File size: 3,127 Bytes
6e97a37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
library_name: transformers
tags:
- generated_from_trainer
model-index:
- name: myBit-Llama2-jp-127M-2B4TLike-aozora-sort-3epc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# myBit-Llama2-jp-127M-2B4TLike-aozora-sort-3epc
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2302
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0024
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 6.9258 | 0.0883 | 100 | 5.2708 |
| 4.7937 | 0.1765 | 200 | 4.4660 |
| 4.2565 | 0.2648 | 300 | 4.1755 |
| 3.9951 | 0.3530 | 400 | 4.0060 |
| 3.8438 | 0.4413 | 500 | 3.8854 |
| 3.7223 | 0.5296 | 600 | 3.7829 |
| 3.6523 | 0.6178 | 700 | 3.7125 |
| 3.5985 | 0.7061 | 800 | 3.6535 |
| 3.5666 | 0.7944 | 900 | 3.6039 |
| 3.5519 | 0.8826 | 1000 | 3.5693 |
| 3.5365 | 0.9709 | 1100 | 3.5404 |
| 3.6085 | 1.0591 | 1200 | 3.5638 |
| 3.4953 | 1.1474 | 1300 | 3.4983 |
| 3.425 | 1.2357 | 1400 | 3.4737 |
| 3.3693 | 1.3239 | 1500 | 3.4579 |
| 3.3396 | 1.4122 | 1600 | 3.4431 |
| 3.3187 | 1.5004 | 1700 | 3.4259 |
| 3.3013 | 1.5887 | 1800 | 3.4121 |
| 3.3036 | 1.6770 | 1900 | 3.4004 |
| 3.2947 | 1.7652 | 2000 | 3.3808 |
| 3.3041 | 1.8535 | 2100 | 3.3653 |
| 3.304 | 1.9417 | 2200 | 3.3541 |
| 3.3582 | 2.0300 | 2300 | 3.4233 |
| 3.3097 | 2.1183 | 2400 | 3.3351 |
| 3.2426 | 2.2065 | 2500 | 3.3234 |
| 3.2034 | 2.2948 | 2600 | 3.3149 |
| 3.1675 | 2.3831 | 2700 | 3.3033 |
| 3.1611 | 2.4713 | 2800 | 3.2953 |
| 3.1344 | 2.5596 | 2900 | 3.2832 |
| 3.1391 | 2.6478 | 3000 | 3.2729 |
| 3.1324 | 2.7361 | 3100 | 3.2572 |
| 3.1355 | 2.8244 | 3200 | 3.2440 |
| 3.1417 | 2.9126 | 3300 | 3.2302 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
|