---
license: bsd-2-clause
pipeline_tag: image-to-3d
library_name: pytorch
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
---
# 🌌 $\\pi^3$: Scalable Permutation-Equivariant Visual Geometry Learning
$\\pi^3$ reconstructs visual geometry without a fixed reference view, achieving robust, state-of-the-art performance.
## ✨ Overview
We introduce $\\pi^3$ (Pi-Cubed), a novel feed-forward neural network that revolutionizes visual geometry reconstruction by **eliminating the need for a fixed reference view**. Traditional methods, which rely on a designated reference frame, are often prone to instability and failure if the reference is suboptimal.
In contrast, $\\pi^3$ employs a fully **permutation-equivariant** architecture. This allows it to directly predict affine-invariant camera poses and scale-invariant local point maps from an unordered set of images, breaking free from the constraints of a reference frame. This design makes our model inherently **robust to input ordering** and **highly scalable**.
A key emergent property of our simple, bias-free design is the learning of a dense and structured latent representation of the camera pose manifold. Without complex priors or training schemes, $\\pi^3$ achieves **state-of-the-art performance** 🏆 on a wide range of tasks, including camera pose estimation, monocular/video depth estimation, and dense point map estimation.
## 🚀 Quick Start
### 1. Clone & Install Dependencies
First, clone the repository and install the required packages.
```bash
git clone https://github.com/yyfz/Pi3.git
cd Pi3
pip install -r requirements.txt
```
### 2. Run Inference from Command Line
Try our example inference script. You can run it on a directory of images or a video file.
If the automatic download from Hugging Face is slow, you can download the model checkpoint manually from [here](https://huggingface.co/yyfz233/Pi3/resolve/main/model.safetensors) and specify its local path using the `--ckpt` argument.
```bash
# Run with default example video
python example.py
# Run on your own data (image folder or .mp4 file)
python example.py --data_path
```
**Optional Arguments:**
* `--data_path`: Path to the input image directory or a video file. (Default: `examples/skating.mp4`)
* `--save_path`: Path to save the output `.ply` point cloud. (Default: `examples/result.ply`)
* `--interval`: Frame sampling interval. (Default: `1` for images, `10` for video)
* `--ckpt`: Path to a custom model checkpoint file.
* `--device`: Device to run inference on. (Default: `cuda`)
### 3. Run with Gradio Demo
You can also launch a local Gradio demo for an interactive experience.
```bash
# Install demo-specific requirements
pip install -r requirements_demo.txt
# Launch the demo
python demo_gradio.py
```
## 🛠️ Detailed Usage
### Model Input & Output
The model takes a tensor of images and outputs a dictionary containing the reconstructed geometry.
* **Input**: A `torch.Tensor` of shape $B \times N \times 3 \times H \times W$ with pixel values in the range `[0, 1]`.
* **Output**: A `dict` with the following keys:
* `points`: Global point cloud unprojected by `local points` and `camera_poses` (`torch.Tensor`, $B \times N \times H \times W \times 3$).
* `local_points`: Per-view local point maps (`torch.Tensor`, $B \times N \times H \times W \times 3$).
* `conf`: Confidence scores for local points (values in `[0, 1]`, higher is better) (`torch.Tensor`, $B \times N \times H \times W \times 1$).
* `camera_poses`: Camera-to-world transformation matrices (`4x4` in OpenCV format) (`torch.Tensor`, $B \times N \times 4 \times 4$).
### Example Code Snippet
Here is a minimal example of how to run the model on a batch of images.
```python
import torch
from pi3.models.pi3 import Pi3
from pi3.utils.basic import load_images_as_tensor # Assuming you have a helper function
# --- Setup ---
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = Pi3.from_pretrained("yyfz233/Pi3").to(device).eval()
# or download checkpoints from `https://huggingface.co/yyfz233/Pi3/resolve/main/model.safetensors`
# --- Load Data ---
# Load a sequence of N images into a tensor
# imgs shape: (N, 3, H, W).
# imgs value: [0, 1]
imgs = load_images_as_tensor('examples/skating.mp4', interval=10).to(device)
# --- Inference ---
print("Running model inference...")
# Use mixed precision for better performance on compatible GPUs
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
with torch.no_grad():
with torch.amp.autocast('cuda', dtype=dtype):
# Add a batch dimension -> (1, N, 3, H, W)
results = model(imgs[None])
print("Reconstruction complete!")
# Access outputs: results['points'], results['camera_poses'] and results['local_points'].
```
## 🙏 Acknowledgements
Our work builds upon several fantastic open-source projects. We'd like to express our gratitude to the authors of:
* [DUSt3R](https://github.com/naver/dust3r)
* [CUT3R](https://github.com/CUT3R/CUT3R)
* [VGGT](https://github.com/facebookresearch/vggt)
## 📜 Citation
If you find our work useful, please consider citing:
```bibtex
@misc{wang2025pi3,
title={$\\pi^3$: Scalable Permutation-Equivariant Visual Geometry Learning},
author={Yifan Wang and Jianjun Zhou and Haoyi Zhu and Wenzheng Chang and Yang Zhou and Zizun Li and Junyi Chen and Jiangmiao Pang and Chunhua Shen and Tong He},
year={2025},
eprint={2507.13347},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2507.13347},
}
```
## 📄 License
For academic use, this project is licensed under the 2-clause BSD License. See the [LICENSE](https://github.com/yyfz/Pi3/blob/main/LICENSE) file for details. For commercial use, please contact the authors.