[English](README.md) # Qwen2-Boundless ## 简介 Qwen2-Boundless 是一个基于 Qwen2-1.5B-Instruct 微调的模型,专为回答各种类型的问题而设计,无论是道德的、违法的、色情的、暴力的内容,均可自由询问。该模型经过特殊的数据集训练,能够应对复杂和多样的场景。需要注意的是,微调数据集全部为中文,因此模型在处理中文时表现更佳。 > **警告**:本模型仅用于研究和测试目的,用户应遵循当地法律法规,并对自己的行为负责。 ## 模型使用 你可以通过以下代码加载并使用该模型: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import os device = "cuda" # the device to load the model onto current_directory = os.path.dirname(os.path.abspath(__file__)) model = AutoModelForCausalLM.from_pretrained( current_directory, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(current_directory) prompt = "Hello?" messages = [ {"role": "system", "content": ""}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` ### 连续对话 要实现连续对话,可以使用以下代码: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch import os device = "cuda" # the device to load the model onto # 获取当前脚本所在的目录 current_directory = os.path.dirname(os.path.abspath(__file__)) model = AutoModelForCausalLM.from_pretrained( current_directory, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(current_directory) messages = [ {"role": "system", "content": ""} ] while True: # 获取用户输入 user_input = input("User: ") # 将用户输入添加到对话中 messages.append({"role": "user", "content": user_input}) # 准备输入文本 text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) # 生成响应 generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] # 解码并打印响应 response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(f"Assistant: {response}") # 将生成的响应添加到对话中 messages.append({"role": "assistant", "content": response}) ``` ### 流式响应 对于需要流式响应的应用,使用以下代码: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from transformers.trainer_utils import set_seed from threading import Thread import random import os DEFAULT_CKPT_PATH = os.path.dirname(os.path.abspath(__file__)) def _load_model_tokenizer(checkpoint_path, cpu_only): tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, resume_download=True) device_map = "cpu" if cpu_only else "auto" model = AutoModelForCausalLM.from_pretrained( checkpoint_path, torch_dtype="auto", device_map=device_map, resume_download=True, ).eval() model.generation_config.max_new_tokens = 512 # For chat. return model, tokenizer def _get_input() -> str: while True: try: message = input('User: ').strip() except UnicodeDecodeError: print('[ERROR] Encoding error in input') continue except KeyboardInterrupt: exit(1) if message: return message print('[ERROR] Query is empty') def _chat_stream(model, tokenizer, query, history): conversation = [ {'role': 'system', 'content': ''}, ] for query_h, response_h in history: conversation.append({'role': 'user', 'content': query_h}) conversation.append({'role': 'assistant', 'content': response_h}) conversation.append({'role': 'user', 'content': query}) inputs = tokenizer.apply_chat_template( conversation, add_generation_prompt=True, return_tensors='pt', ) inputs = inputs.to(model.device) streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, timeout=60.0, skip_special_tokens=True) generation_kwargs = dict( input_ids=inputs, streamer=streamer, ) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() for new_text in streamer: yield new_text def main(): checkpoint_path = DEFAULT_CKPT_PATH seed = random.randint(0, 2**32 - 1) # 随机生成一个种子 set_seed(seed) # 设置随机种子 cpu_only = False history = [] model, tokenizer = _load_model_tokenizer(checkpoint_path, cpu_only) while True: query = _get_input() print(f"\nUser: {query}") print(f"\nAssistant: ", end="") try: partial_text = '' for new_text in _chat_stream(model, tokenizer, query, history): print(new_text, end='', flush=True) partial_text += new_text print() history.append((query, partial_text)) except KeyboardInterrupt: print('Generation interrupted') continue if __name__ == "__main__": main() ``` ## 数据集 Qwen2-Boundless 模型使用了特殊的 `bad_data.json` 数据集进行微调,该数据集包含了广泛的文本内容,涵盖道德、法律、色情及暴力等主题。由于微调数据集全部为中文,因此模型在处理中文时表现更佳。如果你有兴趣了解或使用该数据集,可以通过以下链接获取: - [bad_data.json 数据集](https://huggingface.co/datasets/ystemsrx/bad_data.json) 同时我们也从 [这个文件](https://github.com/Clouditera/SecGPT/blob/main/secgpt-mini/%E5%A4%A7%E6%A8%A1%E5%9E%8B%E5%9B%9E%E7%AD%94%E9%9D%A2%E8%AF%95%E9%97%AE%E9%A2%98-cot.txt) 中整理、清洗出一部分与网络安全相关的数据进行训练。 ## GitHub 仓库 更多关于该模型的细节以及持续更新,请访问我们的 GitHub 仓库: - [GitHub: ystemsrx/Qwen2-Boundless](https://github.com/ystemsrx/Qwen2-Boundless) ## 声明 本模型提供的所有内容仅用于研究和测试目的,模型开发者不对任何可能的滥用行为负责。使用者应遵循相关法律法规,并承担因使用本模型而产生的所有责任。