File size: 2,160 Bytes
3d178a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
language:
- tr
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-base

This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1952
- Wer: 10.4439

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 60000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Wer     |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.2139        | 0.0833 | 5000  | 0.1884          | 16.6399 |
| 0.1146        | 0.1667 | 10000 | 0.1447          | 13.0148 |
| 0.0686        | 0.25   | 15000 | 0.1384          | 11.3586 |
| 0.0427        | 0.3333 | 20000 | 0.1471          | 11.4970 |
| 0.0274        | 0.4167 | 25000 | 0.1585          | 10.8926 |
| 0.0195        | 0.5    | 30000 | 0.1702          | 11.3447 |
| 0.0155        | 0.5833 | 35000 | 0.1773          | 10.6100 |
| 0.0126        | 1.0062 | 40000 | 0.1863          | 11.4255 |
| 0.0099        | 1.0895 | 45000 | 0.1929          | 10.6665 |
| 0.01          | 1.1729 | 50000 | 0.1933          | 10.6665 |
| 0.0085        | 1.2562 | 55000 | 0.1953          | 10.5224 |
| 0.0085        | 1.3395 | 60000 | 0.1952          | 10.4439 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3