import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6") model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6") def summarize_text(text): inputs = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True) summary_ids = model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], max_length=100, min_length=20, length_penalty=2.0, num_beams=4, early_stopping=True, no_repeat_ngram_size=3 ) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) return summary iface = gr.Interface( fn=summarize_text, inputs=gr.Textbox(lines=5, label="Input Text"), outputs=gr.Textbox(label="Summary"), title="DistilBART Summarizer", description="Summarize any input text using DistilBART fine-tuned model." ) iface.launch()