# -*- coding: utf-8 -*- # Copyright (c) 2025 Meituan # This code is licensed under the MIT License, for details, see the ./LICENSE file. from typing import Callable, Optional, Union import torch import torch.nn.functional as F from torch import nn from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.generation import GenerationMixin from transformers.integrations import use_kernel_forward_from_hub from transformers.masking_utils import create_causal_mask from transformers.modeling_flash_attention_utils import FlashAttentionKwargs from transformers.modeling_layers import GradientCheckpointingLayer from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from transformers.processing_utils import Unpack from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple from transformers.utils.generic import check_model_inputs from .configuration_longcat_flash import LongcatFlashConfig @use_kernel_forward_from_hub("RMSNorm") class LongcatFlashRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ LongcatFlashRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class LongcatFlashRotaryEmbedding(nn.Module): def __init__(self, config: LongcatFlashConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) class LongcatFlashMLP(nn.Module): def __init__(self, config, hidden_size=None, intermediate_size=None): super().__init__() self.config = config self.hidden_size = config.hidden_size if hidden_size is None else hidden_size self.intermediate_size = config.ffn_hidden_size if intermediate_size is None else intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj class LongcatFlashTopkRouter(nn.Module): def __init__(self, config): super().__init__() self.config = config self.top_k = config.moe_topk self.n_routed_experts = ( config.n_routed_experts if config.zero_expert_num is None else config.n_routed_experts + config.zero_expert_num ) self.routed_scaling_factor = config.routed_scaling_factor self.norm_topk_prob = config.norm_topk_prob self.router_bias = config.router_bias self.classifier = nn.Linear(config.hidden_size, self.n_routed_experts, bias=self.router_bias) self.register_buffer("e_score_correction_bias", torch.zeros((self.n_routed_experts))) @torch.no_grad() def get_topk_indices(self, scores): scores_for_choice = scores.view(-1, self.n_routed_experts) + self.e_score_correction_bias.unsqueeze(0) topk_indices = torch.topk(scores_for_choice, k=self.top_k, dim=-1, sorted=False)[1] return topk_indices def forward(self, hidden_states): hidden_states = hidden_states.view(-1, self.config.hidden_size) router_logits = F.linear(hidden_states.type(torch.float32), self.classifier.weight.type(torch.float32)) scores = router_logits.softmax(dim=-1) topk_indices = self.get_topk_indices(scores) topk_weights = scores.gather(1, topk_indices) if self.norm_topk_prob: denominator = topk_weights.sum(dim=-1, keepdim=True) + 1e-20 topk_weights /= denominator topk_weights = topk_weights * self.routed_scaling_factor return topk_indices, topk_weights class LongcatFlashMoE(nn.Module): """ moe module. """ def __init__(self, config): super().__init__() self.config = config self.experts = nn.ModuleList( [ LongcatFlashMLP(config, intermediate_size=config.expert_ffn_hidden_size) for _ in range(config.n_routed_experts) ] ) self.router = LongcatFlashTopkRouter(config) self.zero_expert_num = config.zero_expert_num self.zero_expert_type = config.zero_expert_type def moe(self, hidden_states: torch.Tensor, topk_indices: torch.Tensor, topk_weights: torch.Tensor): final_hidden_states = torch.zeros_like(hidden_states, dtype=topk_weights.dtype) total_experts = len(self.experts) if self.zero_expert_num is None else len(self.experts) + self.zero_expert_num expert_mask = torch.nn.functional.one_hot(topk_indices, num_classes=total_experts) expert_mask = expert_mask.permute(2, 0, 1) for expert_idx in range(total_experts): expert = self.experts[expert_idx] if expert_idx < len(self.experts) else None mask = expert_mask[expert_idx] token_indices, weight_indices = torch.where(mask) if token_indices.numel() > 0: expert_weights = topk_weights[token_indices, weight_indices] expert_input = hidden_states[token_indices] if self.zero_expert_num is None or expert_idx < len(self.experts): expert_output = expert(expert_input) elif self.zero_expert_type == "identity": expert_output = expert_input else: raise ValueError("Unknown condition") weighted_output = expert_output * expert_weights.unsqueeze(-1) final_hidden_states.index_add_(0, token_indices, weighted_output) return final_hidden_states.type(hidden_states.dtype) def forward(self, hidden_states): orig_shape = hidden_states.shape topk_indices, topk_weights = self.router(hidden_states) hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) hidden_states = self.moe(hidden_states, topk_indices, topk_weights).view(*orig_shape) return hidden_states def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs: Unpack[TransformersKwargs], ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1, use_mla=False): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) if use_mla: b, h, s, d = q.shape q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) b, h, s, d = k.shape k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class LongcatFlashMLA(nn.Module): """Modified from Deepseek MLA""" def __init__(self, config: LongcatFlashConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.attention_dropout = config.attention_dropout self.num_heads = config.num_attention_heads self.rope_theta = config.rope_theta self.q_lora_rank = config.q_lora_rank self.qk_rope_head_dim = config.qk_rope_head_dim self.kv_lora_rank = config.kv_lora_rank self.v_head_dim = config.v_head_dim self.qk_nope_head_dim = config.qk_nope_head_dim self.qk_head_dim = config.qk_head_dim self.is_causal = True if self.q_lora_rank is None: self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.qk_head_dim, bias=False) else: self.q_a_proj = nn.Linear(config.hidden_size, config.q_lora_rank, bias=config.attention_bias) self.q_a_layernorm = LongcatFlashRMSNorm(config.q_lora_rank) self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False) self.kv_a_proj_with_mqa = nn.Linear( config.hidden_size, self.kv_lora_rank + self.qk_rope_head_dim, bias=config.attention_bias, ) self.kv_a_layernorm = LongcatFlashRMSNorm(self.kv_lora_rank) self.kv_b_proj = nn.Linear( self.kv_lora_rank, self.num_heads * (self.qk_nope_head_dim + self.v_head_dim), bias=False, ) self.o_proj = nn.Linear( self.num_heads * self.v_head_dim, config.hidden_size, bias=config.attention_bias, ) if config.mla_scale_q_lora: self.mla_scale_q_lora = (config.hidden_size / self.q_lora_rank) ** 0.5 if config.mla_scale_kv_lora: self.mla_scale_kv_lora = (config.hidden_size / self.kv_lora_rank) ** 0.5 self.scaling = self.qk_head_dim ** (-0.5) def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: batch_size, seq_length = hidden_states.shape[:-1] query_shape = (batch_size, seq_length, -1, self.qk_head_dim) key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim) q_states = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))).view(query_shape).transpose(1, 2) q_pass, q_rot = torch.split(q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) # apply q_lora scaling if self.mla_scale_q_lora is not None: q_pass = q_pass * self.mla_scale_q_lora q_rot = q_rot * self.mla_scale_q_lora compressed_kv = self.kv_a_proj_with_mqa(hidden_states) k_pass, k_rot = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) k_pass = self.kv_a_layernorm(k_pass) # apply kv_lora scaling if self.mla_scale_kv_lora is not None: k_pass = k_pass * self.mla_scale_kv_lora k_pass = self.kv_b_proj(k_pass).view(key_shape).transpose(1, 2) k_pass, value_states = torch.split(k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1) k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim) cos, sin = position_embeddings q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, use_mla=True) k_rot = k_rot.expand(*k_pass.shape[:-1], -1) query_states = torch.cat((q_pass, q_rot), dim=-1) key_states = torch.cat((k_pass, k_rot), dim=-1) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim: value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim]) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim: attn_output = attn_output[:, :, :, : self.v_head_dim] attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights def create_attention_block(class_name, *args, **kwargs): attention_mapping = {"MLA": LongcatFlashMLA} chosen_class = attention_mapping.get(class_name) if not chosen_class: raise ValueError(f"No class found for name: {class_name}") return chosen_class(*args, **kwargs) class LongcatFlashDecoderLayer(GradientCheckpointingLayer): def __init__(self, config: LongcatFlashConfig, layer_idx: int): super().__init__() self.layer_idx = layer_idx self.hidden_size = config.hidden_size self.mlp = LongcatFlashMoE(config) self_attn = [] mlps = [] input_layernorm = [] post_attention_layernorm = [] for i in range(2): self_attn.append( create_attention_block(config.attention_method, config=config, layer_idx=layer_idx * 2 + i) ) mlps.append(LongcatFlashMLP(config)) input_layernorm.append(LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)) post_attention_layernorm.append(LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)) self.self_attn = nn.ModuleList(self_attn) self.mlps = nn.ModuleList(mlps) self.input_layernorm = nn.ModuleList(input_layernorm) self.post_attention_layernorm = nn.ModuleList(post_attention_layernorm) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: for i in range(2): residual = hidden_states hidden_states = self.input_layernorm[i](hidden_states) hidden_states, _ = self.self_attn[i]( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.post_attention_layernorm[i](hidden_states) if i == 0: shortcut_mlp_output = self.mlp(hidden_states) # shortcut output (MoE output) hidden_states = self.mlps[i](hidden_states) hidden_states = residual + hidden_states if i == 1: hidden_states = hidden_states + shortcut_mlp_output return hidden_states @auto_docstring class LongcatFlashPreTrainedModel(PreTrainedModel): config: LongcatFlashConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["LongcatFlashDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _can_compile_fullgraph = True _supports_attention_backend = True _can_record_outputs = { "hidden_states": LongcatFlashDecoderLayer, "attentions": LongcatFlashMLA, } @auto_docstring class LongcatFlashModel(LongcatFlashPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"model\.mtp.*"] def __init__(self, config: LongcatFlashConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [LongcatFlashDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = LongcatFlashRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() @check_model_inputs @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, cache_position: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, **kwargs: Unpack[TransformersKwargs], ) -> BaseModelOutputWithPast: if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds: torch.Tensor = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position: torch.Tensor = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = create_causal_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, position_ids=position_ids, ) hidden_states = inputs_embeds position_embeddings = self.rotary_emb(hidden_states, position_ids) for decoder_layer in self.layers[: self.config.num_hidden_layers]: hidden_states = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = self.norm(hidden_states) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, ) @auto_docstring class LongcatFlashForCausalLM(LongcatFlashPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} _keys_to_ignore_on_load_unexpected = [r"model\.mtp.*"] def __init__(self, config): super().__init__(config) self.model = LongcatFlashModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[TransformersKwargs], ) -> CausalLMOutputWithPast: r""" Example: ```python >>> from transformers import AutoTokenizer, LongcatFlashForCausalLM >>> model = LongcatFlashForCausalLM.from_pretrained("meta-longcat_flash/LongcatFlash-2-7b-hf") >>> tokenizer = AutoTokenizer.from_pretrained("meta-longcat_flash/LongcatFlash-2-7b-hf") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" outputs: BaseModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = ["LongcatFlashPreTrainedModel", "LongcatFlashModel", "LongcatFlashForCausalLM"]