Upload 9 files
Browse files
README.md
CHANGED
@@ -44,13 +44,12 @@ ORPO fine tuning was performed for four epoches.
|
|
44 |
|
45 |
| Epoch | loss | eval_loss |
|
46 |
| ----- | ---- | --------- |
|
47 |
-
| 1 |
|
48 |
-
| 2 |
|
49 |
-
| 3 |
|
50 |
-
| 4 |
|
51 |
|
52 |
-
The fine tuned model is uploaded here to be evaluated by the Open LLM Leaderboard to see if the brain damaged
|
53 |
-
suffered by the non-ORPO model can be healed.
|
54 |
|
55 |
## Benchmark (100.0*raw scores only)
|
56 |
|
@@ -60,10 +59,8 @@ Click on the model name go to the raw score json generated by Open LLM Leaderboa
|
|
60 |
| ----- | ------- | ------ | ----|--------- | ---- | ---- | -------- |
|
61 |
| [gemma-2-2b-jpn-it](https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/google/gemma-2-2b-jpn-it/results_2024-10-15T15-21-39.173019.json) | 30.82 | 54.11 | 41.43 | 0.0 | 27.52 | 37.17 | 24.67 |
|
62 |
| gemma-2-2b-jpn-it-abliterated-17-ORPO | TBD | TBD | TBD | TBD | TBD | TBD | TBD |
|
63 |
-
| [gemma-2-2b-jpn-it-abliterated-17](https://huggingface.co/datasets/open-llm-leaderboard/results/raw/main/ymcki/gemma-2-2b-jpn-it-abliterated-17/results_2024-10-
|
64 |
-
| [gemma-2-2b-jpn-it-abliterated-18](https://huggingface.co/datasets/open-llm-leaderboard/results/raw/main/ymcki/gemma-2-2b-jpn-it-abliterated-18/results_2024-10-
|
65 |
-
|
66 |
-
Indeed, it is quite dumbed down relative to the original. Interestingly, both abliteration models have the same Open LLM results.
|
67 |
|
68 |
## How to run this model
|
69 |
|
@@ -103,4 +100,6 @@ huggingface-cli download ymcki/gemma-2-2b-jpn-it-abliterated-17-ORPO --include "
|
|
103 |
|
104 |
## Credits
|
105 |
|
106 |
-
Thank you mlabonne for describing his
|
|
|
|
|
|
44 |
|
45 |
| Epoch | loss | eval_loss |
|
46 |
| ----- | ---- | --------- |
|
47 |
+
| 1 | 1.20152769684791564 | 1.0501047372817993 |
|
48 |
+
| 2 | 1.25755584239959716 | 1.0144596099853516 |
|
49 |
+
| 3 | 0.93099724054336543 | 0.9957754611968994 |
|
50 |
+
| 4 | 0.88664623498916623 | 0.9857067465782166 |
|
51 |
|
52 |
+
The fine tuned model is uploaded here to be evaluated by the Open LLM Leaderboard to see if the slightly brain damaged non-ORPO model can be healed. Again, the fine tuning method is also based on one described by [mlabonne](https://towardsdatascience.com/fine-tune-llama-3-with-orpo-56cfab2f9ada) but the input model was read into VRAM by [unsloth](https://github.com/unslothai/unsloth) to allow using the full 40k dataset to run on a single 3090.
|
|
|
53 |
|
54 |
## Benchmark (100.0*raw scores only)
|
55 |
|
|
|
59 |
| ----- | ------- | ------ | ----|--------- | ---- | ---- | -------- |
|
60 |
| [gemma-2-2b-jpn-it](https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/google/gemma-2-2b-jpn-it/results_2024-10-15T15-21-39.173019.json) | 30.82 | 54.11 | 41.43 | 0.0 | 27.52 | 37.17 | 24.67 |
|
61 |
| gemma-2-2b-jpn-it-abliterated-17-ORPO | TBD | TBD | TBD | TBD | TBD | TBD | TBD |
|
62 |
+
| [gemma-2-2b-jpn-it-abliterated-17](https://huggingface.co/datasets/open-llm-leaderboard/results/raw/main/ymcki/gemma-2-2b-jpn-it-abliterated-17/results_2024-10-18T15-18-46.821674.json) | 30.29 | 52.65 | 40.46 | 0.0 | 27.18 | 36.90 | 24.55 |
|
63 |
+
| [gemma-2-2b-jpn-it-abliterated-18](https://huggingface.co/datasets/open-llm-leaderboard/results/raw/main/ymcki/gemma-2-2b-jpn-it-abliterated-18/results_2024-10-18T15-41-42.399571.json) | 30.61 | 53.02 | 40.96 | 0.0 | 27.35 | 37.30 | 25.05 |
|
|
|
|
|
64 |
|
65 |
## How to run this model
|
66 |
|
|
|
100 |
|
101 |
## Credits
|
102 |
|
103 |
+
Thank you mlabonne for describing his fine tuning method.
|
104 |
+
|
105 |
+
Thanks FullOf_Bad_Ideas from LocalLlama for the suggestion of using unsloth to save VRAM.
|