duzx16
commited on
Commit
·
812f43f
1
Parent(s):
220f772
Add p-tuning v2
Browse files- configuration_chatglm.py +4 -0
- modeling_chatglm.py +73 -2
configuration_chatglm.py
CHANGED
|
@@ -70,6 +70,8 @@ class ChatGLMConfig(PretrainedConfig):
|
|
| 70 |
max_sequence_length=2048,
|
| 71 |
inner_hidden_size=16384,
|
| 72 |
position_encoding_2d=True,
|
|
|
|
|
|
|
| 73 |
**kwargs
|
| 74 |
):
|
| 75 |
self.num_layers = num_layers
|
|
@@ -84,6 +86,8 @@ class ChatGLMConfig(PretrainedConfig):
|
|
| 84 |
self.eos_token_id = eos_token_id
|
| 85 |
self.pad_token_id = pad_token_id
|
| 86 |
self.position_encoding_2d = position_encoding_2d
|
|
|
|
|
|
|
| 87 |
super().__init__(
|
| 88 |
pad_token_id=pad_token_id,
|
| 89 |
bos_token_id=bos_token_id,
|
|
|
|
| 70 |
max_sequence_length=2048,
|
| 71 |
inner_hidden_size=16384,
|
| 72 |
position_encoding_2d=True,
|
| 73 |
+
pre_seq_len=None,
|
| 74 |
+
prefix_projection=False,
|
| 75 |
**kwargs
|
| 76 |
):
|
| 77 |
self.num_layers = num_layers
|
|
|
|
| 86 |
self.eos_token_id = eos_token_id
|
| 87 |
self.pad_token_id = pad_token_id
|
| 88 |
self.position_encoding_2d = position_encoding_2d
|
| 89 |
+
self.pre_seq_len = pre_seq_len
|
| 90 |
+
self.prefix_projection = prefix_projection
|
| 91 |
super().__init__(
|
| 92 |
pad_token_id=pad_token_id,
|
| 93 |
bos_token_id=bos_token_id,
|
modeling_chatglm.py
CHANGED
|
@@ -129,6 +129,35 @@ def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
|
|
| 129 |
return model
|
| 130 |
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
@torch.jit.script
|
| 133 |
def gelu_impl(x):
|
| 134 |
"""OpenAI's gelu implementation."""
|
|
@@ -719,6 +748,8 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
| 719 |
self.inner_hidden_size = config.inner_hidden_size
|
| 720 |
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
| 721 |
self.position_encoding_2d = config.position_encoding_2d
|
|
|
|
|
|
|
| 722 |
|
| 723 |
self.word_embeddings = skip_init(
|
| 724 |
torch.nn.Embedding,
|
|
@@ -747,12 +778,41 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
| 747 |
# Final layer norm before output.
|
| 748 |
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
| 749 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 750 |
def get_input_embeddings(self):
|
| 751 |
return self.word_embeddings
|
| 752 |
|
| 753 |
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
| 754 |
self.word_embeddings = new_embeddings
|
| 755 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 756 |
@staticmethod
|
| 757 |
def get_masks(seq, device):
|
| 758 |
context_length = seq.index(150004) + 1
|
|
@@ -822,7 +882,10 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
| 822 |
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 823 |
|
| 824 |
if past_key_values is None:
|
| 825 |
-
|
|
|
|
|
|
|
|
|
|
| 826 |
|
| 827 |
MASK, gMASK = 150000, 150001
|
| 828 |
mask_token = MASK if MASK in input_ids else gMASK
|
|
@@ -837,6 +900,11 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
| 837 |
device=input_ids.device
|
| 838 |
)
|
| 839 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 840 |
if position_ids is None:
|
| 841 |
position_ids = self.get_position_ids(
|
| 842 |
seq=seq,
|
|
@@ -1125,18 +1193,21 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
| 1125 |
if "eos_token_id" not in kwargs:
|
| 1126 |
kwargs["eos_token_id"] = eos
|
| 1127 |
|
|
|
|
|
|
|
| 1128 |
stop = False
|
| 1129 |
|
| 1130 |
return_seqs = []
|
| 1131 |
|
| 1132 |
while True:
|
| 1133 |
output_ids = super().generate(**kwargs)
|
| 1134 |
-
|
| 1135 |
return_seqs = []
|
| 1136 |
max_length = 0
|
| 1137 |
|
| 1138 |
for i in range(output_ids.shape[0]):
|
| 1139 |
output_seq = output_ids[i].tolist()
|
|
|
|
|
|
|
| 1140 |
mask_token = MASK if MASK in output_seq else gMASK
|
| 1141 |
mask_position = output_seq.index(mask_token)
|
| 1142 |
bos_position = output_seq.index(bos)
|
|
|
|
| 129 |
return model
|
| 130 |
|
| 131 |
|
| 132 |
+
class PrefixEncoder(torch.nn.Module):
|
| 133 |
+
r'''
|
| 134 |
+
The torch.nn model to encode the prefix
|
| 135 |
+
Input shape: (batch-size, prefix-length)
|
| 136 |
+
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
| 137 |
+
'''
|
| 138 |
+
def __init__(self, config):
|
| 139 |
+
super().__init__()
|
| 140 |
+
self.prefix_projection = config.prefix_projection
|
| 141 |
+
if self.prefix_projection:
|
| 142 |
+
# Use a two-layer MLP to encode the prefix
|
| 143 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
|
| 144 |
+
self.trans = torch.nn.Sequential(
|
| 145 |
+
torch.nn.Linear(config.hidden_size, config.hidden_size),
|
| 146 |
+
torch.nn.Tanh(),
|
| 147 |
+
torch.nn.Linear(config.hidden_size, config.num_layers * config.hidden_size * 2)
|
| 148 |
+
)
|
| 149 |
+
else:
|
| 150 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_layers * config.hidden_size * 2)
|
| 151 |
+
|
| 152 |
+
def forward(self, prefix: torch.Tensor):
|
| 153 |
+
if self.prefix_projection:
|
| 154 |
+
prefix_tokens = self.embedding(prefix)
|
| 155 |
+
past_key_values = self.trans(prefix_tokens)
|
| 156 |
+
else:
|
| 157 |
+
past_key_values = self.embedding(prefix)
|
| 158 |
+
return past_key_values
|
| 159 |
+
|
| 160 |
+
|
| 161 |
@torch.jit.script
|
| 162 |
def gelu_impl(x):
|
| 163 |
"""OpenAI's gelu implementation."""
|
|
|
|
| 748 |
self.inner_hidden_size = config.inner_hidden_size
|
| 749 |
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
| 750 |
self.position_encoding_2d = config.position_encoding_2d
|
| 751 |
+
self.pre_seq_len = config.pre_seq_len
|
| 752 |
+
self.prefix_projection = config.prefix_projection
|
| 753 |
|
| 754 |
self.word_embeddings = skip_init(
|
| 755 |
torch.nn.Embedding,
|
|
|
|
| 778 |
# Final layer norm before output.
|
| 779 |
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
| 780 |
|
| 781 |
+
if self.pre_seq_len is not None:
|
| 782 |
+
for param in self.parameters():
|
| 783 |
+
param.requires_grad = False
|
| 784 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
| 785 |
+
self.prefix_encoder = PrefixEncoder(config)
|
| 786 |
+
self.dropout = torch.nn.Dropout(0.1)
|
| 787 |
+
|
| 788 |
+
# total_params = sum(p.numel() for p in self.parameters())
|
| 789 |
+
# trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
|
| 790 |
+
# print("Using p-tuning v2: # trainable_params = {} / {}".format(trainable_params, total_params))
|
| 791 |
+
|
| 792 |
def get_input_embeddings(self):
|
| 793 |
return self.word_embeddings
|
| 794 |
|
| 795 |
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
| 796 |
self.word_embeddings = new_embeddings
|
| 797 |
|
| 798 |
+
def get_prompt(self, batch_size, device):
|
| 799 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
| 800 |
+
past_key_values = self.prefix_encoder(prefix_tokens).half()
|
| 801 |
+
past_key_values = past_key_values.view(
|
| 802 |
+
batch_size,
|
| 803 |
+
self.pre_seq_len,
|
| 804 |
+
self.num_layers * 2,
|
| 805 |
+
self.num_attention_heads,
|
| 806 |
+
self.hidden_size // self.num_attention_heads
|
| 807 |
+
)
|
| 808 |
+
#seq_len, b, nh, hidden_size
|
| 809 |
+
past_key_values = self.dropout(past_key_values)
|
| 810 |
+
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
| 811 |
+
past_key_values = [(v[0], v[1]) for v in past_key_values]
|
| 812 |
+
# past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(self.num_layers)
|
| 813 |
+
# past_key_values = [(v1,v2) for v1, v2 in zip(past_key_values[0], past_key_values[1])]
|
| 814 |
+
return past_key_values
|
| 815 |
+
|
| 816 |
@staticmethod
|
| 817 |
def get_masks(seq, device):
|
| 818 |
context_length = seq.index(150004) + 1
|
|
|
|
| 882 |
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 883 |
|
| 884 |
if past_key_values is None:
|
| 885 |
+
if self.pre_seq_len is not None:
|
| 886 |
+
past_key_values = self.get_prompt(batch_size=input_ids.shape[0], device=input_ids.device)
|
| 887 |
+
else:
|
| 888 |
+
past_key_values = tuple([None] * len(self.layers))
|
| 889 |
|
| 890 |
MASK, gMASK = 150000, 150001
|
| 891 |
mask_token = MASK if MASK in input_ids else gMASK
|
|
|
|
| 900 |
device=input_ids.device
|
| 901 |
)
|
| 902 |
|
| 903 |
+
if self.pre_seq_len is not None:
|
| 904 |
+
prefix_attention_mask = torch.ones(1, 1, len(seq), self.pre_seq_len).to(attention_mask.device)
|
| 905 |
+
prefix_attention_mask = (prefix_attention_mask < 0.5).bool()
|
| 906 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=3)
|
| 907 |
+
|
| 908 |
if position_ids is None:
|
| 909 |
position_ids = self.get_position_ids(
|
| 910 |
seq=seq,
|
|
|
|
| 1193 |
if "eos_token_id" not in kwargs:
|
| 1194 |
kwargs["eos_token_id"] = eos
|
| 1195 |
|
| 1196 |
+
truncate = kwargs.pop("truncate") if "truncate" in kwargs else False
|
| 1197 |
+
|
| 1198 |
stop = False
|
| 1199 |
|
| 1200 |
return_seqs = []
|
| 1201 |
|
| 1202 |
while True:
|
| 1203 |
output_ids = super().generate(**kwargs)
|
|
|
|
| 1204 |
return_seqs = []
|
| 1205 |
max_length = 0
|
| 1206 |
|
| 1207 |
for i in range(output_ids.shape[0]):
|
| 1208 |
output_seq = output_ids[i].tolist()
|
| 1209 |
+
if truncate:
|
| 1210 |
+
output_seq = output_seq[len(kwargs["input_ids"][i]) - 2:]
|
| 1211 |
mask_token = MASK if MASK in output_seq else gMASK
|
| 1212 |
mask_position = output_seq.index(mask_token)
|
| 1213 |
bos_position = output_seq.index(bos)
|