|
_base_=['../_base_/losses/all_losses.py', |
|
'../_base_/models/encoder_decoder/dino_vit_large_reg.dpt_raft.py', |
|
|
|
'../_base_/datasets/diode.py', |
|
'../_base_/datasets/_data_base_.py', |
|
|
|
'../_base_/default_runtime.py', |
|
'../_base_/schedules/schedule_1m.py' |
|
] |
|
|
|
import numpy as np |
|
|
|
model=dict( |
|
decode_head=dict( |
|
type='RAFTDepthNormalDPT5', |
|
iters=8, |
|
n_downsample=2, |
|
detach=False, |
|
) |
|
) |
|
|
|
|
|
find_unused_parameters = True |
|
|
|
|
|
|
|
|
|
data_array = [ |
|
|
|
[ |
|
dict(DIODE='DIODE_dataset'), |
|
|
|
|
|
], |
|
] |
|
data_basic=dict( |
|
canonical_space = dict( |
|
img_size=(540, 960), |
|
focal_length=1000.0, |
|
), |
|
depth_range=(0, 1), |
|
depth_normalize=(0.1, 200), |
|
|
|
clip_depth_range=(0.1, 150), |
|
) |
|
|
|
|
|
|
|
|
|
test_metrics = ['abs_rel', 'rmse', 'silog', 'delta1', 'delta2', 'delta3', 'normal_median' , 'normal_mean', 'normal_rmse', 'normal_a1', 'normal_a2', 'normal_a3', 'normal_a4', 'normal_a5'] |
|
DIODE_dataset=dict( |
|
data = dict( |
|
test=dict( |
|
pipeline=[dict(type='BGR2RGB'), |
|
dict(type='LabelScaleCononical'), |
|
dict(type='ResizeKeepRatio', |
|
resize_size=(616, 1064), |
|
ignore_label=-1, |
|
padding=[0,0,0]), |
|
dict(type='ToTensor'), |
|
dict(type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]), |
|
], |
|
sample_ratio = 1.0, |
|
sample_size = -1, |
|
), |
|
)) |
|
|