--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - mistralai/Voxtral-Small-24B-2507 --- This tiny model is for debugging. It is randomly initialized with the config adapted from [mistralai/Voxtral-Small-24B-2507](https://huggingface.co/mistralai/Voxtral-Small-24B-2507). ### Example usage: - vLLM ```bash vllm serve yujiepan/voxtral-tiny-random --trust-remote-code ``` - Transformers ```python import torch from transformers import AutoProcessor, VoxtralForConditionalGeneration model_id = "yujiepan/voxtral-tiny-random" device = "cuda" processor = AutoProcessor.from_pretrained(model_id) model = VoxtralForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map=device) conversation = [ { "role": "user", "content": [ { "type": "audio", "path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/mary_had_lamb.mp3", }, { "type": "audio", "path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3", }, {"type": "text", "text": "What sport and what nursery rhyme are referenced?"}, ], } ] inputs = processor.apply_chat_template(conversation) inputs = inputs.to(device, dtype=torch.bfloat16) outputs = model.generate(**inputs, max_new_tokens=32) decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True) print("\nGenerated response:") print("=" * 80) print(decoded_outputs[0]) print("=" * 80) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoProcessor, GenerationConfig, set_seed, ) source_model_id = "mistralai/Voxtral-Small-24B-2507" save_folder = "/tmp/yujiepan/voxtral-tiny-random" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['audio_config'].update( { "head_dim": 32, "hidden_size": 64, "intermediate_size": 256, "num_attention_heads": 2, "num_key_value_heads": 2, "num_hidden_layers": 2, } ) config_json['hidden_size'] = 64 config_json['text_config'].update( { "head_dim": 32, "hidden_size": 64, "intermediate_size": 128, "num_attention_heads": 2, "num_key_value_heads": 1, "num_hidden_layers": 2, 'tie_word_embeddings': True, } ) with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModel.from_config(config) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.2) print(name, p.shape) model.save_pretrained(save_folder) print(model) ``` ### Printing the model: ```text VoxtralForConditionalGeneration( (audio_tower): VoxtralEncoder( (conv1): Conv1d(128, 64, kernel_size=(3,), stride=(1,), padding=(1,)) (conv2): Conv1d(64, 64, kernel_size=(3,), stride=(2,), padding=(1,)) (embed_positions): Embedding(1500, 64) (layers): ModuleList( (0-1): 2 x VoxtralEncoderLayer( (self_attn): VoxtralAttention( (k_proj): Linear(in_features=64, out_features=64, bias=False) (v_proj): Linear(in_features=64, out_features=64, bias=True) (q_proj): Linear(in_features=64, out_features=64, bias=True) (out_proj): Linear(in_features=64, out_features=64, bias=True) ) (self_attn_layer_norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) (activation_fn): GELUActivation() (fc1): Linear(in_features=64, out_features=256, bias=True) (fc2): Linear(in_features=256, out_features=64, bias=True) (final_layer_norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) ) ) (layer_norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True) (avg_pooler): AvgPool1d(kernel_size=(2,), stride=(2,), padding=(0,)) ) (language_model): LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(131072, 64) (layers): ModuleList( (0-1): 2 x LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear(in_features=64, out_features=64, bias=False) (k_proj): Linear(in_features=64, out_features=32, bias=False) (v_proj): Linear(in_features=64, out_features=32, bias=False) (o_proj): Linear(in_features=64, out_features=64, bias=False) ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=64, out_features=128, bias=False) (up_proj): Linear(in_features=64, out_features=128, bias=False) (down_proj): Linear(in_features=128, out_features=64, bias=False) (act_fn): SiLU() ) (input_layernorm): LlamaRMSNorm((64,), eps=1e-05) (post_attention_layernorm): LlamaRMSNorm((64,), eps=1e-05) ) ) (norm): LlamaRMSNorm((64,), eps=1e-05) (rotary_emb): LlamaRotaryEmbedding() ) (lm_head): Linear(in_features=64, out_features=131072, bias=False) ) (multi_modal_projector): VoxtralMultiModalProjector( (linear_1): Linear(in_features=256, out_features=64, bias=False) (act): GELUActivation() (linear_2): Linear(in_features=64, out_features=64, bias=False) ) ) ```