--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - inclusionAI/Ring-1T-preview --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [inclusionAI/Ring-1T-preview](https://huggingface.co/inclusionAI/Ring-1T-preview). ### Example usage: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "yujiepan/ring-tiny-random" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, trust_remote_code=True, ) pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, trust_remote_code=True) print(pipe('Write an article about Artificial Intelligence.')) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, set_seed, ) source_model_id = "inclusionAI/Ring-1T-preview" save_folder = "/tmp/yujiepan/ring-tiny-random" processor = AutoTokenizer.from_pretrained(source_model_id) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) for k, v in config_json['auto_map'].items(): config_json['auto_map'][k] = f'{source_model_id}--{v}' config_json['head_dim'] = 32 config_json['hidden_size'] = 8 config_json['intermediate_size'] = 64 config_json['moe_intermediate_size'] = 64 config_json['first_k_dense_replace'] = 1 config_json['num_attention_heads'] = 8 config_json['num_hidden_layers'] = 2 config_json['num_key_value_heads'] = 4 with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) automap = config_json['auto_map'] torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) print(model) with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: config_json = json.load(f) config_json['auto_map'] = automap with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) for python_file in Path(save_folder).glob('*.py'): python_file.unlink() ``` ### Printing the model: ```text BailingMoeV2ForCausalLM( (model): BailingMoeV2Model( (word_embeddings): Embedding(157184, 8, padding_idx=156892) (layers): ModuleList( (0): BailingMoeV2DecoderLayer( (attention): BailingMoeV2SdpaAttention( (query_key_value): Linear(in_features=8, out_features=512, bias=False) (query_layernorm): BailingMoeV2RMSNorm() (key_layernorm): BailingMoeV2RMSNorm() (dense): Linear(in_features=256, out_features=8, bias=False) ) (mlp): BailingMoeV2MLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) (input_layernorm): BailingMoeV2RMSNorm() (post_attention_layernorm): BailingMoeV2RMSNorm() ) (1): BailingMoeV2DecoderLayer( (attention): BailingMoeV2SdpaAttention( (query_key_value): Linear(in_features=8, out_features=512, bias=False) (query_layernorm): BailingMoeV2RMSNorm() (key_layernorm): BailingMoeV2RMSNorm() (dense): Linear(in_features=256, out_features=8, bias=False) ) (mlp): BailingMoeV2SparseMoeBlock( (experts): ModuleList( (0-255): 256 x BailingMoeV2MLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) ) (gate): BailingMoeV2Gate() (shared_experts): BailingMoeV2MLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLU() ) ) (input_layernorm): BailingMoeV2RMSNorm() (post_attention_layernorm): BailingMoeV2RMSNorm() ) ) (norm): BailingMoeV2RMSNorm() (rotary_emb): BailingMoeV2RotaryEmbedding() ) (lm_head): Linear(in_features=8, out_features=157184, bias=False) ) ```