File size: 3,881 Bytes
be2003c
 
 
 
 
 
 
 
 
 
 
 
e278cbc
be2003c
 
 
 
 
 
 
 
 
 
 
 
e278cbc
 
 
 
 
 
 
 
 
 
 
 
be2003c
 
 
 
 
 
 
 
 
 
 
 
 
 
e278cbc
be2003c
 
 
e278cbc
 
 
 
be2003c
e278cbc
 
 
 
 
 
 
 
 
 
 
 
 
be2003c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e278cbc
be2003c
 
e278cbc
 
 
 
be2003c
e278cbc
be2003c
 
e278cbc
 
 
 
 
 
 
 
be2003c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1a848dfb-4083-4d7c-af83-82e663d1f964",
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer\n",
    "\n",
    "MODEL_ID = \"/workspace/mixtral-reasoning-output/checkpoint-275/\"\n",
    "\n",
    "model = AutoModelForCausalLM.from_pretrained(\n",
    "        MODEL_ID,\n",
    "        device_map=\"auto\",\n",
    "        torch_dtype=torch.bfloat16,\n",
    "        attn_implementation=\"flash_attention_2\",\n",
    "        trust_remote_code=True\n",
    "        )\n",
    "        \n",
    "tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "419c3212-c843-4102-850c-ec2e83e5401a",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "model.eval()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "002d4810-e64d-4553-9256-d5a95bad07da",
   "metadata": {},
   "outputs": [],
   "source": [
    "system_prompt = \"detailed thinking on\"\n",
    "user_prompt = \"\"\"Triangle $ABC$ has a right angle at $B$. Points $D$ and $E$ are chosen on $\\overline{AC}$ and $\\overline{BC}$, respectively, such that $AB = BE = ED = DC = 2$. Find the area of $\\triangle CDE$.\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c6ba5056-67ea-40d7-a6bb-fdb2d750cfc7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Fix the pad token issue\n",
    "if tokenizer.pad_token is None or tokenizer.pad_token_id == tokenizer.eos_token_id:\n",
    "    tokenizer.pad_token = tokenizer.unk_token\n",
    "    tokenizer.pad_token_id = tokenizer.unk_token_id\n",
    "\n",
    "# Verify the fix\n",
    "print(f\"EOS token ID: {tokenizer.eos_token_id}\")\n",
    "print(f\"PAD token ID: {tokenizer.pad_token_id}\")\n",
    "print(f\"UNK token ID: {tokenizer.unk_token_id}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3af2af88-aa27-4670-a78b-bea00bc07414",
   "metadata": {},
   "outputs": [],
   "source": [
    "messages = [\n",
    "    {\"role\": \"system\", \"content\": system_prompt},\n",
    "    {\"role\": \"user\", \"content\": user_prompt}\n",
    "]\n",
    "\n",
    "# Tokenize input\n",
    "input_ids = tokenizer.apply_chat_template(\n",
    "    messages,\n",
    "    tokenize=True,\n",
    "    add_generation_prompt=True,\n",
    "    return_tensors=\"pt\"\n",
    ").to(\"cuda\")\n",
    "\n",
    "# Create streamer - TextStreamer automatically prints to stdout\n",
    "streamer = TextStreamer(\n",
    "    tokenizer, \n",
    "    skip_special_tokens=False,\n",
    "    skip_prompt=False,\n",
    ")\n",
    "\n",
    "# Generate with streamer - no threading needed with TextStreamer\n",
    "model.generate(\n",
    "    input_ids=input_ids,\n",
    "    pad_token_id=tokenizer.eos_token_id\n",
    "    streamer=streamer,\n",
    "    max_new_tokens=16383,\n",
    "    temperature=0.5,\n",
    "    top_p=0.95,\n",
    "    top_k=40,\n",
    "    repetition_penalty=1.2,\n",
    "    do_sample=True,\n",
    "    #use_cache=True\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2f4daeb6-02c6-4376-acc8-2b34fbb9fbd7",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}