|  | """ PyTorch ChatGLM model. """ | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | import sys | 
					
						
						|  | import torch | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss | 
					
						
						|  | from torch.nn.utils import skip_init | 
					
						
						|  | from typing import Optional, Tuple, Union, List, Dict, Any | 
					
						
						|  |  | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | BaseModelOutputWithPast, | 
					
						
						|  | CausalLMOutputWithPast, | 
					
						
						|  | SequenceClassifierOutputWithPast, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.utils import logging, is_torch_npu_available | 
					
						
						|  | from transformers.generation.logits_process import LogitsProcessor | 
					
						
						|  | from transformers.generation.utils import ModelOutput | 
					
						
						|  |  | 
					
						
						|  | from .configuration_chatglm import ChatGLMConfig | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | from transformers.utils import is_flash_attn_greater_or_equal_2_10, is_flash_attn_2_available | 
					
						
						|  |  | 
					
						
						|  | if is_flash_attn_2_available(): | 
					
						
						|  | from flash_attn import flash_attn_func, flash_attn_varlen_func | 
					
						
						|  | from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input | 
					
						
						|  | except: | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if sys.platform != 'darwin' and not is_torch_npu_available(): | 
					
						
						|  | torch._C._jit_set_profiling_mode(False) | 
					
						
						|  | torch._C._jit_set_profiling_executor(False) | 
					
						
						|  | torch._C._jit_override_can_fuse_on_cpu(True) | 
					
						
						|  | torch._C._jit_override_can_fuse_on_gpu(True) | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM" | 
					
						
						|  | _CONFIG_FOR_DOC = "ChatGLMConfig" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def default_init(cls, *args, **kwargs): | 
					
						
						|  | return cls(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InvalidScoreLogitsProcessor(LogitsProcessor): | 
					
						
						|  | def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: | 
					
						
						|  | if torch.isnan(scores).any() or torch.isinf(scores).any(): | 
					
						
						|  | scores.zero_() | 
					
						
						|  | scores[..., 198] = 5e4 | 
					
						
						|  | return scores | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def split_tensor_along_last_dim( | 
					
						
						|  | tensor: torch.Tensor, | 
					
						
						|  | num_partitions: int, | 
					
						
						|  | contiguous_split_chunks: bool = False, | 
					
						
						|  | ) -> List[torch.Tensor]: | 
					
						
						|  | """Split a tensor along its last dimension. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | tensor: input tensor. | 
					
						
						|  | num_partitions: number of partitions to split the tensor | 
					
						
						|  | contiguous_split_chunks: If True, make each chunk contiguous | 
					
						
						|  | in memory. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | A list of Tensors | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | last_dim = tensor.dim() - 1 | 
					
						
						|  | last_dim_size = tensor.size()[last_dim] // num_partitions | 
					
						
						|  |  | 
					
						
						|  | tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) | 
					
						
						|  |  | 
					
						
						|  | if contiguous_split_chunks: | 
					
						
						|  | return tuple(chunk.contiguous() for chunk in tensor_list) | 
					
						
						|  |  | 
					
						
						|  | return tensor_list | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RotaryEmbedding(nn.Module): | 
					
						
						|  | def __init__(self, dim, rope_ratio=1, original_impl=False, device=None, dtype=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim)) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq) | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.original_impl = original_impl | 
					
						
						|  | self.rope_ratio = rope_ratio | 
					
						
						|  |  | 
					
						
						|  | def forward_impl( | 
					
						
						|  | self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000 | 
					
						
						|  | ): | 
					
						
						|  | """Enhanced Transformer with Rotary Position Embedding. | 
					
						
						|  |  | 
					
						
						|  | Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/ | 
					
						
						|  | transformers/rope/__init__.py. MIT License: | 
					
						
						|  | https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | base = base * self.rope_ratio | 
					
						
						|  | theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | seq_idx = torch.arange(seq_len, dtype=torch.float, device=device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | idx_theta = torch.outer(seq_idx, theta).float() | 
					
						
						|  |  | 
					
						
						|  | cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if dtype in (torch.float16, torch.bfloat16, torch.int8): | 
					
						
						|  | cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half() | 
					
						
						|  | return cache | 
					
						
						|  |  | 
					
						
						|  | def forward(self, max_seq_len, offset=0): | 
					
						
						|  | return self.forward_impl( | 
					
						
						|  | max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @torch.jit.script | 
					
						
						|  | def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor: | 
					
						
						|  |  | 
					
						
						|  | b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3) | 
					
						
						|  | rot_dim = rope_cache.shape[-2] * 2 | 
					
						
						|  | x, x_pass = x[..., :rot_dim], x[..., rot_dim:] | 
					
						
						|  |  | 
					
						
						|  | rope_cache = rope_cache[:, :sq] | 
					
						
						|  | xshaped = x.reshape(b, np, sq, rot_dim // 2, 2) | 
					
						
						|  | rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2) | 
					
						
						|  | x_out2 = torch.stack( | 
					
						
						|  | [ | 
					
						
						|  | xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1], | 
					
						
						|  | xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1], | 
					
						
						|  | ], | 
					
						
						|  | -1, | 
					
						
						|  | ) | 
					
						
						|  | x_out2 = x_out2.flatten(3) | 
					
						
						|  | return torch.cat((x_out2, x_pass), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RMSNorm(torch.nn.Module): | 
					
						
						|  | def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype)) | 
					
						
						|  | self.eps = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.eps) | 
					
						
						|  |  | 
					
						
						|  | return (self.weight * hidden_states).to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CoreAttention(torch.nn.Module): | 
					
						
						|  | def __init__(self, config: ChatGLMConfig, layer_number): | 
					
						
						|  | super(CoreAttention, self).__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling | 
					
						
						|  | self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 | 
					
						
						|  | if self.apply_query_key_layer_scaling: | 
					
						
						|  | self.attention_softmax_in_fp32 = True | 
					
						
						|  | self.layer_number = max(1, layer_number) | 
					
						
						|  | self.is_causal = True | 
					
						
						|  |  | 
					
						
						|  | projection_size = config.kv_channels * config.num_attention_heads | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.hidden_size_per_partition = projection_size | 
					
						
						|  | self.hidden_size_per_attention_head = projection_size // config.num_attention_heads | 
					
						
						|  | self.num_attention_heads_per_partition = config.num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | coeff = None | 
					
						
						|  | self.norm_factor = math.sqrt(self.hidden_size_per_attention_head) | 
					
						
						|  | if self.apply_query_key_layer_scaling: | 
					
						
						|  | coeff = self.layer_number | 
					
						
						|  | self.norm_factor *= coeff | 
					
						
						|  | self.coeff = coeff | 
					
						
						|  |  | 
					
						
						|  | self.attention_dropout = torch.nn.Dropout(config.attention_dropout) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, query_layer, key_layer, value_layer, attention_mask): | 
					
						
						|  |  | 
					
						
						|  | output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1) | 
					
						
						|  |  | 
					
						
						|  | key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | matmul_input_buffer = torch.empty( | 
					
						
						|  | output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype, | 
					
						
						|  | device=query_layer.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | matmul_result = torch.baddbmm( | 
					
						
						|  | matmul_input_buffer, | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer.transpose(1, 2), | 
					
						
						|  | beta=0.0, | 
					
						
						|  | alpha=(1.0 / self.norm_factor), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_scores = matmul_result.view(*output_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.attention_softmax_in_fp32: | 
					
						
						|  | attention_scores = attention_scores.float() | 
					
						
						|  | if self.coeff is not None: | 
					
						
						|  | attention_scores = attention_scores * self.coeff | 
					
						
						|  | if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]: | 
					
						
						|  | attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3], | 
					
						
						|  | device=attention_scores.device, dtype=torch.bool) | 
					
						
						|  | attention_mask.tril_() | 
					
						
						|  | attention_mask = ~attention_mask | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | attention_scores = attention_scores.masked_fill(attention_mask, float("-inf")) | 
					
						
						|  | attention_probs = F.softmax(attention_scores, dim=-1) | 
					
						
						|  | attention_probs = attention_probs.type_as(value_layer) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_probs = self.attention_dropout(attention_probs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3)) | 
					
						
						|  |  | 
					
						
						|  | value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1) | 
					
						
						|  |  | 
					
						
						|  | attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1) | 
					
						
						|  |  | 
					
						
						|  | context_layer = torch.bmm(attention_probs, value_layer) | 
					
						
						|  |  | 
					
						
						|  | context_layer = context_layer.view(*output_size) | 
					
						
						|  |  | 
					
						
						|  | context_layer = context_layer.transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) | 
					
						
						|  | context_layer = context_layer.reshape(*new_context_layer_shape) | 
					
						
						|  |  | 
					
						
						|  | return context_layer | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SdpaAttention(CoreAttention): | 
					
						
						|  | def forward(self, query_layer, key_layer, value_layer, attention_mask): | 
					
						
						|  | if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]: | 
					
						
						|  | context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, | 
					
						
						|  | is_causal=True, | 
					
						
						|  | dropout_p=self.config.attention_dropout if self.training else 0.0) | 
					
						
						|  | else: | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | attention_mask = ~attention_mask | 
					
						
						|  | context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, | 
					
						
						|  | attention_mask, | 
					
						
						|  | dropout_p=self.config.attention_dropout if self.training else 0.0) | 
					
						
						|  | context_layer = context_layer.transpose(1, 2).contiguous() | 
					
						
						|  | new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) | 
					
						
						|  | context_layer = context_layer.reshape(*new_context_layer_shape) | 
					
						
						|  | return context_layer | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_unpad_data(attention_mask): | 
					
						
						|  | seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | 
					
						
						|  | indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
						
						|  | max_seqlen_in_batch = seqlens_in_batch.max().item() | 
					
						
						|  | cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | 
					
						
						|  | return ( | 
					
						
						|  | indices, | 
					
						
						|  | cu_seqlens, | 
					
						
						|  | max_seqlen_in_batch, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FlashAttention2(CoreAttention): | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  | self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, query_states, key_states, value_states, attention_mask): | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  | batch_size, query_length = query_states.shape[:2] | 
					
						
						|  | if not self._flash_attn_uses_top_left_mask: | 
					
						
						|  | causal = self.is_causal | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | causal = self.is_causal and query_length != 1 | 
					
						
						|  | dropout = self.config.attention_dropout if self.training else 0.0 | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | 
					
						
						|  | query_states, key_states, value_states, attention_mask, query_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | cu_seqlens_q, cu_seqlens_k = cu_seq_lens | 
					
						
						|  | max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | 
					
						
						|  |  | 
					
						
						|  | attn_output_unpad = flash_attn_varlen_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | cu_seqlens_q=cu_seqlens_q, | 
					
						
						|  | cu_seqlens_k=cu_seqlens_k, | 
					
						
						|  | max_seqlen_q=max_seqlen_in_batch_q, | 
					
						
						|  | max_seqlen_k=max_seqlen_in_batch_k, | 
					
						
						|  | dropout_p=dropout, | 
					
						
						|  | softmax_scale=None, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = flash_attn_func( | 
					
						
						|  | query_states, key_states, value_states, dropout, softmax_scale=None, causal=causal | 
					
						
						|  | ) | 
					
						
						|  | attn_output = attn_output.reshape(batch_size, query_length, self.hidden_size_per_partition).contiguous() | 
					
						
						|  | return attn_output | 
					
						
						|  |  | 
					
						
						|  | def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | 
					
						
						|  | indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | 
					
						
						|  | batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | 
					
						
						|  |  | 
					
						
						|  | key_layer = index_first_axis( | 
					
						
						|  | key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | value_layer = index_first_axis( | 
					
						
						|  | value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | if query_length == kv_seq_len: | 
					
						
						|  | query_layer = index_first_axis( | 
					
						
						|  | query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads_per_partition, head_dim), | 
					
						
						|  | indices_k | 
					
						
						|  | ) | 
					
						
						|  | cu_seqlens_q = cu_seqlens_k | 
					
						
						|  | max_seqlen_in_batch_q = max_seqlen_in_batch_k | 
					
						
						|  | indices_q = indices_k | 
					
						
						|  | elif query_length == 1: | 
					
						
						|  | max_seqlen_in_batch_q = 1 | 
					
						
						|  | cu_seqlens_q = torch.arange( | 
					
						
						|  | batch_size + 1, dtype=torch.int32, device=query_layer.device | 
					
						
						|  | ) | 
					
						
						|  | indices_q = cu_seqlens_q[:-1] | 
					
						
						|  | query_layer = query_layer.squeeze(1) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask[:, -query_length:] | 
					
						
						|  | query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer, | 
					
						
						|  | value_layer, | 
					
						
						|  | indices_q, | 
					
						
						|  | (cu_seqlens_q, cu_seqlens_k), | 
					
						
						|  | (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | CORE_ATTENTION_CLASSES = { | 
					
						
						|  | "eager": CoreAttention, | 
					
						
						|  | "sdpa": SdpaAttention, | 
					
						
						|  | "flash_attention_2": FlashAttention2 | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SelfAttention(torch.nn.Module): | 
					
						
						|  | """Parallel self-attention layer abstract class. | 
					
						
						|  |  | 
					
						
						|  | Self-attention layer takes input with size [s, b, h] | 
					
						
						|  | and returns output of the same size. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: ChatGLMConfig, layer_number, device=None): | 
					
						
						|  | super(SelfAttention, self).__init__() | 
					
						
						|  | self.layer_number = max(1, layer_number) | 
					
						
						|  |  | 
					
						
						|  | self.projection_size = config.kv_channels * config.num_attention_heads | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads | 
					
						
						|  | self.num_attention_heads_per_partition = config.num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | self.multi_query_attention = config.multi_query_attention | 
					
						
						|  | self.qkv_hidden_size = 3 * self.projection_size | 
					
						
						|  | if self.multi_query_attention: | 
					
						
						|  | self.num_multi_query_groups_per_partition = config.multi_query_group_num | 
					
						
						|  | self.qkv_hidden_size = ( | 
					
						
						|  | self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num | 
					
						
						|  | ) | 
					
						
						|  | self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size, | 
					
						
						|  | bias=config.add_bias_linear or config.add_qkv_bias, | 
					
						
						|  | device=device, **_config_to_kwargs(config) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.core_attention = CORE_ATTENTION_CLASSES[config._attn_implementation](config, self.layer_number) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear, | 
					
						
						|  | device=device, **_config_to_kwargs(config) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None): | 
					
						
						|  | if self.multi_query_attention: | 
					
						
						|  | num_attention_heads = self.num_multi_query_groups_per_partition | 
					
						
						|  | else: | 
					
						
						|  | num_attention_heads = self.num_attention_heads_per_partition | 
					
						
						|  | return torch.empty( | 
					
						
						|  | inference_max_sequence_len, | 
					
						
						|  | batch_size, | 
					
						
						|  | num_attention_heads, | 
					
						
						|  | self.hidden_size_per_attention_head, | 
					
						
						|  | dtype=dtype, | 
					
						
						|  | device=device, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mixed_x_layer = self.query_key_value(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if self.multi_query_attention: | 
					
						
						|  | (query_layer, key_layer, value_layer) = mixed_x_layer.split( | 
					
						
						|  | [ | 
					
						
						|  | self.num_attention_heads_per_partition * self.hidden_size_per_attention_head, | 
					
						
						|  | self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, | 
					
						
						|  | self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, | 
					
						
						|  | ], | 
					
						
						|  | dim=-1, | 
					
						
						|  | ) | 
					
						
						|  | query_layer = query_layer.view( | 
					
						
						|  | query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head) | 
					
						
						|  | ) | 
					
						
						|  | key_layer = key_layer.view( | 
					
						
						|  | key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head) | 
					
						
						|  | ) | 
					
						
						|  | value_layer = value_layer.view( | 
					
						
						|  | value_layer.size()[:-1] | 
					
						
						|  | + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | new_tensor_shape = mixed_x_layer.size()[:-1] + \ | 
					
						
						|  | (self.num_attention_heads_per_partition, | 
					
						
						|  | 3 * self.hidden_size_per_attention_head) | 
					
						
						|  | mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_layer, key_layer, value_layer = [k.transpose(1, 2) for k in [query_layer, key_layer, value_layer]] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if rotary_pos_emb is not None: | 
					
						
						|  | query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb) | 
					
						
						|  | key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if kv_cache is not None: | 
					
						
						|  | cache_k, cache_v = kv_cache | 
					
						
						|  | key_layer = torch.cat((cache_k, key_layer), dim=2) | 
					
						
						|  | value_layer = torch.cat((cache_v, value_layer), dim=2) | 
					
						
						|  | if use_cache: | 
					
						
						|  | if kv_cache is None: | 
					
						
						|  | kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)), | 
					
						
						|  | dim=1) | 
					
						
						|  | else: | 
					
						
						|  | kv_cache = (key_layer, value_layer) | 
					
						
						|  | else: | 
					
						
						|  | kv_cache = None | 
					
						
						|  |  | 
					
						
						|  | if self.multi_query_attention: | 
					
						
						|  | key_layer = key_layer.unsqueeze(2) | 
					
						
						|  | key_layer = key_layer.expand( | 
					
						
						|  | -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1 | 
					
						
						|  | ) | 
					
						
						|  | key_layer = key_layer.contiguous().view( | 
					
						
						|  | key_layer.size()[:1] + (self.num_attention_heads_per_partition,) + key_layer.size()[3:] | 
					
						
						|  | ) | 
					
						
						|  | value_layer = value_layer.unsqueeze(2) | 
					
						
						|  | value_layer = value_layer.expand( | 
					
						
						|  | -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1 | 
					
						
						|  | ) | 
					
						
						|  | value_layer = value_layer.contiguous().view( | 
					
						
						|  | value_layer.size()[:1] + (self.num_attention_heads_per_partition,) + value_layer.size()[3:] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | output = self.dense(context_layer) | 
					
						
						|  |  | 
					
						
						|  | return output, kv_cache | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _config_to_kwargs(args): | 
					
						
						|  | common_kwargs = { | 
					
						
						|  | "dtype": args.torch_dtype, | 
					
						
						|  | } | 
					
						
						|  | return common_kwargs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MLP(torch.nn.Module): | 
					
						
						|  | """MLP. | 
					
						
						|  |  | 
					
						
						|  | MLP will take the input with h hidden state, project it to 4*h | 
					
						
						|  | hidden dimension, perform nonlinear transformation, and project the | 
					
						
						|  | state back into h hidden dimension. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: ChatGLMConfig, device=None): | 
					
						
						|  | super(MLP, self).__init__() | 
					
						
						|  |  | 
					
						
						|  | self.add_bias = config.add_bias_linear | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.dense_h_to_4h = nn.Linear( | 
					
						
						|  | config.hidden_size, | 
					
						
						|  | config.ffn_hidden_size * 2, | 
					
						
						|  | bias=self.add_bias, | 
					
						
						|  | device=device, | 
					
						
						|  | **_config_to_kwargs(config) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def swiglu(x): | 
					
						
						|  | x = torch.chunk(x, 2, dim=-1) | 
					
						
						|  | return F.silu(x[0]) * x[1] | 
					
						
						|  |  | 
					
						
						|  | self.activation_func = swiglu | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.dense_4h_to_h = nn.Linear( | 
					
						
						|  | config.ffn_hidden_size, | 
					
						
						|  | config.hidden_size, | 
					
						
						|  | bias=self.add_bias, | 
					
						
						|  | device=device, | 
					
						
						|  | **_config_to_kwargs(config) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  |  | 
					
						
						|  | intermediate_parallel = self.dense_h_to_4h(hidden_states) | 
					
						
						|  | intermediate_parallel = self.activation_func(intermediate_parallel) | 
					
						
						|  |  | 
					
						
						|  | output = self.dense_4h_to_h(intermediate_parallel) | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GLMBlock(torch.nn.Module): | 
					
						
						|  | """A single transformer layer. | 
					
						
						|  |  | 
					
						
						|  | Transformer layer takes input with size [s, b, h] and returns an | 
					
						
						|  | output of the same size. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: ChatGLMConfig, layer_number, device=None): | 
					
						
						|  | super(GLMBlock, self).__init__() | 
					
						
						|  | self.layer_number = layer_number | 
					
						
						|  |  | 
					
						
						|  | self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm | 
					
						
						|  |  | 
					
						
						|  | self.fp32_residual_connection = config.fp32_residual_connection | 
					
						
						|  |  | 
					
						
						|  | LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm | 
					
						
						|  |  | 
					
						
						|  | self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device, | 
					
						
						|  | dtype=config.torch_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.self_attention = SelfAttention(config, layer_number, device=device) | 
					
						
						|  | self.hidden_dropout = config.hidden_dropout | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device, | 
					
						
						|  | dtype=config.torch_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.mlp = MLP(config, device=device) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | layernorm_output = self.input_layernorm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | attention_output, kv_cache = self.self_attention( | 
					
						
						|  | layernorm_output, | 
					
						
						|  | attention_mask, | 
					
						
						|  | rotary_pos_emb, | 
					
						
						|  | kv_cache=kv_cache, | 
					
						
						|  | use_cache=use_cache | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.apply_residual_connection_post_layernorm: | 
					
						
						|  | residual = layernorm_output | 
					
						
						|  | else: | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training) | 
					
						
						|  | layernorm_input = residual + layernorm_input | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | layernorm_output = self.post_attention_layernorm(layernorm_input) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mlp_output = self.mlp(layernorm_output) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.apply_residual_connection_post_layernorm: | 
					
						
						|  | residual = layernorm_output | 
					
						
						|  | else: | 
					
						
						|  | residual = layernorm_input | 
					
						
						|  |  | 
					
						
						|  | output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training) | 
					
						
						|  | output = residual + output | 
					
						
						|  |  | 
					
						
						|  | return output, kv_cache | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GLMTransformer(torch.nn.Module): | 
					
						
						|  | """Transformer class.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: ChatGLMConfig, device=None): | 
					
						
						|  | super(GLMTransformer, self).__init__() | 
					
						
						|  |  | 
					
						
						|  | self.fp32_residual_connection = config.fp32_residual_connection | 
					
						
						|  | self.post_layer_norm = config.post_layer_norm | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.num_layers = config.num_layers | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def build_layer(layer_number): | 
					
						
						|  | return GLMBlock(config, layer_number, device=device) | 
					
						
						|  |  | 
					
						
						|  | self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)]) | 
					
						
						|  |  | 
					
						
						|  | if self.post_layer_norm: | 
					
						
						|  | LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm | 
					
						
						|  |  | 
					
						
						|  | self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device, | 
					
						
						|  | dtype=config.torch_dtype) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | def _get_layer(self, layer_number): | 
					
						
						|  | return self.layers[layer_number] | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None, | 
					
						
						|  | use_cache: Optional[bool] = True, | 
					
						
						|  | output_hidden_states: Optional[bool] = False, | 
					
						
						|  | ): | 
					
						
						|  | if not kv_caches: | 
					
						
						|  | kv_caches = [None for _ in range(self.num_layers)] | 
					
						
						|  | presents = () if use_cache else None | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | if use_cache: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  | all_self_attentions = None | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | for index in range(self.num_layers): | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | layer = self._get_layer(index) | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_ret = torch.utils.checkpoint.checkpoint( | 
					
						
						|  | layer, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | rotary_pos_emb, | 
					
						
						|  | kv_caches[index], | 
					
						
						|  | use_cache, | 
					
						
						|  | use_reentrant=False | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_ret = layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | rotary_pos_emb, | 
					
						
						|  | kv_cache=kv_caches[index], | 
					
						
						|  | use_cache=use_cache | 
					
						
						|  | ) | 
					
						
						|  | hidden_states, kv_cache = layer_ret | 
					
						
						|  | if use_cache: | 
					
						
						|  |  | 
					
						
						|  | if kv_caches[0] is not None: | 
					
						
						|  | presents = presents + (kv_cache,) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | if len(presents) == 0: | 
					
						
						|  | presents = kv_cache | 
					
						
						|  | else: | 
					
						
						|  | presents = torch.cat((presents, kv_cache.to(presents.device)), dim=0) | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.post_layer_norm: | 
					
						
						|  | hidden_states = self.final_layernorm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states, presents, all_hidden_states, all_self_attentions | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ChatGLMPreTrainedModel(PreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | An abstract class to handle weights initialization and | 
					
						
						|  | a simple interface for downloading and loading pretrained models. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | is_parallelizable = False | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | config_class = ChatGLMConfig | 
					
						
						|  | base_model_prefix = "transformer" | 
					
						
						|  | _no_split_modules = ["GLMBlock"] | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module: nn.Module): | 
					
						
						|  | """Initialize the weights.""" | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | def get_masks(self, input_ids, past_key_values, padding_mask=None): | 
					
						
						|  | if self.config._attn_implementation == "flash_attention_2": | 
					
						
						|  | if padding_mask is not None and not padding_mask.all(): | 
					
						
						|  | return padding_mask | 
					
						
						|  | return None | 
					
						
						|  | batch_size, seq_length = input_ids.shape | 
					
						
						|  | full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device) | 
					
						
						|  | full_attention_mask.tril_() | 
					
						
						|  | past_length = 0 | 
					
						
						|  | if past_key_values: | 
					
						
						|  | past_length = past_key_values[0][0].shape[2] | 
					
						
						|  | if past_length: | 
					
						
						|  | full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length, | 
					
						
						|  | device=input_ids.device), full_attention_mask), dim=-1) | 
					
						
						|  | if padding_mask is not None: | 
					
						
						|  | full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1) | 
					
						
						|  | if not past_length and padding_mask is not None: | 
					
						
						|  | full_attention_mask -= padding_mask.unsqueeze(-1) - 1 | 
					
						
						|  | full_attention_mask = (full_attention_mask < 0.5).bool() | 
					
						
						|  | full_attention_mask.unsqueeze_(1) | 
					
						
						|  | return full_attention_mask | 
					
						
						|  |  | 
					
						
						|  | def get_position_ids(self, input_ids, device): | 
					
						
						|  | batch_size, seq_length = input_ids.shape | 
					
						
						|  | position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) | 
					
						
						|  | return position_ids | 
					
						
						|  |  | 
					
						
						|  | class Embedding(torch.nn.Module): | 
					
						
						|  | """Language model embeddings.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: ChatGLMConfig, device=None): | 
					
						
						|  | super(Embedding, self).__init__() | 
					
						
						|  |  | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.word_embeddings = nn.Embedding( | 
					
						
						|  | config.padded_vocab_size, | 
					
						
						|  | self.hidden_size, | 
					
						
						|  | dtype=config.torch_dtype, | 
					
						
						|  | device=device | 
					
						
						|  | ) | 
					
						
						|  | self.fp32_residual_connection = config.fp32_residual_connection | 
					
						
						|  |  | 
					
						
						|  | def forward(self, input_ids): | 
					
						
						|  |  | 
					
						
						|  | words_embeddings = self.word_embeddings(input_ids) | 
					
						
						|  | embeddings = words_embeddings | 
					
						
						|  |  | 
					
						
						|  | if self.fp32_residual_connection: | 
					
						
						|  | embeddings = embeddings.float() | 
					
						
						|  | return embeddings | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ChatGLMModel(ChatGLMPreTrainedModel): | 
					
						
						|  | def __init__(self, config: ChatGLMConfig, device=None, empty_init=True): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | if empty_init: | 
					
						
						|  | init_method = skip_init | 
					
						
						|  | else: | 
					
						
						|  | init_method = default_init | 
					
						
						|  | init_kwargs = {} | 
					
						
						|  | if device is not None: | 
					
						
						|  | init_kwargs["device"] = device | 
					
						
						|  | self.embedding = init_method(Embedding, config, **init_kwargs) | 
					
						
						|  | self.num_layers = config.num_layers | 
					
						
						|  | self.multi_query_group_num = config.multi_query_group_num | 
					
						
						|  | self.kv_channels = config.kv_channels | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.seq_length = config.seq_length | 
					
						
						|  | rotary_dim = ( | 
					
						
						|  | config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio, | 
					
						
						|  | original_impl=config.original_rope, | 
					
						
						|  | device=device, dtype=config.torch_dtype) | 
					
						
						|  | self.encoder = init_method(GLMTransformer, config, **init_kwargs) | 
					
						
						|  | self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False, | 
					
						
						|  | dtype=config.torch_dtype, **init_kwargs) | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embedding.word_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embedding.word_embeddings = value | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids, | 
					
						
						|  | position_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.BoolTensor] = None, | 
					
						
						|  | full_attention_mask: Optional[torch.BoolTensor] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ): | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | batch_size, seq_length = input_ids.shape | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.embedding(input_ids) | 
					
						
						|  |  | 
					
						
						|  | if full_attention_mask is None: | 
					
						
						|  | if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1): | 
					
						
						|  | full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | rotary_pos_emb = self.rotary_pos_emb(self.seq_length) | 
					
						
						|  | if position_ids is not None: | 
					
						
						|  | rotary_pos_emb = rotary_pos_emb[position_ids] | 
					
						
						|  | else: | 
					
						
						|  | rotary_pos_emb = rotary_pos_emb[None, :seq_length] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder( | 
					
						
						|  | inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb, | 
					
						
						|  | kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | if presents is not None and type(presents) is torch.Tensor: | 
					
						
						|  | presents = presents.split(1, dim=0) | 
					
						
						|  | presents = list(presents) | 
					
						
						|  | presents = [list(x.squeeze(0).split(1, dim=0)) for x in presents] | 
					
						
						|  | presents = [tuple([x.squeeze(0) for x in y]) for y in presents] | 
					
						
						|  | presents = tuple(presents) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) | 
					
						
						|  |  | 
					
						
						|  | return BaseModelOutputWithPast( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=presents, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel): | 
					
						
						|  | def __init__(self, config: ChatGLMConfig, empty_init=True, device=None): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.max_sequence_length = config.max_length | 
					
						
						|  | self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device) | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | def _update_model_kwargs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | outputs: ModelOutput, | 
					
						
						|  | model_kwargs: Dict[str, Any], | 
					
						
						|  | is_encoder_decoder: bool = False, | 
					
						
						|  | standardize_cache_format: bool = False, | 
					
						
						|  | ) -> Dict[str, Any]: | 
					
						
						|  |  | 
					
						
						|  | cache_name, cache = self._extract_past_from_model_output( | 
					
						
						|  | outputs, standardize_cache_format=standardize_cache_format | 
					
						
						|  | ) | 
					
						
						|  | model_kwargs[cache_name] = cache | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if "attention_mask" in model_kwargs: | 
					
						
						|  | attention_mask = model_kwargs["attention_mask"] | 
					
						
						|  | model_kwargs["attention_mask"] = torch.cat( | 
					
						
						|  | [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if "position_ids" in model_kwargs: | 
					
						
						|  | position_ids = model_kwargs["position_ids"] | 
					
						
						|  | new_position_id = position_ids[..., -1:].clone() | 
					
						
						|  | new_position_id += 1 | 
					
						
						|  | model_kwargs["position_ids"] = torch.cat( | 
					
						
						|  | [position_ids, new_position_id], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | model_kwargs["is_first_forward"] = False | 
					
						
						|  | return model_kwargs | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor, | 
					
						
						|  | past_key_values: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | is_first_forward: bool = True, | 
					
						
						|  | **kwargs | 
					
						
						|  | ) -> dict: | 
					
						
						|  |  | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | position_ids = self.get_position_ids(input_ids, device=input_ids.device) | 
					
						
						|  | if not is_first_forward: | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | position_ids = position_ids[..., -1:] | 
					
						
						|  | input_ids = input_ids[:, -1:] | 
					
						
						|  | return { | 
					
						
						|  | "input_ids": input_ids, | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "position_ids": position_ids, | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | "return_last_logit": True, | 
					
						
						|  | "use_cache": use_cache | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | labels: Optional[torch.Tensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | return_last_logit: Optional[bool] = False, | 
					
						
						|  | ): | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | transformer_outputs = self.transformer( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = transformer_outputs[0] | 
					
						
						|  | if return_last_logit: | 
					
						
						|  | hidden_states = hidden_states[:, -1:] | 
					
						
						|  | lm_logits = self.transformer.output_layer(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | lm_logits = lm_logits.to(torch.float32) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | shift_logits = lm_logits[..., :-1, :].contiguous() | 
					
						
						|  | shift_labels = labels[..., 1:].contiguous() | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss(ignore_index=-100) | 
					
						
						|  | loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | 
					
						
						|  |  | 
					
						
						|  | lm_logits = lm_logits.to(hidden_states.dtype) | 
					
						
						|  | loss = loss.to(hidden_states.dtype) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (lm_logits,) + transformer_outputs[1:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return CausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=lm_logits, | 
					
						
						|  | past_key_values=transformer_outputs.past_key_values, | 
					
						
						|  | hidden_states=transformer_outputs.hidden_states, | 
					
						
						|  | attentions=transformer_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _reorder_cache( | 
					
						
						|  | past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor | 
					
						
						|  | ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: | 
					
						
						|  | """ | 
					
						
						|  | This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | 
					
						
						|  | [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | 
					
						
						|  | beam_idx at every generation step. | 
					
						
						|  |  | 
					
						
						|  | Output shares the same memory storage as `past`. | 
					
						
						|  | """ | 
					
						
						|  | return tuple( | 
					
						
						|  | ( | 
					
						
						|  | layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)), | 
					
						
						|  | layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)), | 
					
						
						|  | ) | 
					
						
						|  | for layer_past in past | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel): | 
					
						
						|  | def __init__(self, config: ChatGLMConfig, empty_init=True, device=None): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device) | 
					
						
						|  |  | 
					
						
						|  | self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=config.torch_dtype) | 
					
						
						|  | if config.classifier_dropout is not None: | 
					
						
						|  | self.dropout = nn.Dropout(config.classifier_dropout) | 
					
						
						|  | else: | 
					
						
						|  | self.dropout = None | 
					
						
						|  | self.config = config | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | full_attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.LongTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]: | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | transformer_outputs = self.transformer( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | full_attention_mask=full_attention_mask, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = transformer_outputs[0] | 
					
						
						|  | pooled_hidden_states = hidden_states[:, -1] | 
					
						
						|  | if self.dropout is not None: | 
					
						
						|  | pooled_hidden_states = self.dropout(pooled_hidden_states) | 
					
						
						|  | logits = self.classifier_head(pooled_hidden_states) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | if self.config.problem_type is None: | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | self.config.problem_type = "regression" | 
					
						
						|  | elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | 
					
						
						|  | self.config.problem_type = "single_label_classification" | 
					
						
						|  | else: | 
					
						
						|  | self.config.problem_type = "multi_label_classification" | 
					
						
						|  |  | 
					
						
						|  | if self.config.problem_type == "regression": | 
					
						
						|  | loss_fct = MSELoss() | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | loss = loss_fct(logits.squeeze().float(), labels.squeeze()) | 
					
						
						|  | else: | 
					
						
						|  | loss = loss_fct(logits.float(), labels) | 
					
						
						|  | elif self.config.problem_type == "single_label_classification": | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(logits.view(-1, self.num_labels).float(), labels.view(-1)) | 
					
						
						|  | elif self.config.problem_type == "multi_label_classification": | 
					
						
						|  | loss_fct = BCEWithLogitsLoss() | 
					
						
						|  | loss = loss_fct(logits.float(), labels.view(-1, self.num_labels)) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + transformer_outputs[1:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return SequenceClassifierOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=transformer_outputs.past_key_values, | 
					
						
						|  | hidden_states=transformer_outputs.hidden_states, | 
					
						
						|  | attentions=transformer_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  |