{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "1a848dfb-4083-4d7c-af83-82e663d1f964", "metadata": {}, "outputs": [], "source": [ "import torch\n", "from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer\n", "\n", "MODEL_ID = \"/workspace/mixtral-reasoning-output/checkpoint-275/\"\n", "\n", "model = AutoModelForCausalLM.from_pretrained(\n", " MODEL_ID,\n", " device_map=\"auto\",\n", " torch_dtype=torch.bfloat16,\n", " attn_implementation=\"flash_attention_2\",\n", " trust_remote_code=True\n", " )\n", " \n", "tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)" ] }, { "cell_type": "code", "execution_count": null, "id": "419c3212-c843-4102-850c-ec2e83e5401a", "metadata": { "scrolled": true }, "outputs": [], "source": [ "model.eval()" ] }, { "cell_type": "code", "execution_count": null, "id": "002d4810-e64d-4553-9256-d5a95bad07da", "metadata": {}, "outputs": [], "source": [ "system_prompt = \"detailed thinking on\"\n", "user_prompt = \"\"\"Triangle $ABC$ has a right angle at $B$. Points $D$ and $E$ are chosen on $\\overline{AC}$ and $\\overline{BC}$, respectively, such that $AB = BE = ED = DC = 2$. Find the area of $\\triangle CDE$.\"\"\"" ] }, { "cell_type": "code", "execution_count": null, "id": "c6ba5056-67ea-40d7-a6bb-fdb2d750cfc7", "metadata": {}, "outputs": [], "source": [ "# Fix the pad token issue\n", "if tokenizer.pad_token is None or tokenizer.pad_token_id == tokenizer.eos_token_id:\n", " tokenizer.pad_token = tokenizer.unk_token\n", " tokenizer.pad_token_id = tokenizer.unk_token_id\n", "\n", "# Verify the fix\n", "print(f\"EOS token ID: {tokenizer.eos_token_id}\")\n", "print(f\"PAD token ID: {tokenizer.pad_token_id}\")\n", "print(f\"UNK token ID: {tokenizer.unk_token_id}\")" ] }, { "cell_type": "code", "execution_count": null, "id": "3af2af88-aa27-4670-a78b-bea00bc07414", "metadata": {}, "outputs": [], "source": [ "messages = [\n", " {\"role\": \"system\", \"content\": system_prompt},\n", " {\"role\": \"user\", \"content\": user_prompt}\n", "]\n", "\n", "# Tokenize input\n", "input_ids = tokenizer.apply_chat_template(\n", " messages,\n", " tokenize=True,\n", " add_generation_prompt=True,\n", " return_tensors=\"pt\"\n", ").to(\"cuda\")\n", "\n", "# Create streamer - TextStreamer automatically prints to stdout\n", "streamer = TextStreamer(\n", " tokenizer, \n", " skip_special_tokens=False,\n", " skip_prompt=False,\n", ")\n", "\n", "# Generate with streamer - no threading needed with TextStreamer\n", "model.generate(\n", " input_ids=input_ids,\n", " pad_token_id=tokenizer.eos_token_id\n", " streamer=streamer,\n", " max_new_tokens=16383,\n", " temperature=0.5,\n", " top_p=0.95,\n", " top_k=40,\n", " repetition_penalty=1.2,\n", " do_sample=True,\n", " #use_cache=True\n", ")" ] }, { "cell_type": "code", "execution_count": null, "id": "2f4daeb6-02c6-4376-acc8-2b34fbb9fbd7", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }