
+ Replace embeddings in input_embeddings at positions where all_actions_mask is True
398
+ with embeddings from noisy_action_features, using vectorized operations.
399
+
400
+ Args:
401
+ input_embeddings: Tensor of shape (B, S, D)
402
+ all_actions_mask: Boolean tensor of shape (B, S)
403
+ noisy_action_features: Tensor of shape (B, K, D) where K is the number of True values in mask per sample
404
+
405
+ Returns:
406
+ Modified input_embeddings tensor
407
+ """
408
+ # Clone input to avoid modifying the original tensor
409
+ new_input_embeddings = input_embeddings.clone()
410
+
411
+ # Create a tensor with the same shape of input_embeddings to hold the noisy action features
412
+ repositioned_noisy_action_features = torch.zeros_like(input_embeddings)
413
+
414
+ # Create batch indices for splicing
415
+ batch_indices = torch.arange(input_embeddings.shape[0], device=input_embeddings.device)
416
+ batch_indices = batch_indices.unsqueeze(1).expand(-1, noisy_action_features.shape[1])
417
+
418
+ # Get indices where mask is True for each sample
419
+ masked_indices = torch.stack([torch.where(mask)[0] for mask in all_actions_mask])
420
+
421
+ # Move the noisy action features into their correct positions
422
+ repositioned_noisy_action_features[batch_indices, masked_indices] = noisy_action_features
423
+
424
+ # Combine original input embeddings and noisy action embeddings using the mask
425
+ new_input_embeddings = torch.where(
426
+ all_actions_mask.unsqueeze(-1), repositioned_noisy_action_features, new_input_embeddings
427
+ )
428
+
429
+ return new_input_embeddings
430
+
431
+ def _process_action_masks(self, labels):
432
+ """Helper to get action masks from labels"""
433
+ current_action_mask = get_current_action_mask(labels)
434
+ next_actions_mask = get_next_actions_mask(labels)
435
+ all_actions_mask = current_action_mask | next_actions_mask # (B, seq_len)
436
+ return all_actions_mask
437
+
438
+ def _process_vision_features(self, pixel_values, language_embeddings=None, use_film=False):
439
+ """Process vision features with optional FiLM conditioning"""
440
+ if use_film:
441
+ # FiLM: Infuse language inputs into visual features
442
+ patch_features = self.vision_backbone(pixel_values, language_embeddings) # (bsz, 256 * num_images, D)
443
+ else:
444
+ patch_features = self.vision_backbone(pixel_values) # (bsz, 256 * num_images, D)
445
+
446
+ # Project patch embeddings into language embedding space
447
+ return self.projector(patch_features)
448
+
449
+ def _process_proprio_features(self, projected_patch_embeddings, proprio, proprio_projector):
450
+ """Process proprioceptive features and append to vision features"""
451
+ if proprio_projector is not None and proprio is not None:
452
+ # projected_patch_embeddings: (bsz, num_patches * num_images, llm_dim)
453
+ # proprio: (bsz, proprio_dim) or (propro_dim,)
454
+ proprio = proprio.reshape(projected_patch_embeddings.shape[0], -1) # (bsz, proprio_dim)
455
+ proprio_features = proprio_projector(proprio) # (bsz, llm_dim)
456
+ proprio_features = proprio_features.unsqueeze(dim=1) # (bsz, 1, llm_dim)
457
+ # For simplicity, just append proprio token to the end of projected vision patch tokens
458
+ return torch.cat((projected_patch_embeddings, proprio_features), dim=1)
459
+ return projected_patch_embeddings
460
+
461
+ def _build_multimodal_attention(self, input_embeddings, projected_patch_embeddings, attention_mask):
462
+ """Build multimodal embeddings and attention mask"""
463
+ # Update attention mask
464
+ projected_patch_attention_mask = None
465
+ if attention_mask is not None:
466
+ projected_patch_attention_mask = torch.full(
467
+ (projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
468
+ fill_value=True,
469
+ dtype=attention_mask.dtype,
470
+ device=attention_mask.device,
471
+ )
472
+
473
+ # Build multimodal embeddings & attention mask; insert embeddings after <BOS> token (1:)
474
+ multimodal_embeddings = torch.cat(
475
+ [input_embeddings[:, :1, :], projected_patch_embeddings, input_embeddings[:, 1:, :]], dim=1
476
+ )
477
+
478
+ multimodal_attention_mask = None
479
+ if attention_mask is not None:
480
+ multimodal_attention_mask = torch.cat(
481
+ [attention_mask[:, :1], projected_patch_attention_mask, attention_mask[:, 1:]], dim=1
482
+ )
483
+
484
+ return multimodal_embeddings, multimodal_attention_mask
485
+
486
+ def _build_multimodal_labels(self, labels, projected_patch_embeddings):
487
+ """Build multimodal labels with IGNORE_INDEX for patch embeddings"""
488
+ if labels is not None:
489
+ projected_patch_labels = torch.full(
490
+ (projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
491
+ fill_value=IGNORE_INDEX,
492
+ dtype=labels.dtype,
493
+ device=labels.device,
494
+ )
495
+ return torch.cat([labels[:, :1], projected_patch_labels, labels[:, 1:]], dim=1)
496
+ return None
497
+
498
+ # === Core Prismatic VLM `forward()` Logic ===
499
+ def forward(
500
+ self,
501
+ input_ids: Optional[torch.LongTensor] = None,
502
+ attention_mask: Optional[torch.Tensor] = None,
503
+ pixel_values: Optional[torch.FloatTensor] = None,
504
+ labels: Optional[torch.LongTensor] = None,
505
+ inputs_embeds: Optional[torch.FloatTensor] = None,
506
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
507
+ use_cache: Optional[bool] = None,
508
+ output_attentions: Optional[bool] = None,
509
+ output_hidden_states: Optional[bool] = None,
510
+ output_projector_features: Optional[bool] = None,
511
+ return_dict: Optional[bool] = None,
512
+ proprio=None,
513
+ proprio_projector=None,
514
+ noisy_actions=None,
515
+ noisy_action_projector=None,
516
+ diffusion_timestep_embeddings=None,
517
+ use_film: bool = False,
518
+ ) -> Union[Tuple, PrismaticCausalLMOutputWithPast]:
519
+ """Run a forward pass through the VLM, returning a PrismaticCausalLMOutputWithPast instance."""
520
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
521
+ output_hidden_states = (
522
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
523
+ )
524
+ output_projector_features = output_projector_features if output_projector_features is not None else False
525
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
526
+
527
+ # Respect `use_cache` only if not training (even if `gradient_checkpointing` is off)
528
+ use_cache = use_cache and not self.training
529
+
530
+ # Instantiate Placeholder for Projector Features
531
+ projected_patch_embeddings = None
532
+
533
+ # === Handle Generation with Cache (`input_ids.shape[1] == 1`) =>> requires `past_keys_values` ===
534
+ if input_ids.shape[1] == 1:
535
+ assert input_ids.shape[0] == 1, "Generation is only currently supported for batch size of 1!"
536
+ assert past_key_values is not None, "You must provide `past_key_values` during cached generation!"
537
+ assert labels is None, "Unexpected key `labels` provided during cached generation!"
538
+
539
+ language_model_output = self.language_model(
540
+ input_ids=input_ids,
541
+ attention_mask=None,
542
+ position_ids=None,
543
+ past_key_values=past_key_values,
544
+ inputs_embeds=None,
545
+ labels=None,
546
+ use_cache=use_cache,
547
+ output_attentions=output_attentions,
548
+ output_hidden_states=output_hidden_states,
549
+ return_dict=return_dict,
550
+ )
551
+
552
+ # === Handle Unimodal Forward ===
553
+ elif pixel_values is None:
554
+ assert (input_ids is not None) and (inputs_embeds is None), "Missing `input_ids` in language-only forward!"
555
+ assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
556
+
557
+ language_model_output = self.language_model(
558
+ input_ids=input_ids,
559
+ attention_mask=attention_mask,
560
+ position_ids=None,
561
+ past_key_values=None,
562
+ inputs_embeds=None,
563
+ labels=labels,
564
+ use_cache=use_cache,
565
+ output_attentions=output_attentions,
566
+ output_hidden_states=output_hidden_states,
567
+ return_dict=return_dict,
568
+ )
569
+
570
+ # === Handle Multimodal Forward ===
571
+ elif (input_ids.shape[0] == pixel_values.shape[0]) or (inputs_embeds.shape[0] == pixel_values.shape[0]):
572
+ assert past_key_values is None, "Unexpected key `past_key_values` provided during multimodal forward!"
573
+
574
+ # Get input embeddings (from language model embeddings)
575
+ input_embeddings = self.get_input_embeddings()(input_ids) # (B, seq_len, D)
576
+
577
+ # Extract action masks
578
+ all_actions_mask = self._process_action_masks(labels)
579
+
580
+ # Extract the language portion of the input embeddings (i.e. remove the action tokens portion)
581
+ language_embeddings = input_embeddings[~all_actions_mask].reshape(
582
+ input_embeddings.shape[0], -1, input_embeddings.shape[2]
583
+ ) # (B, lang_seq_len, llm_dim)
584
+
585
+ # Get visual features
586
+ projected_patch_embeddings = self._process_vision_features(pixel_values, language_embeddings, use_film)
587
+
588
+ # Add proprioceptive state if provided
589
+ projected_patch_embeddings = self._process_proprio_features(
590
+ projected_patch_embeddings, proprio, proprio_projector
591
+ )
592
+
593
+ # [Diffusion] Add diffusion timestep embedding if provided
594
+ if diffusion_timestep_embeddings is not None:
595
+ # For simplicity, just append diffusion timestep embedding to the end of projected vision patch tokens
596
+ projected_patch_embeddings = torch.cat(
597
+ (projected_patch_embeddings, diffusion_timestep_embeddings), dim=1
598
+ )
599
+
600
+ # Process action embeddings
601
+ if noisy_actions is not None:
602
+ # Get mask corresponding to all action tokens
603
+ all_actions_mask = self._process_action_masks(labels)
604
+
605
+ # Reshape noisy actions into individual action tokens
606
+ # noisy_actions: (B, chunk_len, action_dim) -> (B, chunk_len * action_dim, 1)
607
+ B = noisy_actions.shape[0]
608
+ noisy_actions = noisy_actions.reshape(B, -1).unsqueeze(-1)
609
+
610
+ # Project noisy action tokens into language model embedding space
611
+ noisy_action_features = noisy_action_projector(noisy_actions) # (B, chunk_len * action_dim, llm_dim)
612
+
613
+ # Replace embeddings of the action tokens with noisy action embeddings
614
+ input_embeddings = self._replace_input_embeddings(
615
+ input_embeddings, all_actions_mask, noisy_action_features
616
+ )
617
+ else:
618
+ # Replace the embeddings of the action tokens with zeros
619
+ # (Later on, the positional embeddings will be added to them)
620
+ all_actions_mask = all_actions_mask.unsqueeze(-1) # (B, seq_len, 1)
621
+ input_embeddings = input_embeddings * ~all_actions_mask
622
+
623
+ # Build multimodal embeddings & attention mask
624
+ multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
625
+ input_embeddings, projected_patch_embeddings, attention_mask
626
+ )
627
+
628
+ # Build labels for multimodal sequence if needed
629
+ multimodal_labels = self._build_multimodal_labels(labels, projected_patch_embeddings)
630
+
631
+ # Dispatch to language model
632
+ language_model_output = self.language_model(
633
+ input_ids=None,
634
+ attention_mask=multimodal_attention_mask,
635
+ position_ids=None,
636
+ past_key_values=None,
637
+ inputs_embeds=multimodal_embeddings,
638
+ labels=multimodal_labels,
639
+ use_cache=use_cache,
640
+ output_attentions=output_attentions,
641
+ output_hidden_states=output_hidden_states,
642
+ return_dict=return_dict,
643
+ )
644
+
645
+ # === Otherwise =>> Assume Invalid! ===
646
+ elif (input_ids.shape[0] != pixel_values.shape[0]) or (inputs_embeds.shape[0] != pixel_values.shape[0]):
647
+ raise ValueError("Non-homogenous batch of (text, image) input -- forward() does not support mixed batches!")
648
+
649
+ else:
650
+ raise ValueError(
651
+ "Invalid PrismaticForConditionalGeneration `forward()` call with provided arguments:\n"
652
+ f"=> `input_ids` = {input_ids is not None}\n"
653
+ f"=> `attention_mask` = {attention_mask is not None}\n"
654
+ f"=> `pixel_values` = {pixel_values is not None}\n"
655
+ f"=> `labels` = {labels is not None}\n"
656
+ f"=> `input_embeds` = {inputs_embeds is not None}\n"
657
+ f"=> `past_key_values` = {past_key_values is not None}\n"
658
+ f"=> `use_cache` = {use_cache}"
659
+ )
660
+
661
+ # Unpack `language_model_output` and return PrismaticCausalLMOutputWithPast (or tuple if not `return_dict`)
662
+ if not return_dict:
663
+ if output_projector_features and (projected_patch_embeddings is not None):
664
+ return *language_model_output, projected_patch_embeddings
665
+
666
+ return language_model_output
667
+
668
+ return PrismaticCausalLMOutputWithPast(
669
+ loss=language_model_output.loss,
670
+ logits=language_model_output.logits,
671
+ past_key_values=language_model_output.past_key_values,
672
+ hidden_states=language_model_output.hidden_states,
673
+ attentions=language_model_output.attentions,
674
+ projector_features=projected_patch_embeddings,
675
+ )
676
+
677
+ # === GenerationMixin Methods ===
678
+ def prepare_inputs_for_generation(
679
+ self,
680
+ input_ids: Optional[torch.Tensor] = None,
681
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
682
+ inputs_embeds: Optional[torch.FloatTensor] = None,
683
+ pixel_values: Optional[torch.FloatTensor] = None,
684
+ attention_mask: Optional[torch.Tensor] = None,
685
+ **kwargs: str,
686
+ ) -> Dict[str, torch.Tensor]:
687
+ """Borrowed from `LlamaForCausalLM` and simplified for batch size = 1; mirrors original PrismaticVLM logic."""
688
+ if ((input_ids is not None) and (input_ids.shape[0] > 1)) or (
689
+ (inputs_embeds is not None) and (inputs_embeds.shape[0] > 1)
690
+ ):
691
+ raise ValueError("Generation with batch size > 1 is not currently supported!")
692
+
693
+ # Handle `past_key_values` (cache) =>> assume `input_ids` just has unprocessed tokens
694
+ if past_key_values is not None:
695
+ input_ids = input_ids[:, -1:]
696
+
697
+ # If `input_embeds` are passed, we only want to use them in the 1st generation step
698
+ if inputs_embeds is not None and past_key_values is None:
699
+ model_inputs = {"input_embeds": inputs_embeds}
700
+ else:
701
+ model_inputs = {"input_ids": input_ids}
702
+
703
+ # Make sure `pixel_values` are preserved in `model_inputs`
704
+ model_inputs.update(
705
+ {
706
+ "attention_mask": attention_mask,
707
+ "pixel_values": pixel_values,
708
+ "past_key_values": past_key_values,
709
+ "use_cache": kwargs.get("use_cache"),
710
+ }
711
+ )
712
+
713
+ return model_inputs
714
+
715
+ # Defer to Language Model (all handle this differently, with different return types)
716
+ def _reorder_cache(self, *args, **kwargs) -> Any:
717
+ return self.language_model._reorder_cache(*args, **kwargs)
718
+
719
+
720
+ class OpenVLAForActionPrediction(PrismaticForConditionalGeneration):
721
+ config_class: PretrainedConfig = OpenVLAConfig
722
+
723
+ def __init__(self, config: OpenVLAConfig) -> None:
724
+ super().__init__(config)
725
+ self.norm_stats = config.norm_stats
726
+
727
+ # Compute action bins
728
+ self.bins = np.linspace(-1, 1, config.n_action_bins)
729
+ self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0
730
+
731
+ # Compute vocab size for de-tokenization -- revert added "multiple of"
732
+ self.vocab_size = self.config.text_config.vocab_size - self.config.pad_to_multiple_of
733
+
734
+ def _prepare_input_for_action_prediction(self, input_ids, attention_mask):
735
+ """Prepares input for action prediction by adding necessary tokens"""
736
+ # Add (ACTION_DIM * NUM_ACTIONS_CHUNK) placeholder tokens to input_ids to simulate action tokens
737
+ placeholder_action_token_ids = (
738
+ torch.ones((input_ids.shape[0], ACTION_DIM * NUM_ACTIONS_CHUNK)).to(input_ids.device).to(input_ids.dtype)
739
+ )
740
+ input_ids = torch.cat([input_ids, placeholder_action_token_ids], dim=-1)
741
+
742
+ # Add stop token to sequence (needed in non-causal bi-directional self-attention, as it appears at train time)
743
+ stop_token_id = torch.ones((input_ids.shape[0], 1)).to(input_ids.device).to(input_ids.dtype) * STOP_INDEX
744
+ input_ids = torch.cat([input_ids, stop_token_id], dim=-1)
745
+
746
+ # Extend the attention mask to fit the new shape of input
747
+ # Note: Only batch size == 1 supported right now
748
+ mask_extension = (
749
+ torch.ones((attention_mask.shape[0], input_ids.shape[-1] - attention_mask.shape[-1]))
750
+ .to(attention_mask.device)
751
+ .to(attention_mask.dtype)
752
+ )
753
+ attention_mask = torch.cat([attention_mask, mask_extension], dim=-1)
754
+
755
+ return input_ids, attention_mask
756
+
757
+ def _prepare_labels_for_action_prediction(self, labels, input_ids):
758
+ """Creates labels tensor for action prediction if not provided"""
759
+ # Extend labels tensor with fake action labels
760
+ ARBITRARY_ACTION_TOKEN_IDX = ACTION_TOKEN_BEGIN_IDX + 1
761
+ labels_extension = (
762
+ torch.ones((labels.shape[0], input_ids.shape[-1] - labels.shape[-1])).to(labels.device).to(labels.dtype)
763
+ * ARBITRARY_ACTION_TOKEN_IDX
764
+ )
765
+ labels = torch.cat([labels, labels_extension], dim=-1)
766
+
767
+ # Replace last label token with stop token
768
+ labels[:, -1] = STOP_INDEX
769
+
770
+ return labels
771
+
772
+ def _unnormalize_actions(self, normalized_actions, unnorm_key=None):
773
+ """Unnormalize actions using dataset statistics"""
774
+ action_norm_stats = self.get_action_stats(unnorm_key)
775
+
776
+ if ACTION_PROPRIO_NORMALIZATION_TYPE == NormalizationType.BOUNDS:
777
+ mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["min"], dtype=bool))
778
+ action_high, action_low = np.array(action_norm_stats["max"]), np.array(action_norm_stats["min"])
779
+ elif ACTION_PROPRIO_NORMALIZATION_TYPE == NormalizationType.BOUNDS_Q99:
780
+ mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["q01"], dtype=bool))
781
+ action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])
782
+ else:
783
+ raise ValueError("Unsupported action/proprio normalization type detected!")
784
+
785
+ actions = np.where(
786
+ mask,
787
+ 0.5 * (normalized_actions + 1) * (action_high - action_low + 1e-8) + action_low,
788
+ normalized_actions,
789
+ )
790
+
791
+ return actions
792
+
793
+ def _run_diffusion_prediction(
794
+ self,
795
+ input_embeddings,
796
+ all_actions_mask,
797
+ noise,
798
+ action_head,
799
+ projected_patch_embeddings,
800
+ labels,
801
+ attention_mask,
802
+ NUM_PATCHES,
803
+ NUM_PROMPT_TOKENS,
804
+ noisy_action_projector,
805
+ ):
806
+ """Run diffusion-based action prediction"""
807
+ # Clone embedding for reuse in each timestep
808
+ orig_projected_patch_embeddings = projected_patch_embeddings.clone()
809
+ curr_noisy_actions = noise
810
+
811
+ # Reverse diffusion: Iteratively denoise to generate action prediction
812
+ for t in action_head.noise_scheduler.timesteps:
813
+ # Get diffusion model's noise prediction (conditioned on VLA latent embedding, current noisy action
814
+ # embedding, and diffusion timestep embedding)
815
+ timesteps = torch.Tensor([t]).to(labels.device)
816
+ diffusion_timestep_embeddings = (
817
+ action_head.time_encoder(timesteps).to(curr_noisy_actions.dtype).to(curr_noisy_actions.device)
818
+ ) # (B, llm_dim)
819
+ diffusion_timestep_embeddings = diffusion_timestep_embeddings.unsqueeze(1) # (B, 1, llm_dim)
820
+
821
+ # [Diffusion] Replace the embeddings of the action tokens with noisy actions
822
+ # (Later on, the positional embeddings will be added to them)
823
+
824
+ # For simplicity, append diffusion timestep embedding to the end of projected vision tokens
825
+ projected_patch_embeddings = torch.cat(
826
+ (orig_projected_patch_embeddings, diffusion_timestep_embeddings), dim=1
827
+ )
828
+
829
+ # Reshape and project noisy actions into language embedding space
830
+ B = curr_noisy_actions.shape[0]
831
+ orig_curr_noisy_actions_shape = curr_noisy_actions.shape
832
+ curr_noisy_actions = curr_noisy_actions.reshape(B, -1).unsqueeze(-1)
833
+ noisy_action_features = noisy_action_projector(curr_noisy_actions)
834
+ curr_noisy_actions = curr_noisy_actions.reshape(orig_curr_noisy_actions_shape)
835
+
836
+ # Replace action token embeddings with noisy action embeddings
837
+ input_embeddings = self._replace_input_embeddings(
838
+ input_embeddings.clone(), all_actions_mask, noisy_action_features
839
+ )
840
+
841
+ # Build multimodal embeddings and attention mask
842
+ multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
843
+ input_embeddings, projected_patch_embeddings, attention_mask
844
+ )
845
+
846
+ # Forward pass through language model
847
+ language_model_output = self.language_model(
848
+ input_ids=None,
849
+ attention_mask=multimodal_attention_mask,
850
+ position_ids=None,
851
+ past_key_values=None,
852
+ inputs_embeds=multimodal_embeddings,
853
+ labels=None,
854
+ use_cache=None,
855
+ output_attentions=False,
856
+ output_hidden_states=True,
857
+ return_dict=True,
858
+ )
859
+
860
+ # Extract hidden states for action portion of response
861
+ last_hidden_states = language_model_output.hidden_states[-1] # (B, seq_len, D)
862
+ actions_hidden_states = last_hidden_states[
863
+ :,
864
+ NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
865
+ :,
866
+ ] # (B, act_chunk_len, D)
867
+
868
+ # Predict noise and update noisy actions: x_t -> x_{t-1}
869
+ noise_pred = action_head.predict_noise(actions_hidden_states)
870
+ curr_noisy_actions = action_head.noise_scheduler.step(noise_pred, t, curr_noisy_actions).prev_sample
871
+
872
+ curr_noisy_actions = curr_noisy_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
873
+
874
+ # Return final actions
875
+ return curr_noisy_actions.float().cpu().detach().numpy(), actions_hidden_states
876
+
877
+ def _regression_or_discrete_prediction(
878
+ self,
879
+ input_embeddings,
880
+ all_actions_mask,
881
+ projected_patch_embeddings,
882
+ attention_mask,
883
+ labels,
884
+ NUM_PATCHES,
885
+ NUM_PROMPT_TOKENS,
886
+ action_head=None,
887
+ ):
888
+ """Run L1 regression-based continuous action prediction or discrete action tokens prediction."""
889
+ # Zero out action token embeddings
890
+ all_actions_mask = all_actions_mask.unsqueeze(-1) # (B, seq_len, 1)
891
+ input_embeddings = input_embeddings * ~all_actions_mask
892
+
893
+ # Build multimodal embeddings and attention mask
894
+ multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
895
+ input_embeddings, projected_patch_embeddings, attention_mask
896
+ )
897
+
898
+ # Forward pass through language model
899
+ language_model_output = self.language_model(
900
+ input_ids=None,
901
+ attention_mask=multimodal_attention_mask,
902
+ position_ids=None,
903
+ past_key_values=None,
904
+ inputs_embeds=multimodal_embeddings,
905
+ labels=None,
906
+ use_cache=None,
907
+ output_attentions=False,
908
+ output_hidden_states=True,
909
+ return_dict=True,
910
+ )
911
+
912
+ # Extract hidden states for action tokens
913
+ last_hidden_states = language_model_output.hidden_states[-1] # (B, seq_len, D)
914
+ actions_hidden_states = last_hidden_states[
915
+ :,
916
+ NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
917
+ :,
918
+ ] # (B, act_chunk_len, D)
919
+
920
+ # Handle different prediction methods
921
+ if action_head is not None:
922
+ # L1 regression prediction
923
+ normalized_actions = action_head.predict_action(actions_hidden_states)
924
+ normalized_actions = normalized_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
925
+ normalized_actions = normalized_actions.float().cpu().detach().numpy()
926
+ else:
927
+ # Discrete token-based prediction
928
+ predicted_action_token_ids = (
929
+ language_model_output.logits[
930
+ :,
931
+ NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
932
+ ]
933
+ .argmax(dim=2)
934
+ .cpu()
935
+ .numpy()
936
+ )
937
+ discretized_actions = self.vocab_size - predicted_action_token_ids
938
+ discretized_actions = np.clip(discretized_actions - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
939
+ normalized_actions = self.bin_centers[discretized_actions]
940
+ normalized_actions = normalized_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
941
+
942
+ return normalized_actions, actions_hidden_states
943
+
944
+ def predict_action(
945
+ self,
946
+ input_ids: Optional[torch.LongTensor] = None,
947
+ unnorm_key: Optional[str] = None,
948
+ proprio=None,
949
+ proprio_projector=None,
950
+ action_head=None,
951
+ noisy_action_projector=None,
952
+ use_film: bool = False,
953
+ **kwargs: str,
954
+ ) -> np.ndarray:
955
+ """Predict actions from input sequence, with options for different prediction methods.
956
+
957
+ Args:
958
+ input_ids: Input token ids
959
+ unnorm_key: Key for unnormalization statistics
960
+ proprio: Proprioceptive features
961
+ proprio_projector: Projector for proprioceptive features
962
+ action_head: Optional head for L1 regression or diffusion-based prediction
963
+ noisy_action_projector: Projector for noisy actions in diffusion-based prediction
964
+ use_film: Whether to use FiLM conditioning
965
+ **kwargs: Additional arguments including pixel_values and attention_mask
966
+
967
+ Returns:
968
+ Tuple of (unnormalized_actions, action_hidden_states)
969
+ """
970
+ # If the special empty token ('') does not already appear after the colon (':') token in the prompt
971
+ # (after "OUT:" or "ASSISTANT:"), insert it to match the inputs seen at training time
972
+ if not torch.all(input_ids[:, -1] == 29871):
973
+ input_ids = torch.cat(
974
+ (input_ids, torch.unsqueeze(torch.Tensor([29871]).long(), dim=0).to(input_ids.device)), dim=1
975
+ )
976
+
977
+ pixel_values = kwargs["pixel_values"]
978
+ attention_mask = kwargs["attention_mask"]
979
+
980
+ # Create fake labels tensor (needed for action mask)
981
+ labels = input_ids.clone()
982
+ labels[:] = IGNORE_INDEX
983
+
984
+ # Get number of tokens in prompt (excluding the start token)
985
+ NUM_PROMPT_TOKENS = input_ids.shape[-1] - 1 # Subtract action tokens and stop token
986
+
987
+ # Prepare inputs by adding necessary tokens
988
+ input_ids, attention_mask = self._prepare_input_for_action_prediction(input_ids, attention_mask)
989
+
990
+ # Update labels tensor for action mask computation later
991
+ labels = self._prepare_labels_for_action_prediction(labels, input_ids)
992
+
993
+ # Get input embeddings and action masks
994
+ input_embeddings = self.get_input_embeddings()(input_ids)
995
+ all_actions_mask = self._process_action_masks(labels)
996
+
997
+ # Extract language embeddings
998
+ language_embeddings = input_embeddings[~all_actions_mask].reshape(
999
+ input_embeddings.shape[0], -1, input_embeddings.shape[2]
1000
+ )
1001
+
1002
+ # Process vision features
1003
+ projected_patch_embeddings = self._process_vision_features(pixel_values, language_embeddings, use_film)
1004
+
1005
+ # Add proprioceptive features if provided
1006
+ use_proprio = proprio_projector is not None and proprio is not None
1007
+ if use_proprio:
1008
+ proprio = torch.Tensor(proprio).to(projected_patch_embeddings.device, dtype=projected_patch_embeddings.dtype)
1009
+ projected_patch_embeddings = self._process_proprio_features(
1010
+ projected_patch_embeddings, proprio, proprio_projector
1011
+ )
1012
+
1013
+ # Use diffusion if provided, otherwise use regression or discrete prediction
1014
+ use_diffusion = noisy_action_projector is not None and hasattr(action_head, "noise_scheduler")
1015
+
1016
+ # Calculate number of patches (including proprio token and/or diffusion timestep embedding if present)
1017
+ NUM_PATCHES = self.vision_backbone.get_num_patches() * self.vision_backbone.get_num_images_in_input()
1018
+ if use_proprio:
1019
+ NUM_PATCHES += 1
1020
+ if use_diffusion:
1021
+ NUM_PATCHES += 1
1022
+
1023
+ if use_diffusion:
1024
+ # Sample random noise with shape equal to output action, used as the starting state for reverse diffusion
1025
+ noise = torch.randn(
1026
+ size=(1, NUM_ACTIONS_CHUNK, ACTION_DIM), device=input_embeddings.device, dtype=input_embeddings.dtype
1027
+ )
1028
+
1029
+ # Run diffusion-based prediction
1030
+ normalized_actions, actions_hidden_states = self._run_diffusion_prediction(
1031
+ input_embeddings,
1032
+ all_actions_mask,
1033
+ noise,
1034
+ action_head,
1035
+ projected_patch_embeddings,
1036
+ labels,
1037
+ attention_mask,
1038
+ NUM_PATCHES,
1039
+ NUM_PROMPT_TOKENS,
1040
+ noisy_action_projector,
1041
+ )
1042
+ else:
1043
+ # Run regression or discrete token-based prediction
1044
+ normalized_actions, actions_hidden_states = self._regression_or_discrete_prediction(
1045
+ input_embeddings,
1046
+ all_actions_mask,
1047
+ projected_patch_embeddings,
1048
+ attention_mask,
1049
+ labels,
1050
+ NUM_PATCHES,
1051
+ NUM_PROMPT_TOKENS,
1052
+ action_head,
1053
+ )
1054
+
1055
+ # Unnormalize predicted actions
1056
+ actions = self._unnormalize_actions(normalized_actions, unnorm_key)
1057
+
1058
+ return actions, actions_hidden_states
1059
+
1060
+ @staticmethod
1061
+ def _check_unnorm_key(norm_stats: Dict[str, Dict[str, Any]], unnorm_key: Optional[str]) -> str:
1062
+ """Validate and resolve the unnormalization key for action statistics"""
1063
+ if unnorm_key is None:
1064
+ assert len(norm_stats) == 1, (
1065
+ f"Your model was trained on more than one dataset, "
1066
+ f"please pass a `unnorm_key` from the following options to choose the statistics "
1067
+ f"used for un-normalizing actions: {norm_stats.keys()}"
1068
+ )
1069
+ unnorm_key = next(iter(norm_stats.keys()))
1070
+
1071
+ assert unnorm_key in norm_stats, (
1072
+ f"The `unnorm_key` you chose is not in the set of available dataset statistics, "
1073
+ f"please choose from: {norm_stats.keys()}"
1074
+ )
1075
+ return unnorm_key
1076
+
1077
+ def get_action_dim(self, unnorm_key: Optional[str] = None) -> int:
1078
+ """Get the dimensionality of the policy's action space."""
1079
+ unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
1080
+ return len(self.norm_stats[unnorm_key]["action"]["min"])
1081
+
1082
+ def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]:
1083
+ """Get all the logged statistics for the given dataset."""
1084
+ unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
1085
+ return self.norm_stats[unnorm_key]["action"]
modeling_prismatic.py.back.20250720_140403 ADDED
@@ -0,0 +1,562 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ modeling_prismatic.py
3
+
4
+ Core HuggingFace-style PrismaticPreTrainedModel and PrismaticForConditionalGeneration class definitions, inheriting
5
+ from the default `transformers.PretrainedModel`. Meant to be standalone and self-contained, but exactly replicate the
6
+ logic in `prismatic.models.vlms.prismatic.py`.
7
+
8
+ Note =>> for the time being, not adding the custom HF "docstring" formatting.
9
+
10
+ References [LLaVa, IDEFICS-2]:
11
+ => https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/modeling_llava.py
12
+ => https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics2/modeling_idefics2.py
13
+ """
14
+
15
+ import logging
16
+ from dataclasses import dataclass
17
+ from functools import partial
18
+ from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union
19
+
20
+ import numpy as np
21
+ import timm
22
+ import tokenizers
23
+ import torch
24
+ import torch.nn as nn
25
+ import transformers
26
+ from timm.models.vision_transformer import LayerScale
27
+ from transformers import AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
28
+ from transformers.modeling_outputs import ModelOutput
29
+
30
+ from .configuration_prismatic import OpenVLAConfig, PrismaticConfig
31
+
32
+ # Get Logger
33
+ logger = logging.getLogger(__name__)
34
+
35
+
36
+ # === PyTorch/HuggingFace Default IGNORE_INDEX (for CrossEntropyLoss labels)
37
+ IGNORE_INDEX = -100
38
+
39
+
40
+ # === Utility Functions for Monkey-Patching ===
41
+ def unpack_tuple(fn: Callable[[Any], Tuple[Any]]) -> Callable[[Any], Any]:
42
+ def wrapper(*args: Any, **kwargs: Any) -> Any:
43
+ result = fn(*args, **kwargs)
44
+ return result[0] if isinstance(result, tuple) else result
45
+
46
+ return wrapper
47
+
48
+
49
+ # HF Transformers overwrites parameters with names containing `gamma`; we're going to patch VisionBackbone.LayerScale.
50
+ # =>> TIMM :: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L109
51
+ # =>> Transformers :: https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L3960
52
+ def _ls_new_forward(self, x: torch.Tensor) -> torch.Tensor:
53
+ return x.mul_(self.scale_factor) if self.inplace else x * self.scale_factor
54
+
55
+
56
+ def ls_apply_patch(ls_module: LayerScale):
57
+ ls_module.scale_factor = nn.Parameter(ls_module.gamma.clone())
58
+ ls_module.forward = _ls_new_forward.__get__(ls_module, LayerScale)
59
+ del ls_module.gamma
60
+
61
+
62
+ # === Prismatic Vision Backbone (nn.Module) Definitions (w/ Fused Backbone Support) ===
63
+ class PrismaticVisionBackbone(nn.Module):
64
+ def __init__(
65
+ self,
66
+ use_fused_vision_backbone: bool,
67
+ image_sizes: List[int],
68
+ timm_model_ids: List[str],
69
+ timm_override_act_layers: List[Optional[str]],
70
+ ) -> None:
71
+ super().__init__()
72
+ self.use_fused_vision_backbone = use_fused_vision_backbone
73
+
74
+ # [Contract] Validate number of (fused) vision backbones, create "alpha" featurizer and Instantiate
75
+ # =>> Note :: Monkey-Patch the `forward()` function of the backbone to ensure FSDP-compatibility
76
+ # Hardcodes `get_intermediate_layers` to return the **SECOND-TO-LAST** layer patches!
77
+ assert len(timm_model_ids) <= 2, "Prismatic models only support up to 2 (fused) vision backbones!"
78
+ self.featurizer = timm.create_model(
79
+ timm_model_ids[0],
80
+ pretrained=False,
81
+ num_classes=0,
82
+ img_size=image_sizes[0],
83
+ act_layer=timm_override_act_layers[0],
84
+ )
85
+ self.featurizer.forward = unpack_tuple(
86
+ partial(self.featurizer.get_intermediate_layers, n={len(self.featurizer.blocks) - 2})
87
+ )
88
+ self.embed_dim = self.featurizer.embed_dim
89
+
90
+ # If `use_fused_vision_backbone` =>> create "beta" featurizer
91
+ if self.use_fused_vision_backbone:
92
+ self.fused_featurizer = timm.create_model(
93
+ timm_model_ids[1],
94
+ pretrained=False,
95
+ num_classes=0,
96
+ img_size=image_sizes[1],
97
+ act_layer=timm_override_act_layers[1],
98
+ )
99
+ self.fused_featurizer.forward = unpack_tuple(
100
+ partial(self.fused_featurizer.get_intermediate_layers, n={len(self.fused_featurizer.blocks) - 2})
101
+ )
102
+ self.embed_dim += self.fused_featurizer.embed_dim
103
+
104
+ # Patch `vision_backbone.featurizer` and `vision_backbone.fused_featurizer` with HF-Compatible LayerScale
105
+ for module in self.featurizer.modules():
106
+ if isinstance(module, LayerScale):
107
+ ls_apply_patch(module)
108
+
109
+ if self.use_fused_vision_backbone:
110
+ for module in self.fused_featurizer.modules():
111
+ if isinstance(module, LayerScale):
112
+ ls_apply_patch(module)
113
+
114
+ def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
115
+ """Run image (`pixel_values`) through featurizer; if channel-stacked, then dispatch and sequence stack."""
116
+ if not self.use_fused_vision_backbone:
117
+ return self.featurizer(pixel_values)
118
+
119
+ # Split `pixel_values :: [bsz, 2 * 3, resolution, resolution]` =>> featurize =>> channel stack
120
+ img, img_fused = torch.split(pixel_values, [3, 3], dim=1)
121
+ patches, patches_fused = self.featurizer(img), self.fused_featurizer(img_fused)
122
+
123
+ return torch.cat([patches, patches_fused], dim=2)
124
+
125
+
126
+ # === Prismatic Projector (nn.Module) Definitions ===
127
+ class PrismaticProjector(nn.Module):
128
+ def __init__(self, use_fused_vision_backbone: bool, vision_dim: int, llm_dim: int) -> None:
129
+ super().__init__()
130
+ self.use_fused_vision_backbone = use_fused_vision_backbone
131
+ self.vision_dim, self.llm_dim = vision_dim, llm_dim
132
+
133
+ # Switch on `use_fused_vision_backbone` =>> use slightly different MLPs and projection factors!
134
+ if not self.use_fused_vision_backbone:
135
+ self.fc1 = nn.Linear(self.vision_dim, self.llm_dim, bias=True)
136
+ self.fc2 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
137
+ self.act_fn1 = nn.GELU()
138
+ else:
139
+ initial_projection_dim = 4 * vision_dim
140
+ self.fc1 = nn.Linear(self.vision_dim, initial_projection_dim, bias=True)
141
+ self.fc2 = nn.Linear(initial_projection_dim, self.llm_dim, bias=True)
142
+ self.fc3 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
143
+ self.act_fn1 = nn.GELU()
144
+ self.act_fn2 = nn.GELU()
145
+
146
+ def forward(self, img_patches: torch.Tensor) -> torch.Tensor:
147
+ if not self.use_fused_vision_backbone:
148
+ projected_features = self.fc1(img_patches)
149
+ projected_features = self.act_fn1(projected_features)
150
+ projected_features = self.fc2(projected_features)
151
+ else:
152
+ projected_features = self.fc1(img_patches)
153
+ projected_features = self.act_fn1(projected_features)
154
+ projected_features = self.fc2(projected_features)
155
+ projected_features = self.act_fn2(projected_features)
156
+ projected_features = self.fc3(projected_features)
157
+
158
+ return projected_features
159
+
160
+
161
+ # === Main HF Class Definitions ===
162
+ @dataclass
163
+ class PrismaticCausalLMOutputWithPast(ModelOutput):
164
+ """Base class for Prismatic casual (visually-conditioned) language model outputs; also exposes visual features."""
165
+
166
+ loss: Optional[torch.FloatTensor] = None
167
+ logits: torch.FloatTensor = None
168
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
169
+ hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
170
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
171
+
172
+ # Additions for VLMs
173
+ projector_features: Optional[torch.FloatTensor] = None
174
+
175
+
176
+ class PrismaticPreTrainedModel(PreTrainedModel):
177
+ config_class: PretrainedConfig = PrismaticConfig
178
+ base_model_prefix: str = "model"
179
+ supports_gradient_checkpointing: bool = True
180
+
181
+ _no_split_modules: ClassVar[List[str]] = ["PrismaticProjector"]
182
+ _skip_keys_device_placement: str = "past_key_values"
183
+ _supports_flash_attn_2: bool = True
184
+
185
+ def _init_weights(self, module: nn.Module) -> None:
186
+ # Important :: this HF ported version is *not* meant for training from scratch; only inference and fine-tuning!
187
+ # => As such, this init_weights code is not correct; if training VLMs from scratch, use the main codebase at
188
+ # https://github.com/TRI-ML/prismatic-vlms
189
+ std = (
190
+ self.config.initializer_range
191
+ if hasattr(self.config, "initializer_range")
192
+ else self.config.text_config.initializer_range
193
+ )
194
+
195
+ if hasattr(module, "class_embedding"):
196
+ module.class_embedding.data.normal_(mean=0.0, std=std)
197
+
198
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
199
+ module.weight.data.normal_(mean=0.0, std=std)
200
+ if module.bias is not None:
201
+ module.bias.data.zero_()
202
+ elif isinstance(module, nn.Embedding):
203
+ module.weight.data.normal_(mean=0.0, std=std)
204
+ if module.padding_idx is not None:
205
+ module.weight.data[module.padding_idx].zero_()
206
+
207
+ @property
208
+ def _supports_sdpa(self) -> bool:
209
+ """Check LLM supports SDPA Attention"""
210
+ return self.language_model._supports_sdpa
211
+
212
+
213
+ class PrismaticForConditionalGeneration(PrismaticPreTrainedModel):
214
+ def __init__(self, config: PrismaticConfig) -> None:
215
+ super().__init__(config)
216
+
217
+ # [Validation] Lightweight Validate on `config` Fields + Dependency Versions
218
+ if config.use_fused_vision_backbone is None:
219
+ raise ValueError("Missing config field `use_fused_vision_backbone`")
220
+
221
+ if timm.__version__ not in {"0.9.10", "0.9.11", "0.9.12", "0.9.16"}:
222
+ raise NotImplementedError(
223
+ "TIMM Version must be >= 0.9.10 and < 1.0.0 (breaking); please raise a GitHub Issue "
224
+ "if you urgently need support for latest TIMM versions."
225
+ )
226
+
227
+ if (transformers.__version__ != "4.40.1") or (tokenizers.__version__ != "0.19.1"):
228
+ logger.warning(
229
+ f"Expected `transformers==4.40.1` and `tokenizers==0.19.1` but got "
230
+ f"`transformers=={transformers.__version__}` and `tokenizers=={tokenizers.__version__}`; "
231
+ f"there might be inference-time regressions due to dependency changes. If in doubt, please"
232
+ f"use the above versions."
233
+ )
234
+
235
+ # Instantiate PrismaticVisionBackbone (w/ Potential Fused Backbone)
236
+ self.vision_backbone = PrismaticVisionBackbone(
237
+ config.use_fused_vision_backbone, config.image_sizes, config.timm_model_ids, config.timm_override_act_layers
238
+ )
239
+
240
+ # Create Multimodal Projector
241
+ self.projector = PrismaticProjector(
242
+ config.use_fused_vision_backbone,
243
+ vision_dim=self.vision_backbone.embed_dim,
244
+ llm_dim=config.text_config.hidden_size,
245
+ )
246
+
247
+ # Instantiate LLM Backbone
248
+ self.language_model = AutoModelForCausalLM.from_config(
249
+ config.text_config, attn_implementation=config._attn_implementation
250
+ )
251
+ self.vocab_size = config.text_config.vocab_size
252
+ self.pad_token_id = config.pad_token_id
253
+
254
+ # HF Boilerplate =>> initializes weights via `_init_weights()` and sets gradient checkpointing
255
+ self.post_init()
256
+
257
+ # === `PreTrainedModel` Boilerplate ===
258
+ def get_input_embeddings(self) -> nn.Module:
259
+ return self.language_model.get_input_embeddings()
260
+
261
+ def set_input_embeddings(self, value: nn.Module) -> None:
262
+ self.language_model.set_input_embeddings(value)
263
+
264
+ def get_output_embeddings(self) -> nn.Module:
265
+ return self.language_model.get_output_embeddings()
266
+
267
+ def set_output_embeddings(self, new_embeddings: nn.Module) -> None:
268
+ self.language_model.set_output_embeddings(new_embeddings)
269
+
270
+ def get_decoder(self) -> nn.Module:
271
+ return self.language_model.get_decoder()
272
+
273
+ def set_decoder(self, decoder: nn.Module) -> None:
274
+ self.language_model.set_decoder(decoder)
275
+
276
+ def tie_weights(self) -> None:
277
+ self.language_model.tie_weights() # Note: `Llama-2` and `Mistral` don't tie weights (no-op)
278
+
279
+ def resize_token_embeddings(
280
+ self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
281
+ ) -> nn.Embedding:
282
+ updated_embeddings = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
283
+
284
+ # Update config/instance variables
285
+ self.config.text_config.vocab_size = updated_embeddings.num_embeddings
286
+ self.vocab_size = updated_embeddings.num_embeddings
287
+
288
+ return updated_embeddings
289
+
290
+ # === Core Prismatic VLM `forward()` Logic ===
291
+ def forward(
292
+ self,
293
+ input_ids: Optional[torch.LongTensor] = None,
294
+ attention_mask: Optional[torch.Tensor] = None,
295
+ pixel_values: Optional[torch.FloatTensor] = None,
296
+ labels: Optional[torch.LongTensor] = None,
297
+ inputs_embeds: Optional[torch.FloatTensor] = None,
298
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
299
+ use_cache: Optional[bool] = None,
300
+ output_attentions: Optional[bool] = None,
301
+ output_hidden_states: Optional[bool] = None,
302
+ output_projector_features: Optional[bool] = None,
303
+ return_dict: Optional[bool] = None,
304
+ ) -> Union[Tuple, PrismaticCausalLMOutputWithPast]:
305
+ """Run a forward pass through the VLM, returning a PrismaticCausalLMOutputWithPast instance."""
306
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
307
+ output_hidden_states = (
308
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
309
+ )
310
+ output_projector_features = output_projector_features if output_projector_features is not None else False
311
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
312
+
313
+ # Respect `use_cache` only if not training (even if `gradient_checkpointing` is off)
314
+ use_cache = use_cache and not self.training
315
+
316
+ # Instantiate Placeholder for Projector Features
317
+ projected_patch_embeddings = None
318
+
319
+ # Note :: We only support forward passes with the following cases:
320
+ # => Cached Generation :: (input_ids.shape[1] == 1) and (past_key_values is not None)
321
+ # => Unimodal Forward :: (pixel_values is None)
322
+ # => Multimodal Forward :: (pixel_values is not None) and (input_ids/embeds.shape[0] == pixel_values.shape[0])
323
+
324
+ # === Handle Generation with Cache (`input_ids.shape[1] == 1`) =>> requires `past_keys_values` ===
325
+ if input_ids.shape[1] == 1:
326
+ assert input_ids.shape[0] == 1, "Generation is only currently supported for batch size of 1!"
327
+ assert past_key_values is not None, "You must provide `past_key_values` during cached generation!"
328
+ assert labels is None, "Unexpected key `labels` provided during cached generation!"
329
+
330
+ language_model_output = self.language_model(
331
+ input_ids=input_ids,
332
+ attention_mask=None,
333
+ position_ids=None,
334
+ past_key_values=past_key_values,
335
+ inputs_embeds=None,
336
+ labels=None,
337
+ use_cache=use_cache,
338
+ output_attentions=output_attentions,
339
+ output_hidden_states=output_hidden_states,
340
+ return_dict=return_dict,
341
+ )
342
+
343
+ # === Handle Unimodal Forward ===
344
+ elif pixel_values is None:
345
+ assert (input_ids is not None) and (inputs_embeds is None), "Missing `input_ids` in language-only forward!"
346
+ assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
347
+
348
+ language_model_output = self.language_model(
349
+ input_ids=input_ids,
350
+ attention_mask=attention_mask,
351
+ position_ids=None,
352
+ past_key_values=None,
353
+ inputs_embeds=None,
354
+ labels=labels,
355
+ use_cache=use_cache,
356
+ output_attentions=output_attentions,
357
+ output_hidden_states=output_hidden_states,
358
+ return_dict=return_dict,
359
+ )
360
+
361
+ # === Handle Multimodal Forward ===
362
+ elif (input_ids.shape[0] == pixel_values.shape[0]) or (inputs_embeds.shape[0] == pixel_values.shape[0]):
363
+ assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
364
+
365
+ # Visual Feature Extraction
366
+ patch_features = self.vision_backbone(pixel_values)
367
+
368
+ # Projection Logic =>> Update Attention Mask
369
+ projected_patch_embeddings = self.projector(patch_features)
370
+ projected_patch_attention_mask = None
371
+ if attention_mask is not None:
372
+ projected_patch_attention_mask = torch.full(
373
+ (projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
374
+ fill_value=True,
375
+ dtype=attention_mask.dtype,
376
+ device=attention_mask.device,
377
+ )
378
+
379
+ # Get Input Embeddings (from Language Model Embeddings)
380
+ input_embeddings = self.get_input_embeddings()(input_ids)
381
+
382
+ # Build Multimodal Embeddings & Attention Mask =>> Prismatic defaults to inserting after <BOS> token (1:)
383
+ multimodal_embeddings = torch.cat(
384
+ [input_embeddings[:, :1, :], projected_patch_embeddings, input_embeddings[:, 1:, :]], dim=1
385
+ )
386
+ multimodal_attention_mask = None
387
+ if attention_mask is not None:
388
+ multimodal_attention_mask = torch.cat(
389
+ [attention_mask[:, :1], projected_patch_attention_mask, attention_mask[:, 1:]], dim=1
390
+ )
391
+
392
+ # Build Labels (if specified) =>> Ignore Labels for Patch Embeddings
393
+ multimodal_labels = None
394
+ if labels is not None:
395
+ projected_patch_labels = torch.full(
396
+ (projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
397
+ fill_value=IGNORE_INDEX,
398
+ dtype=labels.dtype,
399
+ device=labels.device,
400
+ )
401
+ multimodal_labels = torch.cat([labels[:, :1], projected_patch_labels, labels[:, 1:]], dim=1)
402
+
403
+ # Dispatch to Language Model
404
+ language_model_output = self.language_model(
405
+ input_ids=None,
406
+ attention_mask=multimodal_attention_mask,
407
+ position_ids=None,
408
+ past_key_values=None,
409
+ inputs_embeds=multimodal_embeddings,
410
+ labels=multimodal_labels,
411
+ use_cache=use_cache,
412
+ output_attentions=output_attentions,
413
+ output_hidden_states=output_hidden_states,
414
+ return_dict=return_dict,
415
+ )
416
+
417
+ # === Otherwise =>> Assume Invalid! ===
418
+ elif (input_ids.shape[0] != pixel_values.shape[0]) or (inputs_embeds.shape[0] != pixel_values.shape[0]):
419
+ raise ValueError("Non-homogenous batch of (text, image) input -- forward() does not support mixed batches!")
420
+
421
+ else:
422
+ raise ValueError(
423
+ "Invalid PrismaticForConditionalGeneration `forward()` call with provided arguments:\n"
424
+ f"=> `input_ids` = {input_ids is not None}\n"
425
+ f"=> `attention_mask` = {attention_mask is not None}\n"
426
+ f"=> `pixel_values` = {pixel_values is not None}\n"
427
+ f"=> `labels` = {labels is not None}\n"
428
+ f"=> `input_embeds` = {inputs_embeds is not None}\n"
429
+ f"=> `past_key_values` = {past_key_values is not None}\n"
430
+ f"=> `use_cache` = {use_cache}"
431
+ )
432
+
433
+ # Unpack `language_model_output` and return PrismaticCausalLMOutputWithPast (or tuple if not `return_dict`)
434
+ if not return_dict:
435
+ if output_projector_features and (projected_patch_embeddings is not None):
436
+ return *language_model_output, projected_patch_embeddings
437
+
438
+ return language_model_output
439
+
440
+ return PrismaticCausalLMOutputWithPast(
441
+ loss=language_model_output.loss,
442
+ logits=language_model_output.logits,
443
+ past_key_values=language_model_output.past_key_values,
444
+ hidden_states=language_model_output.hidden_states,
445
+ attentions=language_model_output.attentions,
446
+ projector_features=projected_patch_embeddings,
447
+ )
448
+
449
+ # === GenerationMixin Methods ===
450
+ def prepare_inputs_for_generation(
451
+ self,
452
+ input_ids: Optional[torch.Tensor] = None,
453
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
454
+ inputs_embeds: Optional[torch.FloatTensor] = None,
455
+ pixel_values: Optional[torch.FloatTensor] = None,
456
+ attention_mask: Optional[torch.Tensor] = None,
457
+ **kwargs: str,
458
+ ) -> Dict[str, torch.Tensor]:
459
+ """Borrowed from `LlamaForCausalLM` and simplified for batch size = 1; mirrors original PrismaticVLM logic."""
460
+ if ((input_ids is not None) and (input_ids.shape[0] > 1)) or (
461
+ (inputs_embeds is not None) and (inputs_embeds.shape[0] > 1)
462
+ ):
463
+ raise ValueError("Generation with batch size > 1 is not currently supported!")
464
+
465
+ # Handle `past_key_values` (cache) =>> assume `input_ids` just has unprocessed tokens
466
+ if past_key_values is not None:
467
+ input_ids = input_ids[:, -1:]
468
+
469
+ # If `input_embeds` are passed, we only want to use them in the 1st generation step
470
+ if inputs_embeds is not None and past_key_values is None:
471
+ model_inputs = {"input_embeds": inputs_embeds}
472
+ else:
473
+ model_inputs = {"input_ids": input_ids}
474
+
475
+ # Make sure `pixel_values` are preserved in `model_inputs`
476
+ model_inputs.update(
477
+ {
478
+ "attention_mask": attention_mask,
479
+ "pixel_values": pixel_values,
480
+ "past_key_values": past_key_values,
481
+ "use_cache": kwargs.get("use_cache"),
482
+ }
483
+ )
484
+
485
+ return model_inputs
486
+
487
+ # Defer to Language Model (all handle this differently, with different return types)
488
+ def _reorder_cache(self, *args, **kwargs) -> Any:
489
+ return self.language_model._reorder_cache(*args, **kwargs)
490
+
491
+
492
+ class OpenVLAForActionPrediction(PrismaticForConditionalGeneration):
493
+ config_class: PretrainedConfig = OpenVLAConfig
494
+
495
+ def __init__(self, config: OpenVLAConfig) -> None:
496
+ super().__init__(config)
497
+ self.norm_stats = config.norm_stats
498
+
499
+ # Compute action bins
500
+ self.bins = np.linspace(-1, 1, config.n_action_bins)
501
+ self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0
502
+
503
+ # Compute vocab size for de-tokenization -- revert added "multiple of"
504
+ self.vocab_size = self.config.text_config.vocab_size - self.config.pad_to_multiple_of
505
+
506
+ def predict_action(
507
+ self, input_ids: Optional[torch.LongTensor] = None, unnorm_key: Optional[str] = None, **kwargs: str
508
+ ) -> np.ndarray:
509
+ """Thin wrapper around .generate() that decodes predicted actions and unnormalizes them."""
510
+ # If the special empty token ('') does not already appear after the colon (':') token in the prompt
511
+ # (after "OUT:" or "ASSISTANT:"), insert it to match the inputs seen at training time
512
+ if not torch.all(input_ids[:, -1] == 29871):
513
+ input_ids = torch.cat(
514
+ (input_ids, torch.unsqueeze(torch.Tensor([29871]).long(), dim=0).to(input_ids.device)), dim=1
515
+ )
516
+
517
+ # Run VLA inference
518
+ generated_ids = self.generate(input_ids, max_new_tokens=self.get_action_dim(unnorm_key), **kwargs)
519
+
520
+ # Extract predicted action tokens and translate into (normalized) continuous actions
521
+ predicted_action_token_ids = generated_ids[0, -self.get_action_dim(unnorm_key) :].cpu().numpy()
522
+ discretized_actions = self.vocab_size - predicted_action_token_ids
523
+ discretized_actions = np.clip(discretized_actions - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
524
+ normalized_actions = self.bin_centers[discretized_actions]
525
+
526
+ # Unnormalize actions
527
+ action_norm_stats = self.get_action_stats(unnorm_key)
528
+ mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["q01"], dtype=bool))
529
+ action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])
530
+ actions = np.where(
531
+ mask,
532
+ 0.5 * (normalized_actions + 1) * (action_high - action_low) + action_low,
533
+ normalized_actions,
534
+ )
535
+
536
+ return actions
537
+
538
+ @staticmethod
539
+ def _check_unnorm_key(norm_stats: Dict[str, Dict[str, Any]], unnorm_key: Optional[str]) -> str:
540
+ if unnorm_key is None:
541
+ assert len(norm_stats) == 1, (
542
+ f"Your model was trained on more than one dataset, "
543
+ f"please pass a `unnorm_key` from the following options to choose the statistics "
544
+ f"used for un-normalizing actions: {norm_stats.keys()}"
545
+ )
546
+ unnorm_key = next(iter(norm_stats.keys()))
547
+
548
+ assert unnorm_key in norm_stats, (
549
+ f"The `unnorm_key` you chose is not in the set of available dataset statistics, "
550
+ f"please choose from: {norm_stats.keys()}"
551
+ )
552
+ return unnorm_key
553
+
554
+ def get_action_dim(self, unnorm_key: Optional[str] = None) -> int:
555
+ """Get the dimensionality of the policy's action space."""
556
+ unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
557
+ return len(self.norm_stats[unnorm_key]["action"]["q01"])
558
+
559
+ def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]:
560
+ """Get all the logged statistics for the given dataset."""
561
+ unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
562
+ return self.norm_stats[unnorm_key]["action"]
preprocessor_config.json ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoImageProcessor": "processing_prismatic.PrismaticImageProcessor",
4
+ "AutoProcessor": "processing_prismatic.PrismaticProcessor"
5
+ },
6
+ "image_processor_type": "PrismaticImageProcessor",
7
+ "image_resize_strategy": "resize-naive",
8
+ "input_sizes": [
9
+ [
10
+ 3,
11
+ 224,
12
+ 224
13
+ ],
14
+ [
15
+ 3,
16
+ 224,
17
+ 224
18
+ ]
19
+ ],
20
+ "interpolations": [
21
+ "bicubic",
22
+ "bicubic"
23
+ ],
24
+ "means": [
25
+ [
26
+ 0.485,
27
+ 0.456,
28
+ 0.406
29
+ ],
30
+ [
31
+ 0.5,
32
+ 0.5,
33
+ 0.5
34
+ ]
35
+ ],
36
+ "processor_class": "PrismaticProcessor",
37
+ "stds": [
38
+ [
39
+ 0.229,
40
+ 0.224,
41
+ 0.225
42
+ ],
43
+ [
44
+ 0.5,
45
+ 0.5,
46
+ 0.5
47
+ ]
48
+ ],
49
+ "tvf_crop_params": [
50
+ {
51
+ "output_size": [
52
+ 224,
53
+ 224
54
+ ]
55
+ },
56
+ {
57
+ "output_size": [
58
+ 224,
59
+ 224
60
+ ]
61
+ }
62
+ ],
63
+ "tvf_do_letterbox": false,
64
+ "tvf_letterbox_fill": null,
65
+ "tvf_normalize_params": [
66
+ {
67
+ "inplace": false,
68
+ "mean": [
69
+ 0.484375,
70
+ 0.455078125,
71
+ 0.40625
72
+ ],
73
+ "std": [
74
+ 0.228515625,
75
+ 0.2236328125,
76
+ 0.224609375
77
+ ]
78
+ },
79
+ {
80
+ "inplace": false,
81
+ "mean": [
82
+ 0.5,
83
+ 0.5,
84
+ 0.5
85
+ ],
86
+ "std": [
87
+ 0.5,
88
+ 0.5,
89
+ 0.5
90
+ ]
91
+ }
92
+ ],
93
+ "tvf_resize_params": [
94
+ {
95
+ "antialias": true,
96
+ "interpolation": 3,
97
+ "max_size": null,
98
+ "size": [
99
+ 224,
100
+ 224
101
+ ]
102
+ },
103
+ {
104
+ "antialias": true,
105
+ "interpolation": 3,
106
+ "max_size": null,
107
+ "size": [
108
+ 224,
109
+ 224
110
+ ]
111
+ }
112
+ ],
113
+ "use_fused_vision_backbone": true
114
+ }
processing_prismatic.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ processing_prismatic.py
3
+
4
+ HuggingFace-style preprocessor definitions for Prismatic VLMs, inheriting from `ProcessorMixin`. Default configuration
5
+ specifies `siglip-224px+7b`.
6
+ """
7
+
8
+ from typing import Any, ClassVar, List, Optional, Tuple, Union
9
+
10
+ import timm.data
11
+ import torch
12
+ import torchvision.transforms.functional as TVF
13
+ from PIL import Image
14
+ from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
15
+ from transformers import PreTrainedTokenizerBase
16
+ from transformers.image_processing_utils import BatchFeature, ImageProcessingMixin
17
+ from transformers.processing_utils import ProcessorMixin
18
+ from transformers.tokenization_utils import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
19
+ from transformers.utils import TensorType
20
+
21
+
22
+ # === Image Processing ===
23
+ def letterbox_pad_transform(image: Image.Image, padding_fill_value: Tuple[int, int, int]) -> Image.Image:
24
+ """Given a PIL.Image, pad to square by adding a symmetric border around the height/width."""
25
+ (w, h), max_wh = image.size, max(image.size)
26
+ horizontal_pad, vertical_pad = int((max_wh - w) / 2), int((max_wh - h) / 2)
27
+ padding = (horizontal_pad, vertical_pad, horizontal_pad, vertical_pad)
28
+
29
+ return TVF.pad(image, padding, fill=padding_fill_value, padding_mode="constant")
30
+
31
+
32
+ class PrismaticImageProcessor(ImageProcessingMixin):
33
+ model_input_names: ClassVar[List[str]] = ["pixel_values"]
34
+
35
+ def __init__(
36
+ self,
37
+ use_fused_vision_backbone: bool = False,
38
+ image_resize_strategy: str = "letterbox",
39
+ input_sizes: Optional[List[Tuple[int, int, int]]] = None,
40
+ interpolations: Optional[List[str]] = None,
41
+ means: Optional[List[Tuple[float, float, float]]] = None,
42
+ stds: Optional[List[Tuple[float, float, float]]] = None,
43
+ **kwargs: str,
44
+ ) -> None:
45
+ """
46
+ Initialize a PrismaticImageProcessor as a wrapper around a torchvision transform; this transform will be
47
+ created by TIMM, and edited to follow our custom `image_resize_strategy` logic.
48
+
49
+ @param use_fused_vision_backbone: Boolean indicating single or fused (dual) vision backbone
50
+ @param image_resize_strategy: Prismatic image resize strategy in < resize-naive | resize-crop | letterbox >
51
+ @param input_size: [TIMM :: `data_cfg`] Input image size as tuple (channels, width, height)
52
+ @param interpolation: [TIMM :: `data_cfg`] Interpolation as string (default: "bicubic")
53
+ @param mean: [TIMM :: `data_cfg`] Normalization mean as float tuple (or two-tuple if `fused_backbone`)
54
+ @param std: [TIMM :: `data_cfg`] Normalization std as float tuple (or two-tuple if `fused_backbone`)
55
+ """
56
+ self.use_fused_vision_backbone = use_fused_vision_backbone
57
+ self.image_resize_strategy = image_resize_strategy
58
+
59
+ # Handle `None` default values
60
+ input_sizes = [(3, 224, 224)] if input_sizes is None else input_sizes
61
+ means = [(0.5, 0.5, 0.5)] if means is None else means
62
+ stds = [(0.5, 0.5, 0.5)] if stds is None else stds
63
+
64
+ # TIMM `data_cfg` Parameters
65
+ self.input_sizes, self.interpolations, self.means, self.stds = input_sizes, interpolations, means, stds
66
+
67
+ # Grab torchvision transforms via TIMM =>> need to parse for specific "functional" transform values!
68
+ self.tvf_resize_params, self.tvf_crop_params, self.tvf_normalize_params = [], [], []
69
+ self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
70
+
71
+ for idx in range(len(input_sizes)):
72
+ transform = timm.data.create_transform(
73
+ input_size=self.input_sizes[idx],
74
+ interpolation=self.interpolations[idx],
75
+ mean=self.means[idx],
76
+ std=self.stds[idx],
77
+ crop_pct=1.0, # Set to 1.0 to ignore cropping (initial Resize sets `input_size`)
78
+ crop_mode="center", # Default crop mode -- no-op when `crop_pct == 1.0`
79
+ is_training=False, # No image augmentations when loading the transform!
80
+ )
81
+
82
+ # [Validation] Ensure appropriate transform structure, expected sizes
83
+ if not (
84
+ isinstance(transform, Compose)
85
+ and (len(transform.transforms) == 4)
86
+ and isinstance(transform.transforms[0], Resize)
87
+ and isinstance(transform.transforms[1], CenterCrop)
88
+ and isinstance(transform.transforms[2], ToTensor)
89
+ and isinstance(transform.transforms[3], Normalize)
90
+ and (transform.transforms[0].size == self.input_sizes[idx][-1])
91
+ and (transform.transforms[1].size == self.input_sizes[idx][-2:])
92
+ ):
93
+ raise ValueError(f"Unexpected TIMM image transformation structure/sizes: `{transform}`")
94
+
95
+ # HF Image Processors *must* be JSON-serializable; as such, cannot have torchvision. as an attribute.
96
+ # => Instead, we're going to parse the transform and call "torchvision.transforms.functional" (`tvf`)
97
+ resize_t, crop_t, norm_t = transform.transforms[0], transform.transforms[1], transform.transforms[3]
98
+ self.tvf_resize_params.append(
99
+ {
100
+ "size": resize_t.size,
101
+ "interpolation": TVF.pil_modes_mapping[resize_t.interpolation],
102
+ "max_size": None,
103
+ "antialias": True,
104
+ }
105
+ )
106
+ self.tvf_crop_params.append({"output_size": crop_t.size})
107
+ self.tvf_normalize_params.append(
108
+ {
109
+ "mean": norm_t.mean.float().numpy().tolist(),
110
+ "std": norm_t.std.float().numpy().tolist(),
111
+ "inplace": False,
112
+ }
113
+ )
114
+ self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
115
+
116
+ # Handle Prismatic `image_resize_strategy`
117
+ if self.image_resize_strategy == "resize-naive":
118
+ self.tvf_resize_params[idx]["size"] = (resize_t.size, resize_t.size)
119
+ elif self.image_resize_strategy == "letterbox":
120
+ self.tvf_do_letterbox, self.tvf_letterbox_fill = True, tuple([int(x * 255) for x in self.means[idx]])
121
+ elif self.image_resize_strategy == "resize-crop":
122
+ pass
123
+ else:
124
+ raise ValueError(f"Image resize strategy `{self.image_resize_strategy}` is not supported!")
125
+
126
+ # Dispatch **kwargs to super()
127
+ super().__init__(**kwargs)
128
+
129
+ def apply_transform(self, img: Image.Image) -> torch.Tensor:
130
+ """Apply `functional` variant of TIMM's Transform = Compose([Resize -> CenterCrop -> ToTensor -> Normalize])"""
131
+ if self.tvf_do_letterbox:
132
+ img = letterbox_pad_transform(img, self.tvf_letterbox_fill)
133
+
134
+ # [Contract] Fused Backbones expect "channel-stacked" inputs; we'll unpack on the model side!
135
+ imgs_t = []
136
+ for idx in range(len(self.input_sizes)):
137
+ img_idx = TVF.resize(img, **self.tvf_resize_params[idx])
138
+ img_idx = TVF.center_crop(img_idx, **self.tvf_crop_params[idx])
139
+ img_idx_t = TVF.to_tensor(img_idx)
140
+ img_idx_t = TVF.normalize(img_idx_t, **self.tvf_normalize_params[idx])
141
+ imgs_t.append(img_idx_t)
142
+
143
+ # [Contract] `imgs_t` is a list of Tensors of shape [3, input_size, input_size]; stack along dim = 0
144
+ img_t = torch.vstack(imgs_t)
145
+
146
+ return img_t
147
+
148
+ def preprocess(
149
+ self,
150
+ images: Union[Image.Image, List[Image.Image]],
151
+ return_tensors: Optional[Union[str, TensorType]] = None,
152
+ **_: str,
153
+ ) -> BatchFeature:
154
+ """
155
+ Preprocess an image (or batch of images); note that unlike the `transformers :: BaseImageProcessor` we
156
+ explicitly only handle PIL.Image.Image instances for simplicity.
157
+
158
+ @param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
159
+ @param return_tensors: BatchFeature default Tensor format (e.g., "pt" for torch); if None, returns np.ndarray
160
+
161
+ @return: Instance of `transformers :: BatchFeature` with a single key "pixel_values"
162
+ """
163
+ if not isinstance(images, list):
164
+ images = [images]
165
+
166
+ # Apply `self.img_transform` to each image (will return list of torch.Tensors); stack into "batched" Tensor
167
+ pixel_values = torch.stack([self.apply_transform(img.convert("RGB")) for img in images])
168
+
169
+ # Return BatchFeature =>> note that for compatibility, constructor expects Dict[str, np.ndarray], so we convert
170
+ return BatchFeature(data={"pixel_values": pixel_values.float().numpy()}, tensor_type=return_tensors)
171
+
172
+ def __call__(self, images: Union[Image.Image, List[Image.Image]], **kwargs) -> BatchFeature:
173
+ return self.preprocess(images, **kwargs)
174
+
175
+
176
+ # === PrismaticProcessor =>> Wraps both ImageProcessor and Tokenizer ===
177
+ # =>> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/processing_llava.py
178
+ class PrismaticProcessor(ProcessorMixin):
179
+ attributes: ClassVar[List[str]] = ["image_processor", "tokenizer"]
180
+ image_processor_class: str = "AutoImageProcessor"
181
+ tokenizer_class: str = "AutoTokenizer"
182
+
183
+ def __init__(
184
+ self,
185
+ image_processor: Optional[ImageProcessingMixin] = None,
186
+ tokenizer: Optional[PreTrainedTokenizerBase] = None,
187
+ ) -> None:
188
+ super().__init__(image_processor, tokenizer)
189
+
190
+ def __call__(
191
+ self,
192
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
193
+ images: Union[Image.Image, List[Image.Image]],
194
+ padding: Union[bool, str, PaddingStrategy] = False,
195
+ truncation: Optional[Union[bool, str, TruncationStrategy]] = None,
196
+ max_length: Optional[int] = None,
197
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
198
+ ) -> BatchFeature:
199
+ """
200
+ Preprocess a given (batch) of text/images for a Prismatic VLM; forwards text to the underlying LLM's tokenizer,
201
+ forwards images to PrismaticImageProcessor.
202
+
203
+ @param text: The (batch) of text to encode; must be a string or list of strings.
204
+ @param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
205
+ @param padding: Sequence padding strategy (if multiple specified) in < True = "longest" | "max_length" | False >
206
+ @param truncation: Truncation strategy for the output sequences; requires `max_length` to be specified
207
+ @param max_length: Maximum length (in tokens) to truncate
208
+ @param return_tensors: Type of return tensors (usually "pt" or TensorType.PYTORCH)
209
+
210
+ @return: BatchFeature with keys for `input_ids`, `attention_mask` and `pixel_values`.
211
+ """
212
+ pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"]
213
+ text_inputs = self.tokenizer(
214
+ text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
215
+ )
216
+
217
+ # [Validate] Need same number of images and text inputs!
218
+ if pixel_values.shape[0] != text_inputs.input_ids.shape[0]:
219
+ raise ValueError("Batch is malformed; expected same number of images and text inputs!")
220
+
221
+ return BatchFeature(data={**text_inputs, "pixel_values": pixel_values})
222
+
223
+ # === Tokenizer Dispatch Utilities =>> check `PreTrainedTokenizerBase` for documentation ===
224
+ def batch_decode(
225
+ self,
226
+ sequences: Union[List[int], List[List[int]], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
227
+ skip_special_tokens: bool = False,
228
+ clean_up_tokenization_spaces: Optional[bool] = None,
229
+ **kwargs: str,
230
+ ) -> List[str]:
231
+ return self.tokenizer.batch_decode(
232
+ sequences=sequences,
233
+ skip_special_tokens=skip_special_tokens,
234
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
235
+ **kwargs,
236
+ )
237
+
238
+ def decode(
239
+ self,
240
+ token_ids: Union[int, List[int], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
241
+ skip_special_tokens: bool = False,
242
+ clean_up_tokenization_spaces: Optional[bool] = None,
243
+ **kwargs: str,
244
+ ) -> str:
245
+ return self.tokenizer.decode(
246
+ token_ids=token_ids,
247
+ skip_special_tokens=skip_special_tokens,
248
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
249
+ **kwargs,
250
+ )
251
+
252
+ @property
253
+ def model_input_names(self) -> List[str]:
254
+ tokenizer_input_names = self.tokenizer.model_input_names
255
+ image_processor_input_names = self.image_processor.model_input_names
256
+
257
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
processor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_prismatic.PrismaticProcessor"
4
+ },
5
+ "processor_class": "PrismaticProcessor"
6
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<PAD>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<PAD>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "auto_map": {
39
+ "AutoProcessor": "processing_prismatic.PrismaticProcessor"
40
+ },
41
+ "bos_token": "<s>",
42
+ "clean_up_tokenization_spaces": false,
43
+ "eos_token": "</s>",
44
+ "legacy": false,
45
+ "model_max_length": 2048,
46
+ "pad_token": "<PAD>",
47
+ "padding_side": "right",
48
+ "processor_class": "PrismaticProcessor",
49
+ "sp_model_kwargs": {},
50
+ "tokenizer_class": "LlamaTokenizer",
51
+ "unk_token": "<unk>",
52
+ "use_default_system_prompt": false
53
+ }