Upload modeling_timellm.py with huggingface_hub
Browse files- modeling_timellm.py +101 -0
modeling_timellm.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
TimeLLM Model for Supply Chain Demand Forecasting
|
3 |
+
Based on the TimeLLM framework: https://github.com/KimMeen/Time-LLM
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import json
|
8 |
+
import numpy as np
|
9 |
+
from typing import Dict, List, Any
|
10 |
+
|
11 |
+
class TimeLLMForecaster:
|
12 |
+
"""
|
13 |
+
TimeLLM model for supply chain demand forecasting.
|
14 |
+
|
15 |
+
This model was trained on AWS SageMaker using the TimeLLM framework
|
16 |
+
to forecast demand patterns in supply chain data.
|
17 |
+
"""
|
18 |
+
|
19 |
+
def __init__(self, model_path: str = "model.pth", config_path: str = "config.json"):
|
20 |
+
"""
|
21 |
+
Initialize the TimeLLM forecaster.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
model_path: Path to the trained model weights
|
25 |
+
config_path: Path to the model configuration
|
26 |
+
"""
|
27 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
|
29 |
+
# Load configuration
|
30 |
+
with open(config_path, 'r') as f:
|
31 |
+
self.config = json.load(f)
|
32 |
+
|
33 |
+
# Load model weights
|
34 |
+
self.model_state = torch.load(model_path, map_location=self.device)
|
35 |
+
|
36 |
+
print(f"TimeLLM model loaded successfully on {self.device}")
|
37 |
+
print(f"Model configuration: {self.config['model_name']}")
|
38 |
+
print(f"Sequence length: {self.config['seq_len']}")
|
39 |
+
print(f"Prediction length: {self.config['pred_len']}")
|
40 |
+
print(f"Features: {self.config['enc_in']}")
|
41 |
+
|
42 |
+
def forecast(self,
|
43 |
+
historical_data: np.ndarray,
|
44 |
+
time_features: np.ndarray) -> np.ndarray:
|
45 |
+
"""
|
46 |
+
Generate demand forecasts.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
historical_data: Historical time series data (seq_len, n_features)
|
50 |
+
time_features: Time-based features (seq_len, time_features)
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
Forecasted values (pred_len, n_features)
|
54 |
+
"""
|
55 |
+
# This is a placeholder - actual inference would require
|
56 |
+
# the full TimeLLM model implementation
|
57 |
+
print("Forecasting with TimeLLM...")
|
58 |
+
print(f"Input shape: {historical_data.shape}")
|
59 |
+
print(f"Time features shape: {time_features.shape}")
|
60 |
+
|
61 |
+
# Return dummy forecast for demonstration
|
62 |
+
pred_len = self.config['pred_len']
|
63 |
+
n_features = self.config['c_out']
|
64 |
+
|
65 |
+
return np.random.randn(pred_len, n_features)
|
66 |
+
|
67 |
+
def get_model_info(self) -> Dict[str, Any]:
|
68 |
+
"""Get model information and training details."""
|
69 |
+
return {
|
70 |
+
"model_name": self.config['model_name'],
|
71 |
+
"base_model": self.config['base_model'],
|
72 |
+
"training_platform": self.config['trained_on'],
|
73 |
+
"training_job": self.config['training_job'],
|
74 |
+
"training_time": self.config['training_time'],
|
75 |
+
"instance_type": self.config['instance_type'],
|
76 |
+
"seq_len": self.config['seq_len'],
|
77 |
+
"pred_len": self.config['pred_len'],
|
78 |
+
"features": self.config['enc_in']
|
79 |
+
}
|
80 |
+
|
81 |
+
# Example usage
|
82 |
+
if __name__ == "__main__":
|
83 |
+
# Initialize the forecaster
|
84 |
+
forecaster = TimeLLMForecaster()
|
85 |
+
|
86 |
+
# Print model information
|
87 |
+
info = forecaster.get_model_info()
|
88 |
+
print("\nModel Information:")
|
89 |
+
for key, value in info.items():
|
90 |
+
print(f" {key}: {value}")
|
91 |
+
|
92 |
+
# Example forecast (with dummy data)
|
93 |
+
seq_len = 96
|
94 |
+
n_features = 14
|
95 |
+
time_features = 3
|
96 |
+
|
97 |
+
historical_data = np.random.randn(seq_len, n_features)
|
98 |
+
time_features_data = np.random.randn(seq_len, time_features)
|
99 |
+
|
100 |
+
forecast = forecaster.forecast(historical_data, time_features_data)
|
101 |
+
print(f"\nForecast shape: {forecast.shape}")
|