File size: 3,079 Bytes
fb6c5ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
  - text: Hello!
    example_title: Hello world
    group: Python
---

This tiny model is for debugging. It is randomly initialized with the config adapted from [Qwen/Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B).

### Example usage:

```python
from transformers import pipeline
model_id = "yujiepan/qwen3-moe-tiny-random"
pipe = pipeline(
    "text-generation", model=model_id, device="cuda",
    trust_remote_code=True, max_new_tokens=3,
)
print(pipe("Hello World!"))

from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype="auto",
    device_map="auto"
)
prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True  # Switches between thinking and non-thinking modes. Default is True.
)
print(text)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=128
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
try:
    # rindex finding 151668 (</think>)
    index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
    index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
```

### Codes to create this repo:

```python
import torch

from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
    pipeline,
    set_seed,
)

source_model_id = "Qwen/Qwen3-235B-A22B"
save_folder = "/tmp/yujiepan/qwen3-moe-tiny-random"

tokenizer = AutoTokenizer.from_pretrained(
    source_model_id, trust_remote_code=True,
)
tokenizer.save_pretrained(save_folder)

config = AutoConfig.from_pretrained(
    source_model_id, trust_remote_code=True,
)
config._name_or_path = source_model_id
config.hidden_size = 64
config.intermediate_size = 128
config.moe_intermediate_size = 128
config.head_dim = 32
config.decoder_sparse_step = 2  # layer0=mlp, layer1=moe
config.num_experts = 8
config.num_experts_per_tok = 2
config.num_key_value_heads = 1
config.num_attention_heads = 2
config.num_hidden_layers = 2
config.max_window_layers = 1
config.tie_word_embeddings = True
model = AutoModelForCausalLM.from_config(
    config,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
)
model.generation_config = GenerationConfig.from_pretrained(
    source_model_id, trust_remote_code=True,
)
set_seed(42)
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        torch.nn.init.normal_(p, 0, 0.5)
        print(name, p.shape)
model.save_pretrained(save_folder)
```