--- library_name: transformers base_model: rasyosef/Llama-3.2-400M-Amharic tags: - trl - sft - generated_from_trainer model-index: - name: Llama-3.2-400M-Amharic-Poems-Stories-V5 results: [] --- # Llama-3.2-400M-Amharic-Poems-Stories-V5 This model is a fine-tuned version of [rasyosef/Llama-3.2-400M-Amharic](https://huggingface.co/rasyosef/Llama-3.2-400M-Amharic) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2025 - Model Preparation Time: 0.003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 250 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | |:-------------:|:------:|:-----:|:---------------:|:----------------------:| | 3.0159 | 0.1219 | 500 | 2.4049 | 0.003 | | 2.0028 | 0.2437 | 1000 | 1.6978 | 0.003 | | 1.5634 | 0.3656 | 1500 | 1.4614 | 0.003 | | 1.4024 | 0.4874 | 2000 | 1.3237 | 0.003 | | 1.2445 | 0.6093 | 2500 | 1.2619 | 0.003 | | 1.3169 | 0.7312 | 3000 | 1.2383 | 0.003 | | 1.2045 | 0.8530 | 3500 | 1.2104 | 0.003 | | 1.2074 | 0.9749 | 4000 | 1.2025 | 0.003 | | 0.715 | 1.0968 | 4500 | 1.3746 | 0.003 | | 0.5526 | 1.2186 | 5000 | 1.3882 | 0.003 | | 0.5383 | 1.3405 | 5500 | 1.3509 | 0.003 | | 0.5541 | 1.4623 | 6000 | 1.3664 | 0.003 | | 0.561 | 1.5842 | 6500 | 1.3486 | 0.003 | | 0.5278 | 1.7061 | 7000 | 1.3447 | 0.003 | | 0.5415 | 1.8279 | 7500 | 1.3282 | 0.003 | | 0.5491 | 1.9498 | 8000 | 1.3404 | 0.003 | | 0.3309 | 2.0717 | 8500 | 1.5191 | 0.003 | | 0.1989 | 2.1935 | 9000 | 1.5328 | 0.003 | | 0.2018 | 2.3154 | 9500 | 1.5266 | 0.003 | | 0.1954 | 2.4372 | 10000 | 1.5309 | 0.003 | | 0.1957 | 2.5591 | 10500 | 1.5363 | 0.003 | | 0.1983 | 2.6810 | 11000 | 1.5228 | 0.003 | | 0.1962 | 2.8028 | 11500 | 1.5295 | 0.003 | | 0.1934 | 2.9247 | 12000 | 1.5303 | 0.003 | | 0.1566 | 3.0466 | 12500 | 1.5726 | 0.003 | | 0.1045 | 3.1684 | 13000 | 1.5975 | 0.003 | | 0.1071 | 3.2903 | 13500 | 1.5947 | 0.003 | | 0.1076 | 3.4121 | 14000 | 1.5920 | 0.003 | | 0.1068 | 3.5340 | 14500 | 1.5922 | 0.003 | | 0.1052 | 3.6559 | 15000 | 1.5921 | 0.003 | | 0.1074 | 3.7777 | 15500 | 1.5922 | 0.003 | | 0.1084 | 3.8996 | 16000 | 1.5923 | 0.003 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.4.1+cu121 - Datasets 3.3.2 - Tokenizers 0.20.3