duzx16
commited on
Commit
·
a7eaddd
1
Parent(s):
835c717
Add support for flash attention 2
Browse files- modeling_chatglm.py +117 -4
modeling_chatglm.py
CHANGED
|
@@ -21,12 +21,17 @@ from transformers.modeling_outputs import (
|
|
| 21 |
SequenceClassifierOutputWithPast,
|
| 22 |
)
|
| 23 |
from transformers.modeling_utils import PreTrainedModel
|
| 24 |
-
from transformers.utils import logging, is_torch_npu_available
|
|
|
|
| 25 |
from transformers.generation.logits_process import LogitsProcessor
|
| 26 |
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
| 27 |
|
| 28 |
from .configuration_chatglm import ChatGLMConfig
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
# flags required to enable jit fusion kernels
|
| 31 |
|
| 32 |
if sys.platform != 'darwin' and not is_torch_npu_available():
|
|
@@ -160,12 +165,13 @@ class RMSNorm(torch.nn.Module):
|
|
| 160 |
class CoreAttention(torch.nn.Module):
|
| 161 |
def __init__(self, config: ChatGLMConfig, layer_number):
|
| 162 |
super(CoreAttention, self).__init__()
|
| 163 |
-
|
| 164 |
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
| 165 |
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
| 166 |
if self.apply_query_key_layer_scaling:
|
| 167 |
self.attention_softmax_in_fp32 = True
|
| 168 |
self.layer_number = max(1, layer_number)
|
|
|
|
| 169 |
|
| 170 |
projection_size = config.kv_channels * config.num_attention_heads
|
| 171 |
|
|
@@ -259,21 +265,122 @@ class SdpaAttention(CoreAttention):
|
|
| 259 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
| 260 |
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
| 261 |
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
| 262 |
-
is_causal=True
|
|
|
|
| 263 |
else:
|
| 264 |
if attention_mask is not None:
|
| 265 |
attention_mask = ~attention_mask
|
| 266 |
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
| 267 |
-
attention_mask
|
|
|
|
| 268 |
context_layer = context_layer.transpose(1, 2).contiguous()
|
| 269 |
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
| 270 |
context_layer = context_layer.reshape(*new_context_layer_shape)
|
| 271 |
return context_layer
|
| 272 |
|
| 273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
CORE_ATTENTION_CLASSES = {
|
| 275 |
"eager": CoreAttention,
|
| 276 |
"sdpa": SdpaAttention,
|
|
|
|
| 277 |
}
|
| 278 |
|
| 279 |
|
|
@@ -652,12 +759,18 @@ class ChatGLMPreTrainedModel(PreTrainedModel):
|
|
| 652 |
config_class = ChatGLMConfig
|
| 653 |
base_model_prefix = "transformer"
|
| 654 |
_no_split_modules = ["GLMBlock"]
|
|
|
|
|
|
|
| 655 |
|
| 656 |
def _init_weights(self, module: nn.Module):
|
| 657 |
"""Initialize the weights."""
|
| 658 |
return
|
| 659 |
|
| 660 |
def get_masks(self, input_ids, past_key_values, padding_mask=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 661 |
batch_size, seq_length = input_ids.shape
|
| 662 |
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
| 663 |
full_attention_mask.tril_()
|
|
|
|
| 21 |
SequenceClassifierOutputWithPast,
|
| 22 |
)
|
| 23 |
from transformers.modeling_utils import PreTrainedModel
|
| 24 |
+
from transformers.utils import logging, is_torch_npu_available, is_flash_attn_greater_or_equal_2_10, \
|
| 25 |
+
is_flash_attn_2_available
|
| 26 |
from transformers.generation.logits_process import LogitsProcessor
|
| 27 |
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
| 28 |
|
| 29 |
from .configuration_chatglm import ChatGLMConfig
|
| 30 |
|
| 31 |
+
if is_flash_attn_2_available():
|
| 32 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 33 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 34 |
+
|
| 35 |
# flags required to enable jit fusion kernels
|
| 36 |
|
| 37 |
if sys.platform != 'darwin' and not is_torch_npu_available():
|
|
|
|
| 165 |
class CoreAttention(torch.nn.Module):
|
| 166 |
def __init__(self, config: ChatGLMConfig, layer_number):
|
| 167 |
super(CoreAttention, self).__init__()
|
| 168 |
+
self.config = config
|
| 169 |
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
| 170 |
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
| 171 |
if self.apply_query_key_layer_scaling:
|
| 172 |
self.attention_softmax_in_fp32 = True
|
| 173 |
self.layer_number = max(1, layer_number)
|
| 174 |
+
self.is_causal = True
|
| 175 |
|
| 176 |
projection_size = config.kv_channels * config.num_attention_heads
|
| 177 |
|
|
|
|
| 265 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
| 266 |
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
| 267 |
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
| 268 |
+
is_causal=True,
|
| 269 |
+
dropout_p=self.config.attention_dropout if self.training else 0.0)
|
| 270 |
else:
|
| 271 |
if attention_mask is not None:
|
| 272 |
attention_mask = ~attention_mask
|
| 273 |
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
| 274 |
+
attention_mask,
|
| 275 |
+
dropout_p=self.config.attention_dropout if self.training else 0.0)
|
| 276 |
context_layer = context_layer.transpose(1, 2).contiguous()
|
| 277 |
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
| 278 |
context_layer = context_layer.reshape(*new_context_layer_shape)
|
| 279 |
return context_layer
|
| 280 |
|
| 281 |
|
| 282 |
+
def _get_unpad_data(attention_mask):
|
| 283 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 284 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 285 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 286 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
| 287 |
+
return (
|
| 288 |
+
indices,
|
| 289 |
+
cu_seqlens,
|
| 290 |
+
max_seqlen_in_batch,
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2
|
| 295 |
+
class FlashAttention2(CoreAttention):
|
| 296 |
+
def __init__(self, *args, **kwargs):
|
| 297 |
+
super().__init__(*args, **kwargs)
|
| 298 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 299 |
+
|
| 300 |
+
def forward(self, query_states, key_states, value_states, attention_mask):
|
| 301 |
+
query_states = query_states.transpose(1, 2)
|
| 302 |
+
key_states = key_states.transpose(1, 2)
|
| 303 |
+
value_states = value_states.transpose(1, 2)
|
| 304 |
+
batch_size, query_length = query_states.shape[:2]
|
| 305 |
+
if not self._flash_attn_uses_top_left_mask:
|
| 306 |
+
causal = self.is_causal
|
| 307 |
+
else:
|
| 308 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
| 309 |
+
causal = self.is_causal and query_length != 1
|
| 310 |
+
dropout = self.config.attention_dropout if self.training else 0.0
|
| 311 |
+
# Contains at least one padding token in the sequence
|
| 312 |
+
if attention_mask is not None:
|
| 313 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
| 314 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 318 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 319 |
+
|
| 320 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 321 |
+
query_states,
|
| 322 |
+
key_states,
|
| 323 |
+
value_states,
|
| 324 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 325 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 326 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 327 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 328 |
+
dropout_p=dropout,
|
| 329 |
+
softmax_scale=None,
|
| 330 |
+
causal=causal,
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 334 |
+
else:
|
| 335 |
+
attn_output = flash_attn_func(
|
| 336 |
+
query_states, key_states, value_states, dropout, softmax_scale=None, causal=causal
|
| 337 |
+
)
|
| 338 |
+
attn_output = attn_output.reshape(batch_size, query_length, self.hidden_size_per_partition).contiguous()
|
| 339 |
+
return attn_output
|
| 340 |
+
|
| 341 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 342 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 343 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 344 |
+
|
| 345 |
+
key_layer = index_first_axis(
|
| 346 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 347 |
+
)
|
| 348 |
+
value_layer = index_first_axis(
|
| 349 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 350 |
+
)
|
| 351 |
+
if query_length == kv_seq_len:
|
| 352 |
+
query_layer = index_first_axis(
|
| 353 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads_per_partition, head_dim), indices_k
|
| 354 |
+
)
|
| 355 |
+
cu_seqlens_q = cu_seqlens_k
|
| 356 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 357 |
+
indices_q = indices_k
|
| 358 |
+
elif query_length == 1:
|
| 359 |
+
max_seqlen_in_batch_q = 1
|
| 360 |
+
cu_seqlens_q = torch.arange(
|
| 361 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 362 |
+
) # There is a memcpy here, that is very bad.
|
| 363 |
+
indices_q = cu_seqlens_q[:-1]
|
| 364 |
+
query_layer = query_layer.squeeze(1)
|
| 365 |
+
else:
|
| 366 |
+
# The -q_len: slice assumes left padding.
|
| 367 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 368 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 369 |
+
|
| 370 |
+
return (
|
| 371 |
+
query_layer,
|
| 372 |
+
key_layer,
|
| 373 |
+
value_layer,
|
| 374 |
+
indices_q,
|
| 375 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 376 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
|
| 380 |
CORE_ATTENTION_CLASSES = {
|
| 381 |
"eager": CoreAttention,
|
| 382 |
"sdpa": SdpaAttention,
|
| 383 |
+
"flash_attention_2": FlashAttention2
|
| 384 |
}
|
| 385 |
|
| 386 |
|
|
|
|
| 759 |
config_class = ChatGLMConfig
|
| 760 |
base_model_prefix = "transformer"
|
| 761 |
_no_split_modules = ["GLMBlock"]
|
| 762 |
+
_supports_flash_attn_2 = True
|
| 763 |
+
_supports_sdpa = True
|
| 764 |
|
| 765 |
def _init_weights(self, module: nn.Module):
|
| 766 |
"""Initialize the weights."""
|
| 767 |
return
|
| 768 |
|
| 769 |
def get_masks(self, input_ids, past_key_values, padding_mask=None):
|
| 770 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 771 |
+
if padding_mask is not None and not padding_mask.all():
|
| 772 |
+
return padding_mask
|
| 773 |
+
return None
|
| 774 |
batch_size, seq_length = input_ids.shape
|
| 775 |
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
| 776 |
full_attention_mask.tril_()
|