--- license: mit base_model: facebook/w2v-bert-2.0 tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-bert-CV16-en-libri results: [] --- # wav2vec2-bert-CV16-en-libri This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.1331 - Wer: 0.0997 - Cer: 0.0264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 2 - total_train_batch_size: 72 - total_eval_batch_size: 36 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:----:|:------:|:---------------:|:------:| | 2.8812 | 0.63 | 250 | 1.0000 | 2.8923 | 1.0 | | 1.2899 | 1.26 | 500 | 0.2563 | 1.1471 | 0.7030 | | 0.5276 | 1.89 | 750 | 0.1127 | 0.4687 | 0.4114 | | 0.3313 | 2.52 | 1000 | 0.0659 | 0.2870 | 0.2577 | | 0.2089 | 3.16 | 1250 | 0.2079 | 0.1766 | 0.0445 | | 0.1634 | 3.79 | 1500 | 0.1687 | 0.1411 | 0.0366 | | 0.163 | 4.42 | 1750 | 0.1490 | 0.1163 | 0.0298 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0