Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,92 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
metrics:
|
6 |
+
- mean_iou
|
7 |
+
pipeline_tag: object-detection
|
8 |
+
tags:
|
9 |
+
- LIDAR
|
10 |
+
- Pointcloud
|
11 |
+
- Autnonomous
|
12 |
+
- YOLO
|
13 |
+
---
|
14 |
+
|
15 |
+
# **YOLOv12n LiDAR BEV Object Detection Model**
|
16 |
+
|
17 |
+
## **Model Overview**
|
18 |
+
This is a custom-trained **YOLOv12n** model for object detection on **Bird’s Eye View (BEV) RGB images** generated from **LiDAR 3D point cloud data**. The dataset used for training is derived from the **KITTI dataset**, converted from raw LiDAR point cloud data to 2D BEV images.
|
19 |
+
|
20 |
+
## **Dataset**
|
21 |
+
- **Source:** KITTI Dataset
|
22 |
+
- **Preprocessing:** LiDAR point clouds converted into **2D RGB BEV images**
|
23 |
+
- **Custom Labels:** Created for training
|
24 |
+
|
25 |
+
## **Training Details**
|
26 |
+
- **Training Platform:** Kaggle Notebook
|
27 |
+
- **Epochs:** 300 (Continual learning)
|
28 |
+
- **Batch Size:** 32
|
29 |
+
- **Input Image Size:** 608 × 608
|
30 |
+
- **Compute:** 2× NVIDIA T4 GPUs (Distributed Training)
|
31 |
+
- **Training Time:** 14.5 hours
|
32 |
+
- **Optimizer:** AdamW
|
33 |
+
|
34 |
+
## **Data Augmentation & Training Arguments**
|
35 |
+
The model was trained with the following augmentations and hyperparameters:
|
36 |
+
```python
|
37 |
+
results = model.train(
|
38 |
+
data=os.path.join(Dataset_folder, "data.yaml"),
|
39 |
+
epochs=500,
|
40 |
+
imgsz=608,
|
41 |
+
plots=True,
|
42 |
+
batch=batch_size,
|
43 |
+
save=True,
|
44 |
+
save_period=100,
|
45 |
+
device="cuda",
|
46 |
+
workers=4,
|
47 |
+
project=Folder_name,
|
48 |
+
seed=2005,
|
49 |
+
copy_paste=0.15,
|
50 |
+
optimizer="AdamW",
|
51 |
+
mosaic=1.0,
|
52 |
+
scale=0.9,
|
53 |
+
verbose=True,
|
54 |
+
resume=True,
|
55 |
+
patience=100,
|
56 |
+
cache=True,
|
57 |
+
amp=True
|
58 |
+
)
|
59 |
+
```
|
60 |
+
|
61 |
+
## **Usage**
|
62 |
+
To use this model for inference, load it using the Ultralytics YOLOv12 framework:
|
63 |
+
```python
|
64 |
+
from ultralytics import YOLO
|
65 |
+
|
66 |
+
model = YOLO("path/to/your/yolov12n.pt")
|
67 |
+
results = model("path/to/your/image.jpg")
|
68 |
+
results.show()
|
69 |
+
```
|
70 |
+
|
71 |
+
## **Performance & Applications**
|
72 |
+
- Designed for **autonomous driving** and **LiDAR-based perception**
|
73 |
+
- Capable of detecting objects from **BEV RGB images** derived from **3D LiDAR data**
|
74 |
+
- Suitable for **real-time object detection** in self-driving applications
|
75 |
+
|
76 |
+
## **License**
|
77 |
+
- mit
|
78 |
+
|
79 |
+
## **language**
|
80 |
+
- english
|
81 |
+
|
82 |
+
## **metrics**
|
83 |
+
- mean_iou
|
84 |
+
|
85 |
+
## **pipeline_tag**
|
86 |
+
- object-detection
|
87 |
+
|
88 |
+
## **tags**
|
89 |
+
- autonomous
|
90 |
+
- selfdriving
|
91 |
+
- LiDaR
|
92 |
+
- Kitti
|