CIFM / models /layers /egnn_layer_void_invariant.py
Yuning You
update
6788772
raw
history blame
5.89 kB
import torch
from torch.nn import Linear, ReLU, SiLU, Sequential
from torch_geometric.nn import MessagePassing
from torch_scatter import scatter
from models.mlp_and_gnn import MLPBiasFree
class EGNNLayer(MessagePassing):
"""E(n) Equivariant GNN Layer
Paper: E(n) Equivariant Graph Neural Networks, Satorras et al.
"""
def __init__(self, emb_dim, num_mlp_layers, aggr="add"):
"""
Args:
emb_dim: (int) - hidden dimension `d`
activation: (str) - non-linearity within MLPs (swish/relu)
norm: (str) - normalisation layer (layer/batch)
aggr: (str) - aggregation function `\oplus` (sum/mean/max)
"""
# Set the aggregation function
super().__init__(aggr=aggr)
self.emb_dim = emb_dim
# self.activation = ReLU()
self.dist_embedding = Linear(1, emb_dim, bias=False)
self.innerprod_embedding = MLPBiasFree(in_dim=1, out_dim=1, hidden_dim=emb_dim, num_layer=num_mlp_layers)
# MLP `\psi_h` for computing messages `m_ij`
# self.mlp_msg = Sequential(
# Linear(2 * emb_dim + 1, emb_dim, bias=False),
# torch.nn.LayerNorm(emb_dim, bias=False),
# self.activation,
# Linear(emb_dim, emb_dim, bias=False),
# torch.nn.LayerNorm(emb_dim, bias=False),
# self.activation,
# )
# layers = [Linear(2 * emb_dim + 1, emb_dim, bias=False), torch.nn.LayerNorm(emb_dim, bias=False), self.activation] \
# + [Linear(emb_dim, emb_dim, bias=False), torch.nn.LayerNorm(emb_dim, bias=False), self.activation] * (num_mlp_layers-1)
# layers = [Linear(3 * emb_dim, emb_dim, bias=False)] \
# + [self.activation, Linear(emb_dim, emb_dim, bias=False)] * (num_mlp_layers-1) \
# + [torch.nn.LayerNorm(emb_dim, bias=False)]
# self.mlp_msg = Sequential(*layers)
self.mlp_msg = MLPBiasFree(in_dim=3*emb_dim, out_dim=emb_dim, hidden_dim=emb_dim, num_layer=num_mlp_layers)
# MLP `\psi_x` for computing messages `\overrightarrow{m}_ij`
# self.mlp_pos = Sequential(
# Linear(emb_dim, emb_dim), torch.nn.LayerNorm(emb_dim), self.activation, Linear(emb_dim, 1)
# )
# layers = [Linear(emb_dim, emb_dim, bias=False), torch.nn.LayerNorm(emb_dim, bias=False), self.activation] * (num_mlp_layers-1) + [Linear(emb_dim, 1, bias=False)]
# layers = [Linear(emb_dim, emb_dim, bias=False), self.activation] * (num_mlp_layers-1) + [Linear(emb_dim, 1, bias=False)]
# self.mlp_pos = Sequential(*layers)
self.mlp_pos = MLPBiasFree(in_dim=emb_dim, out_dim=1, hidden_dim=emb_dim, num_layer=num_mlp_layers)
# MLP `\phi` for computing updated node features `h_i^{l+1}`
# self.mlp_upd = Sequential(
# Linear(2 * emb_dim, emb_dim, bias=False),
# torch.nn.LayerNorm(emb_dim, bias=False),
# self.activation,
# Linear(emb_dim, emb_dim, bias=False),
# torch.nn.LayerNorm(emb_dim, bias=False),
# self.activation,
# )
# layers = [Linear(emb_dim, emb_dim, bias=False), torch.nn.LayerNorm(emb_dim, bias=False), self.activation] * num_mlp_layers
# layers = [Linear(emb_dim, emb_dim, bias=False)] + [self.activation, Linear(emb_dim, emb_dim, bias=False)] * (num_mlp_layers-1)
# self.mlp_upd = Sequential(*layers)
self.mlp_upd = MLPBiasFree(in_dim=emb_dim, out_dim=emb_dim, hidden_dim=emb_dim, num_layer=num_mlp_layers)
def forward(self, h, pos, edge_index):
"""
Args:
h: (n, d) - initial node features
pos: (n, 3) - initial node coordinates
edge_index: (e, 2) - pairs of edges (i, j)
Returns:
out: [(n, d),(n,3)] - updated node features
"""
out = self.propagate(edge_index, h=h, pos=pos)
return out
def message(self, h_i, h_j, pos_i, pos_j):
# Compute messages
pos_diff = pos_i - pos_j
# dists = torch.norm(pos_diff, dim=-1).unsqueeze(1)
dists = torch.exp(- torch.norm(pos_diff, dim=-1).unsqueeze(1) / 30 ) # reference distances: 30um
inner_prod = torch.mean(h_i * h_j, dim=-1).unsqueeze(1)
msg = torch.cat([h_i, h_j, self.dist_embedding(dists)], dim=-1) * self.innerprod_embedding(inner_prod)
msg = self.mlp_msg(msg)
# Scale magnitude of displacement vector
pos_diff = pos_diff * self.mlp_pos(msg)
# NOTE: some papers divide pos_diff by (dists + 1) to stabilise model.
# NOTE: lucidrains clamps pos_diff between some [-n, +n], also for stability.
# print(torch.cat([h_i, h_j, self.dist_embedding(dists)], dim=-1))
# print(msg)
# import pdb; pdb.set_trace()
return msg, pos_diff, inner_prod
def aggregate(self, inputs, index):
msgs, pos_diffs, inner_prod = inputs
# Aggregate messages
msg_aggr = scatter(msgs, index, dim=self.node_dim, reduce="add")
# Aggregate displacement vectors
pos_aggr = scatter(pos_diffs, index, dim=self.node_dim, reduce="add")
counts = torch.ones_like(inner_prod)
counts[inner_prod==0] = 0
counts = scatter(counts, index, dim=0, reduce="add")
counts[counts==0] = 1
pos_aggr = pos_aggr / counts
# print(msgs)
# print(msg_aggr)
# import pdb; pdb.set_trace()
return msg_aggr, pos_aggr
def update(self, aggr_out, h, pos):
msg_aggr, pos_aggr = aggr_out
# upd_out = self.mlp_upd(torch.cat([h, msg_aggr], dim=-1))
upd_out = self.mlp_upd(msg_aggr)
upd_pos = pos + pos_aggr
# import pdb; pdb.set_trace()
return upd_out, upd_pos
def __repr__(self) -> str:
return f"{self.__class__.__name__}(emb_dim={self.emb_dim}, aggr={self.aggr})"