zakskyfighter commited on
Commit
9900b24
·
verified ·
1 Parent(s): 5c89e2f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -3
README.md CHANGED
@@ -1,3 +1,92 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ metrics:
6
+ - mean_iou
7
+ pipeline_tag: object-detection
8
+ tags:
9
+ - LIDAR
10
+ - Pointcloud
11
+ - Autnonomous
12
+ - YOLO
13
+ ---
14
+
15
+ # **YOLOv12n LiDAR BEV Object Detection Model**
16
+
17
+ ## **Model Overview**
18
+ This is a custom-trained **YOLOv12n** model for object detection on **Bird’s Eye View (BEV) RGB images** generated from **LiDAR 3D point cloud data**. The dataset used for training is derived from the **KITTI dataset**, converted from raw LiDAR point cloud data to 2D BEV images.
19
+
20
+ ## **Dataset**
21
+ - **Source:** KITTI Dataset
22
+ - **Preprocessing:** LiDAR point clouds converted into **2D RGB BEV images**
23
+ - **Custom Labels:** Created for training
24
+
25
+ ## **Training Details**
26
+ - **Training Platform:** Kaggle Notebook
27
+ - **Epochs:** 300 (Continual learning)
28
+ - **Batch Size:** 32
29
+ - **Input Image Size:** 608 × 608
30
+ - **Compute:** 2× NVIDIA T4 GPUs (Distributed Training)
31
+ - **Training Time:** 14.5 hours
32
+ - **Optimizer:** AdamW
33
+
34
+ ## **Data Augmentation & Training Arguments**
35
+ The model was trained with the following augmentations and hyperparameters:
36
+ ```python
37
+ results = model.train(
38
+ data=os.path.join(Dataset_folder, "data.yaml"),
39
+ epochs=500,
40
+ imgsz=608,
41
+ plots=True,
42
+ batch=batch_size,
43
+ save=True,
44
+ save_period=100,
45
+ device="cuda",
46
+ workers=4,
47
+ project=Folder_name,
48
+ seed=2005,
49
+ copy_paste=0.15,
50
+ optimizer="AdamW",
51
+ mosaic=1.0,
52
+ scale=0.9,
53
+ verbose=True,
54
+ resume=True,
55
+ patience=100,
56
+ cache=True,
57
+ amp=True
58
+ )
59
+ ```
60
+
61
+ ## **Usage**
62
+ To use this model for inference, load it using the Ultralytics YOLOv12 framework:
63
+ ```python
64
+ from ultralytics import YOLO
65
+
66
+ model = YOLO("path/to/your/yolov12n.pt")
67
+ results = model("path/to/your/image.jpg")
68
+ results.show()
69
+ ```
70
+
71
+ ## **Performance & Applications**
72
+ - Designed for **autonomous driving** and **LiDAR-based perception**
73
+ - Capable of detecting objects from **BEV RGB images** derived from **3D LiDAR data**
74
+ - Suitable for **real-time object detection** in self-driving applications
75
+
76
+ ## **License**
77
+ - mit
78
+
79
+ ## **language**
80
+ - english
81
+
82
+ ## **metrics**
83
+ - mean_iou
84
+
85
+ ## **pipeline_tag**
86
+ - object-detection
87
+
88
+ ## **tags**
89
+ - autonomous
90
+ - selfdriving
91
+ - LiDaR
92
+ - Kitti