--- datasets: - Local license: bigscience-bloom-rail-1.0 language: - id pipeline_tag: text-generation --- # Table of Contents 1. [Model Summary](#model-summary) 2. [Use](#use) 3. [Limitations](#limitations) 4. [Training](#training) 5. [Evaluation](#evaluation) 7. [Citation](#citation) # Model Summary > We present KARINA, finetuned from BLOOMZ bigscience/bloomz-3b, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOMZ pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages. # Use ## Intended use We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*prompt = f"Given the question:\n{{ siapa kamu? }}\n---\nAnswer:\n"*", the model will most likely answer "*Saya Karina. Ada yang bisa saya bantu?*". ## How to use ### CPU
Click to expand ```python # pip install -q transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "yodi/karina" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint) inputs = tokenizer.encode("Given the question:\n{{ siapa kamu? }}\n---\nAnswer:\n", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ```
### GPU
Click to expand ```python # pip install -q transformers accelerate from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "yodi/karina" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto") inputs = tokenizer.encode("Given the question:\n{{ siapa kamu? }}\n---\nAnswer:\n", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ```
### GPU in 8bit
Click to expand ```python # pip install -q transformers accelerate bitsandbytes from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "yodi/karina" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True) inputs = tokenizer.encode("Given the question:\n{{ siapa kamu? }}\n---\nAnswer:\n", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ```
### # Limitations **Prompt Engineering:** The performance may vary depending on the prompt and its following BLOOMZ models. # Training ## Model - **Architecture:** Same as [bloom](https://huggingface.co/bigscience/bloom), also refer to the `config.json` file