--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This tiny model is for debugging. It is randomly initialized with the config adapted from [Qwen/Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B). ### Example usage: ```python from transformers import pipeline model_id = "yujiepan/qwen3-moe-tiny-random" pipe = pipeline( "text-generation", model=model_id, device="cuda", trust_remote_code=True, max_new_tokens=3, ) print(pipe("Hello World!")) from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype="auto", device_map="auto" ) prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) print(text) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=128 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() try: # rindex finding 151668 () index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` ### Codes to create this repo: ```python import torch from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline, set_seed, ) source_model_id = "Qwen/Qwen3-235B-A22B" save_folder = "/tmp/yujiepan/qwen3-moe-tiny-random" tokenizer = AutoTokenizer.from_pretrained( source_model_id, trust_remote_code=True, ) tokenizer.save_pretrained(save_folder) config = AutoConfig.from_pretrained( source_model_id, trust_remote_code=True, ) config._name_or_path = source_model_id config.hidden_size = 64 config.intermediate_size = 128 config.moe_intermediate_size = 128 config.head_dim = 32 config.decoder_sparse_step = 2 # layer0=mlp, layer1=moe config.num_experts = 8 config.num_experts_per_tok = 2 config.num_key_value_heads = 1 config.num_attention_heads = 2 config.num_hidden_layers = 2 config.max_window_layers = 1 config.tie_word_embeddings = True model = AutoModelForCausalLM.from_config( config, torch_dtype=torch.bfloat16, trust_remote_code=True, ) model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.5) print(name, p.shape) model.save_pretrained(save_folder) ```