Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LICENSE +21 -0
- README.md +512 -0
- configs/delta_net_1B.json +29 -0
- configs/delta_net_340M.json +27 -0
- configs/gla_340M.json +24 -0
- configs/gla_7B.json +25 -0
- configs/gsa_340M.json +29 -0
- configs/hgrn2_340M.json +20 -0
- configs/rectified_transformer_120M.json +19 -0
- configs/scaled_softpick_transformer_120M.json +19 -0
- configs/scaled_softpick_transformer_340M.json +19 -0
- configs/scaled_vanilla_transformer_340M.json +19 -0
- configs/softpick_transformer_120M.json +19 -0
- configs/softpick_transformer_1B.json +23 -0
- configs/softpick_transformer_340M.json +19 -0
- configs/softpick_transformer_7B.json +22 -0
- configs/softpick_transformer_with_pruning_340M.json +63 -0
- configs/transformer_120M.json +18 -0
- configs/transformer_7B.json +21 -0
- configs/vanilla_transformer_1B.json +23 -0
- configs/vanilla_transformer_340M.json +19 -0
- configs/vanilla_transformer_7B.json +22 -0
- download_checkpoint.py +35 -0
- fla/layers/abc.py +218 -0
- fla/layers/based.py +96 -0
- fla/layers/delta_net.py +291 -0
- fla/layers/forgetting_attn.py +109 -0
- fla/layers/gated_deltanet.py +293 -0
- fla/layers/gla.py +294 -0
- fla/layers/gsa.py +227 -0
- fla/layers/rebased.py +133 -0
- fla/layers/rwkv7.py +221 -0
- fla/modules/__init__.py +29 -0
- fla/modules/convolution.py +434 -0
- fla/ops/__pycache__/__init__.cpython-312.pyc +0 -0
- fla/ops/based/fused_chunk.py +374 -0
- fla/ops/common/chunk_h_parallel.py +650 -0
- fla/ops/common/fused_recurrent.py +575 -0
- fla/ops/delta_rule/fused_chunk.py +6 -0
- fla/ops/gated_delta_rule/__init__.py +7 -0
- fla/ops/gated_delta_rule/fused_recurrent.py +321 -0
- fla/ops/gated_delta_rule/wy_fast.py +620 -0
- fla/ops/gla/__init__.py +11 -0
- fla/ops/gla/fused_chunk.py +631 -0
- fla/ops/gsa/chunk.py +1264 -0
- fla/ops/gsa/naive.py +68 -0
- fla/ops/hgrn/fused_recurrent.py +308 -0
- fla/ops/hgrn/naive.py +63 -0
- fla/ops/rwkv4/fused_recurrent.py +476 -0
- fla/ops/rwkv6/__init__.py +9 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023-2025 Songlin Yang, Yu Zhang
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
ADDED
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div align="center">
|
2 |
+
|
3 |
+
# 🔥 Flame: Flash Linear Attention Made Easy
|
4 |
+
# This is a fork for the paper:
|
5 |
+
# Softpick: No Attention Sink, No Massive Activations with Rectified Softmax
|
6 |
+
|
7 |
+
</div>
|
8 |
+
|
9 |
+
## Instructions for Softpick Attention
|
10 |
+
|
11 |
+
This fork can only work on an older commit of torchtitan and flame, so the setup looks like this:
|
12 |
+
|
13 |
+
```bash
|
14 |
+
git clone https://github.com/zaydzuhri/flame.git
|
15 |
+
cd flame
|
16 |
+
git checkout softpick-attention
|
17 |
+
git submodule update --init --recursive --remote
|
18 |
+
cd 3rdparty/torchtitan
|
19 |
+
git checkout 4f532e0
|
20 |
+
cd ../../
|
21 |
+
|
22 |
+
pip install .
|
23 |
+
pip install flash-attn --no-build-isolation
|
24 |
+
```
|
25 |
+
The flash-linear-attention submodule has been changed to link to our fork: https://github.com/zaydzuhri/flash-linear-attention/tree/softpick-attention
|
26 |
+
So no need to manually clone it.
|
27 |
+
|
28 |
+
Then prepare the fineweb-edu 100B sample the same way as described in the flame repo guide below.
|
29 |
+
|
30 |
+
These are the training commands used in the paper:
|
31 |
+
```bash
|
32 |
+
NGPU=8 bash train.sh --job.config_file flame/models/fla.toml --job.dump_folder exp/vanilla.340M.batch16.seqlen4096.context4096.warmup1000.update1.steps100000.lr3e-4.cosine --model.config configs/vanilla_transformer_340M.json --model.tokenizer_path fla-hub/transformer-1.3B-100B --optimizer.name AdamW --optimizer.eps 1e-15 --optimizer.lr 3e-4 --lr_scheduler.warmup_steps 1000 --lr_scheduler.lr_min 0.1 --lr_scheduler.decay_type cosine --training.batch_size 16 --training.seq_len 4096 --training.context_len 4096 --training.gradient_accumulation_steps 1 --training.steps 100000 --training.max_norm 1.0 --training.skip_nan_inf --training.dataset ~/.cache/HuggingFaceFW___fineweb-edu/sample-100BT --training.dataset_split train --training.num_workers 32 --training.prefetch_factor 2 --training.seed 79 --training.compile --checkpoint.interval 10000 --checkpoint.load_step -1 --metrics.log_freq 5 --checkpoint.hf_upload_enabled --checkpoint.hf_repo_base_name "zaydzuhri/vanilla-340M-4096-batch16-steps100000" --comm.init_timeout_seconds 600 --comm.train_timeout_seconds 300
|
33 |
+
|
34 |
+
NGPU=8 bash train.sh --job.config_file flame/models/fla.toml --job.dump_folder exp/softpick.340M.batch16.seqlen4096.context4096.warmup1000.update1.steps100000.lr3e-4.cosine --model.config configs/softpick_transformer_340M.json --model.tokenizer_path fla-hub/transformer-1.3B-100B --optimizer.name AdamW --optimizer.eps 1e-15 --optimizer.lr 3e-4 --lr_scheduler.warmup_steps 1000 --lr_scheduler.lr_min 0.1 --lr_scheduler.decay_type cosine --training.batch_size 16 --training.seq_len 4096 --training.context_len 4096 --training.gradient_accumulation_steps 1 --training.steps 100000 --training.max_norm 1.0 --training.skip_nan_inf --training.dataset ~/.cache/HuggingFaceFW___fineweb-edu/sample-100BT --training.dataset_split train --training.num_workers 32 --training.prefetch_factor 2 --training.seed 79 --training.compile --checkpoint.interval 10000 --checkpoint.load_step -1 --metrics.log_freq 5 --checkpoint.hf_upload_enabled --checkpoint.hf_repo_base_name "zaydzuhri/softpick-340M-4096-batch16-steps100000" --comm.init_timeout_seconds 600 --comm.train_timeout_seconds 300
|
35 |
+
```
|
36 |
+
|
37 |
+
And the same for the extra experiments in the appendix:
|
38 |
+
```bash
|
39 |
+
NGPU=8 bash train.sh --job.config_file flame/models/fla.toml --job.dump_folder exp/rectified.340M.batch16.seqlen4096.context4096.warmup1000.update1.steps100000.lr3e-4.cosine --model.config configs/rectified_transformer_340M.json --model.tokenizer_path fla-hub/transformer-1.3B-100B --optimizer.name AdamW --optimizer.eps 1e-15 --optimizer.lr 3e-4 --lr_scheduler.warmup_steps 1000 --lr_scheduler.lr_min 0.1 --lr_scheduler.decay_type cosine --training.batch_size 16 --training.seq_len 4096 --training.context_len 4096 --training.gradient_accumulation_steps 1 --training.steps 100000 --training.max_norm 1.0 --training.skip_nan_inf --training.dataset ~/.cache/HuggingFaceFW___fineweb-edu/sample-100BT --training.dataset_split train --training.num_workers 32 --training.prefetch_factor 2 --training.seed 79 --training.compile --checkpoint.interval 10000 --checkpoint.load_step -1 --metrics.log_freq 5 --checkpoint.hf_upload_enabled --checkpoint.hf_repo_base_name "zaydzuhri/rectified-340M-4096-batch16-steps100000" --comm.init_timeout_seconds 600 --comm.train_timeout_seconds 300
|
40 |
+
|
41 |
+
NGPU=8 bash train.sh --job.config_file flame/models/fla.toml --job.dump_folder exp/softpick.scaled.340M.batch16.seqlen4096.context4096.warmup1000.update1.steps100000.lr3e-4.cosine --model.config configs/softpick_scaled_transformer_340M.json --model.tokenizer_path fla-hub/transformer-1.3B-100B --optimizer.name AdamW --optimizer.eps 1e-15 --optimizer.lr 3e-4 --lr_scheduler.warmup_steps 1000 --lr_scheduler.lr_min 0.1 --lr_scheduler.decay_type cosine --training.batch_size 16 --training.seq_len 4096 --training.context_len 4096 --training.gradient_accumulation_steps 1 --training.steps 100000 --training.max_norm 1.0 --training.skip_nan_inf --training.dataset ~/.cache/HuggingFaceFW___fineweb-edu/sample-100BT --training.dataset_split train --training.num_workers 32 --training.prefetch_factor 2 --training.seed 79 --training.compile --checkpoint.interval 10000 --checkpoint.load_step -1 --metrics.log_freq 5 --checkpoint.hf_upload_enabled --checkpoint.hf_repo_base_name "zaydzuhri/softpick-scaled-340M-4096-batch16-steps100000" --comm.init_timeout_seconds 600 --comm.train_timeout_seconds 300
|
42 |
+
```
|
43 |
+
|
44 |
+
Feel free to DM @zmkzmkz on X for any questions regarding the paper or this code!
|
45 |
+
|
46 |
+
## Flame
|
47 |
+
|
48 |
+
Welcome to 🔥 `flame`, a minimal and efficient framework built on `torchtitan` for training Flash Linear Attention (FLA) models (and more broadly, arbitrary autoregressive language models) with blazing efficiency.
|
49 |
+
|
50 |
+
**Feature Highlights:**
|
51 |
+
|
52 |
+
- 🚀 Minimal, easy-to-use, extensible training framework
|
53 |
+
- 🤗 Seamless integration with `fla` and `transformers`
|
54 |
+
- 🔄 Zero-cost data preprocessing: online tokenization, dataset shuffling, and multiple datasets support
|
55 |
+
- 🔮 4D parallelism (coming soon)
|
56 |
+
|
57 |
+
## Setup
|
58 |
+
|
59 |
+
To get started, clone the `flame` repository and install the required dependencies:
|
60 |
+
|
61 |
+
```bash
|
62 |
+
git clone https://github.com/fla-org/flame.git
|
63 |
+
cd flame
|
64 |
+
pip install .
|
65 |
+
```
|
66 |
+
|
67 |
+
`flame` manages minimal dependencies, only including `fla` and `torchtitan` as submodules.
|
68 |
+
After installation, initialize and update the submodules:
|
69 |
+
```sh
|
70 |
+
git submodule update --init --recursive
|
71 |
+
```
|
72 |
+
|
73 |
+
## Dataset Preparation
|
74 |
+
To download the dataset to your local disk, create a new Python file with the following content and execute it:
|
75 |
+
|
76 |
+
```py
|
77 |
+
from datasets import load_dataset
|
78 |
+
|
79 |
+
# load fineweb-edu with parallel processing
|
80 |
+
dataset = load_dataset("HuggingFaceFW/fineweb-edu", name="default", num_proc=64, cache_dir="/your/cache/path")
|
81 |
+
|
82 |
+
# or load a subset with roughly 100B tokens, suitable for small- or medium-sized experiments
|
83 |
+
dataset = load_dataset("HuggingFaceFW/fineweb-edu", name="sample-100BT", num_proc=64, cache_dir="/your/cache/path")
|
84 |
+
```
|
85 |
+
|
86 |
+
## Training Recipes
|
87 |
+
|
88 |
+
Here's an example of training a 340M FLA Transformer model with a LLaMA-like architecture from scratch on a 100BT subset of the Fineweb-edu corpus in streaming mode.
|
89 |
+
|
90 |
+
> [!WARNING]
|
91 |
+
> If the dataset is not downloaded beforehand, the streaming mode will attempt to fetch it from a remote server and download it on-the-fly, which can be highly unstable during training due to network issues.
|
92 |
+
> For stable training, ensure the dataset is downloaded locally (see [**Dataset Preparation**](#dataset-preparation)). Otherwise, we assume you are only testing the new corpus.
|
93 |
+
|
94 |
+
```sh
|
95 |
+
bash train.sh \
|
96 |
+
--job.config_file flame/models/fla.toml \
|
97 |
+
--job.dump_folder exp/transformer-340M-4K-10B/batch1.seqlen65536.context4096.warmup1024.update1.steps20480.lr3e-4.cosine \
|
98 |
+
--model.config configs/transformer_340M.json \
|
99 |
+
--model.tokenizer_path fla-hub/transformer-1.3B-100B \
|
100 |
+
--optimizer.name AdamW \
|
101 |
+
--optimizer.eps 1e-15 \
|
102 |
+
--optimizer.lr 3e-4 \
|
103 |
+
--lr_scheduler.warmup_steps 1024 \
|
104 |
+
--lr_scheduler.lr_min 0.1 \
|
105 |
+
--lr_scheduler.decay_type cosine \
|
106 |
+
--training.batch_size 1 \
|
107 |
+
--training.seq_len 65536 \
|
108 |
+
--training.context_len 4096 \
|
109 |
+
--training.varlen \
|
110 |
+
--training.gradient_accumulation_steps 1 \
|
111 |
+
--training.steps 20480 \
|
112 |
+
--training.max_norm 1.0 \
|
113 |
+
--training.skip_nan_inf \
|
114 |
+
--training.dataset HuggingFaceFW/fineweb-edu \
|
115 |
+
--training.dataset_name sample-100BT \
|
116 |
+
--training.dataset_split train \
|
117 |
+
--training.streaming \
|
118 |
+
--training.num_workers 32 \
|
119 |
+
--training.prefetch_factor 2 \
|
120 |
+
--training.seed 42 \
|
121 |
+
--training.compile \
|
122 |
+
--checkpoint.interval 2048 \
|
123 |
+
--checkpoint.load_step -1 \
|
124 |
+
--checkpoint.keep_latest_k 2 \
|
125 |
+
--metrics.log_freq 1
|
126 |
+
```
|
127 |
+
|
128 |
+
You can specify the number of GPUs by setting the environment variable `NGPU`, which defaults to 8.
|
129 |
+
**For single-GPU debugging, set `NGPU=1`.**
|
130 |
+
|
131 |
+
We provide several [config files](https://github.com/fla-org/flame/tree/main/configs) for different models.
|
132 |
+
By default, the learning rate is set to 3e-4 with a cosine scheduler. Other schedulers, such as WSD (wsd), are also supported.
|
133 |
+
|
134 |
+
**Key parameters:**
|
135 |
+
- `--lr_scheduler.decay_ratio`: The proportion of the steps allocated to the decay phase. The learning rate will remain stable after the warmup period and only start decaying during the last `decay_ratio` portion of the total training steps, which is known as the Warmup-Stable-Decay (WSD) schedule.
|
136 |
+
- `--lr_scheduler.warmup_steps`: The number of steps for the learning rate warmup phase.
|
137 |
+
- `--training.steps`: Total number of training steps.
|
138 |
+
- `--training.batch_size`: Batch size per device, must be 1 if `--training.varlen` is set.
|
139 |
+
- `--training.seq_len`: The length of each sequence in the batch, which is concatenated from multiple samples.
|
140 |
+
- `--training.context_len`: The max allowed length of a sample. For non-varlen mode, this is equivalent to `seq_len`.
|
141 |
+
- `--training.varlen`: Whether to conduct variable-length sequence training.
|
142 |
+
- `--training.gradient_accumulation_steps`: Number of gradient accumulation steps.
|
143 |
+
|
144 |
+
> [!WARNING]
|
145 |
+
> The total number of tokens processed per batch, referred to as `global_batch_size`, is calculated as batch_size × gradient_accumulation_steps × num_gpus.
|
146 |
+
> Each step processes `global_batch_size * seq_len` tokens.
|
147 |
+
> Monitor the value of `global_batch_size`, `warmup_steps`, and `steps` carefully when modifying any of the hyperparameters!
|
148 |
+
|
149 |
+
For a detailed explanation of all parameters, run:
|
150 |
+
|
151 |
+
```sh
|
152 |
+
bash train.sh -h
|
153 |
+
```
|
154 |
+
|
155 |
+
<details>
|
156 |
+
<summary>Usage</summary>
|
157 |
+
|
158 |
+
```py
|
159 |
+
options:
|
160 |
+
-h, --help show this help message and exit
|
161 |
+
--job.config_file JOB.CONFIG_FILE
|
162 |
+
Job config file
|
163 |
+
--job.dump_folder JOB.DUMP_FOLDER
|
164 |
+
Folder to dump job outputs
|
165 |
+
--job.description JOB.DESCRIPTION
|
166 |
+
Description of the job
|
167 |
+
--job.use_for_integration_test
|
168 |
+
Add this config to the integration test suite
|
169 |
+
--job.print_args Print the args to terminal
|
170 |
+
--model.config MODEL.CONFIG
|
171 |
+
Path to the model config
|
172 |
+
--model.norm_type MODEL.NORM_TYPE
|
173 |
+
Type of layer normalization to use [layernorm,
|
174 |
+
np_layernorm, rmsnorm, fused_rmsnorm]
|
175 |
+
--model.tokenizer_path MODEL.TOKENIZER_PATH
|
176 |
+
Tokenizer path
|
177 |
+
--profiling.enable_profiling
|
178 |
+
Whether to enable pytorch profiler
|
179 |
+
--profiling.save_traces_folder PROFILING.SAVE_TRACES_FOLDER
|
180 |
+
Trace files location
|
181 |
+
--profiling.profile_freq PROFILING.PROFILE_FREQ
|
182 |
+
How often to collect profiler traces, in iterations
|
183 |
+
--profiling.enable_memory_snapshot
|
184 |
+
Whether to dump memory snapshot
|
185 |
+
--profiling.save_memory_snapshot_folder PROFILING.SAVE_MEMORY_SNAPSHOT_FOLDER
|
186 |
+
Memeory snapshot files location
|
187 |
+
--optimizer.name OPTIMIZER.NAME
|
188 |
+
Optimizer to use
|
189 |
+
--optimizer.eps OPTIMIZER.EPS
|
190 |
+
Epsilon value for the optimizer.
|
191 |
+
--optimizer.fused Whether the fused implementation(CUDA only) is used.
|
192 |
+
--optimizer.scheduler {wsd,cosine,linear}
|
193 |
+
Scheduler to use. Currently supported: wsd, cosine,
|
194 |
+
and linear.
|
195 |
+
--optimizer.lr OPTIMIZER.LR
|
196 |
+
Learning rate to use
|
197 |
+
--optimizer.min_lr_ratio OPTIMIZER.MIN_LR_RATIO
|
198 |
+
Min lr ratio for lr scheduler
|
199 |
+
--optimizer.early_step_in_backward
|
200 |
+
Whether to apply optimizer in the backward. Caution,
|
201 |
+
optimizer_in_backward is not compatible with gradients
|
202 |
+
clipping, users should not call
|
203 |
+
register_post_accumulate_grad_hook after the optimizer
|
204 |
+
is built.
|
205 |
+
--training.batch_size TRAINING.BATCH_SIZE
|
206 |
+
Batch size
|
207 |
+
--training.seq_len TRAINING.SEQ_LEN
|
208 |
+
Sequence length
|
209 |
+
--training.context_len TRAINING.CONTEXT_LEN
|
210 |
+
Max length allowed for each sequence
|
211 |
+
--training.varlen Whether to take sequences of variable length as input
|
212 |
+
--training.warmup_steps TRAINING.WARMUP_STEPS
|
213 |
+
Steps for lr scheduler warmup, normally 1/5 of
|
214 |
+
--training.steps
|
215 |
+
--training.gradient_accumulation_steps TRAINING.GRADIENT_ACCUMULATION_STEPS
|
216 |
+
Number of steps to accumulate gradients before
|
217 |
+
updating parameters
|
218 |
+
--training.steps TRAINING.STEPS
|
219 |
+
How many train steps to run
|
220 |
+
--training.max_norm TRAINING.MAX_NORM
|
221 |
+
Max norm for gradient clipping
|
222 |
+
--training.skip_nan_inf
|
223 |
+
Skip batch updates when NaN or INF gradients are
|
224 |
+
encountered during training
|
225 |
+
--training.dataset TRAINING.DATASET
|
226 |
+
Dataset to use, with comma separated values
|
227 |
+
--training.dataset_name TRAINING.DATASET_NAME
|
228 |
+
The name of the dataset config, with comma separated
|
229 |
+
values if provided
|
230 |
+
--training.dataset_split TRAINING.DATASET_SPLIT
|
231 |
+
Dataset split to use, with comma separated values if
|
232 |
+
provided
|
233 |
+
--training.data_dir TRAINING.DATA_DIR
|
234 |
+
Data dirs to use, with comma separated values if
|
235 |
+
provided
|
236 |
+
--training.data_files TRAINING.DATA_FILES
|
237 |
+
Data files to use, with comma separated values if
|
238 |
+
provided
|
239 |
+
--training.data_probs TRAINING.DATA_PROBS
|
240 |
+
Data sampling probabilities, with comma separated
|
241 |
+
values if provided
|
242 |
+
--training.streaming Whether to load dataset in streaming mode, used for
|
243 |
+
huge dataset
|
244 |
+
--training.num_workers TRAINING.NUM_WORKERS
|
245 |
+
Number of subprocesses to use for data loading. 0
|
246 |
+
means that the data will be loaded in the main
|
247 |
+
process.
|
248 |
+
--training.prefetch_factor TRAINING.PREFETCH_FACTOR
|
249 |
+
Number of batches loaded in advance by each worker.2
|
250 |
+
means there will be a total of 2 * num_workers batches
|
251 |
+
prefetched across all workers.
|
252 |
+
--training.data_parallel_replicate_degree TRAINING.DATA_PARALLEL_REPLICATE_DEGREE
|
253 |
+
The `data_parallel_replicate_degree` argument
|
254 |
+
specifies the degree of data parallelism for weight
|
255 |
+
replication. When this value is greater than 1,
|
256 |
+
weights will be replicated across
|
257 |
+
`data_parallel_replicate_degree` ranks. If
|
258 |
+
`data_parallel_shard_degree` is also greater than 1,
|
259 |
+
the parallelism method used is HSDP (Hybrid Sharded
|
260 |
+
Data Parallelism). Otherwise, the parallelism method
|
261 |
+
used is DDP (Distributed Data Parallelism). 1 means
|
262 |
+
disabled.
|
263 |
+
--training.data_parallel_shard_degree TRAINING.DATA_PARALLEL_SHARD_DEGREE
|
264 |
+
The `data_parallel_shard_degree` argument specifies
|
265 |
+
the degree of data parallelism for weight sharding.
|
266 |
+
When this value is greater than 1, weights will be
|
267 |
+
sharded across `data_parallel_shard_degree` ranks. If
|
268 |
+
`data_parallel_replicate_degree` is also greater than
|
269 |
+
1, the parallelism method used is HSDP (Hybrid Sharded
|
270 |
+
Data Parallelism). Otherwise, the parallelism method
|
271 |
+
used is FSDP (Fully Sharded Data Parallelism). -1
|
272 |
+
means leftover ranks will be used (After
|
273 |
+
DP_REPLICATE/SP/PP). Note that only
|
274 |
+
`data_parallel_shard_degree` can be negative. 1 means
|
275 |
+
disabled.
|
276 |
+
--training.enable_cpu_offload
|
277 |
+
Whether to apply CPU offloading of parameters,
|
278 |
+
gradients, and optimizer states in FSDP
|
279 |
+
--training.tensor_parallel_degree TRAINING.TENSOR_PARALLEL_DEGREE
|
280 |
+
Tensor Parallelism degree. 1 means disabled.
|
281 |
+
--training.disable_loss_parallel
|
282 |
+
Whether to apply loss parallel when sequence parallel
|
283 |
+
is enabled
|
284 |
+
--training.mixed_precision_param {bfloat16,float32}
|
285 |
+
torch dtype to use for parameters when applying mixed
|
286 |
+
precision via FSDP. This feature only takes effect
|
287 |
+
when data_parallel_shard_degree > 1
|
288 |
+
--training.mixed_precision_reduce {float32}
|
289 |
+
torch dtype to use for reductions when applying mixed
|
290 |
+
precision via FSDP. This feature only takes effect
|
291 |
+
when data_parallel_shard_degree > 1
|
292 |
+
--training.compile Whether to compile the model
|
293 |
+
--training.gc_freq TRAINING.GC_FREQ
|
294 |
+
Python garbage control scheduling interval, in steps
|
295 |
+
--training.seed TRAINING.SEED
|
296 |
+
Choose the base RNG seed used for training
|
297 |
+
--training.deterministic
|
298 |
+
Use deterministic algorithms wherever possible, may be
|
299 |
+
slower
|
300 |
+
--metrics.log_freq METRICS.LOG_FREQ
|
301 |
+
How often to log metrics to TensorBoard, in iterations
|
302 |
+
--metrics.enable_tensorboard
|
303 |
+
Whether to log metrics to TensorBoard
|
304 |
+
--metrics.disable_color_printing
|
305 |
+
Whether to disable color printing in logs
|
306 |
+
--metrics.save_tb_folder METRICS.SAVE_TB_FOLDER
|
307 |
+
Folder to dump TensorBoard states
|
308 |
+
--metrics.rank_0_only
|
309 |
+
Whether to save TensorBoard metrics only for rank 0 or
|
310 |
+
for all ranks. When pipeline_parallel_degree is > 1,
|
311 |
+
this option uses the 0th rank of the last stage
|
312 |
+
pipeline group, which is the only stage that computes
|
313 |
+
loss metrics.
|
314 |
+
--metrics.enable_wandb
|
315 |
+
Whether to log metrics to Weights & Biases
|
316 |
+
--experimental.enable_async_tensor_parallel
|
317 |
+
Whether to apply async tensor parallel (currently only
|
318 |
+
effective when compile is enabled)
|
319 |
+
--experimental.pipeline_parallel_degree EXPERIMENTAL.PIPELINE_PARALLEL_DEGREE
|
320 |
+
Pipeline Parallelism degree, or number of ranks. 1
|
321 |
+
means disabled. If using looped schedules, this still
|
322 |
+
specifies the number of physical ranks, not the number
|
323 |
+
of stages. Stages per rank are inferred from split
|
324 |
+
points degree, and schedule.
|
325 |
+
--experimental.pipeline_parallel_split_points EXPERIMENTAL.PIPELINE_PARALLEL_SPLIT_POINTS [EXPERIMENTAL.PIPELINE_PARALLEL_SPLIT_POINTS ...]
|
326 |
+
Specify comma-separated names of modules to use as the
|
327 |
+
beginning of a split point. e.g. "layers.0,layers.2"
|
328 |
+
will cause the model to be split into 3 stages, the
|
329 |
+
first containing all the layers up to layers.0, the
|
330 |
+
second containing layers.0 and up to layers.2, the
|
331 |
+
third containing layers.2 and all the remaining
|
332 |
+
layers. Note: fully-automated splitting may be enabled
|
333 |
+
in the future, but currently the split points must be
|
334 |
+
specified manually.
|
335 |
+
--experimental.pipeline_parallel_schedule EXPERIMENTAL.PIPELINE_PARALLEL_SCHEDULE
|
336 |
+
Specify the Pipeline Parallel schedule to use. The
|
337 |
+
supported schedules are: https://github.com/pytorch/py
|
338 |
+
torch/blob/de4c2a3b4e89d96334dc678d1c3f2ae51a6630a0/to
|
339 |
+
rch/distributed/pipelining/schedules.py#L2161. The
|
340 |
+
schedule must be compatible with the split points and
|
341 |
+
stages_per_rank. Looped schedules (e.g.
|
342 |
+
Interleaved1F1B) require specifying
|
343 |
+
pipeline_parallel_degree = number of ranks, and
|
344 |
+
split_points = number of stages - 1
|
345 |
+
--experimental.pipeline_parallel_schedule_csv EXPERIMENTAL.PIPELINE_PARALLEL_SCHEDULE_CSV
|
346 |
+
Specify the path to the pipeline parallel schedule csv
|
347 |
+
file to use. The pipeline_parallel_schedule argument
|
348 |
+
must be either PipelineScheduleSingle,
|
349 |
+
PipelineScheduleMulti, or _PipelineScheduleRuntime.
|
350 |
+
--experimental.pipeline_parallel_microbatches EXPERIMENTAL.PIPELINE_PARALLEL_MICROBATCHES
|
351 |
+
How many microbatches to split the global training
|
352 |
+
batch into when using pipeline parallelism. The global
|
353 |
+
training batch size must be evenly divisible by the
|
354 |
+
number of microbatches. The default value will be the
|
355 |
+
number of pipeline stages, if unspecified.
|
356 |
+
--experimental.enable_compiled_autograd
|
357 |
+
Enable CompiledAutograd to compile the backward.
|
358 |
+
--experimental.context_parallel_degree EXPERIMENTAL.CONTEXT_PARALLEL_DEGREE
|
359 |
+
Context parallelism degree. 1 means disabled.
|
360 |
+
--experimental.context_parallel_rotate_method EXPERIMENTAL.CONTEXT_PARALLEL_ROTATE_METHOD
|
361 |
+
The collective to use in context parallel SDPA for kv
|
362 |
+
shards exchange. 'allgather' means to all-gather all
|
363 |
+
kv shards on ranks after the first sub-SDPA
|
364 |
+
computation, 'alltoall' means to all-to-all shuffle
|
365 |
+
the kv shards. The default value is 'allgather'.
|
366 |
+
--checkpoint.enable_checkpoint
|
367 |
+
Whether to enable checkpoint
|
368 |
+
--checkpoint.folder CHECKPOINT.FOLDER
|
369 |
+
The folder to store the checkpoints. When
|
370 |
+
enable_checkpoint is set to true, checkpoints will be
|
371 |
+
in {--job.dump_folder}/{--checkpoint.folder}.
|
372 |
+
--checkpoint.interval_type CHECKPOINT.INTERVAL_TYPE
|
373 |
+
Checkpointing interval unit of measurement ['step',
|
374 |
+
'seconds']
|
375 |
+
--checkpoint.interval CHECKPOINT.INTERVAL
|
376 |
+
Checkpointing interval, in steps or seconds depending
|
377 |
+
on --checkpoint.interval_type
|
378 |
+
--checkpoint.model_weights_only
|
379 |
+
When model_weights_only=True, only model weights will
|
380 |
+
be saved at the end of training. With this,
|
381 |
+
checkpoints can be loaded using `torch.load(...,
|
382 |
+
weights_only=True)` after conversion. When
|
383 |
+
model_weights_only=False, the full checkpoint will be
|
384 |
+
saved. A full checkpoint includes model, optimizer and
|
385 |
+
train_state, which can be used to resume training. The
|
386 |
+
default value is false.
|
387 |
+
--checkpoint.export_dtype {float16,bfloat16,float32}
|
388 |
+
Converts to the specified precision when training
|
389 |
+
completes and model_weights_only=true. Currently
|
390 |
+
supports float32, float16, and bfloat16. The default
|
391 |
+
value is float32.
|
392 |
+
--checkpoint.create_seed_checkpoint
|
393 |
+
Initializes the full model without applying
|
394 |
+
parallelisms, and then saves it as a seed checkpoint.
|
395 |
+
Note: requires user to call train.py without
|
396 |
+
specifying any parallelisms, e.g. NGPU=1. Could be
|
397 |
+
implemented as a separate script, but this way shares
|
398 |
+
more code.
|
399 |
+
--checkpoint.async_mode CHECKPOINT.ASYNC_MODE
|
400 |
+
Which async checkpoint mode to use. Currently there
|
401 |
+
are 3 different modes. 1. "disabled": synchronized
|
402 |
+
checkpointing will be used. 2. "async":
|
403 |
+
torch.distributed.checkpoint.async_save will be used.
|
404 |
+
1. "async_with_pinned_mem": this option utilizes a
|
405 |
+
dedicated pinned memory space and creates a separate
|
406 |
+
process for faster GPU->CPU transfer performance and
|
407 |
+
eliminating GIL contention. The cost is increased CPU
|
408 |
+
memory usage. If insufficient CPU memory is available,
|
409 |
+
performance may degrade due to memory paging. For most
|
410 |
+
users, "async" should suffice as the performance
|
411 |
+
overhead is typically small (on the order of tens of
|
412 |
+
seconds) compared to checkpointing frequency. This
|
413 |
+
mode can be employed to pursue near-zero checkpointing
|
414 |
+
times (e.g., < 1 second) given appropriate hardware
|
415 |
+
support such as ample CPU memory and fast PCIe.
|
416 |
+
"disabled" is the default mode.
|
417 |
+
--checkpoint.keep_latest_k CHECKPOINT.KEEP_LATEST_K
|
418 |
+
Keeps only the latest k checkpoints, and purging older
|
419 |
+
ones. If 0, keep all checkpoints. 0 is the default
|
420 |
+
value.
|
421 |
+
--checkpoint.load_step CHECKPOINT.LOAD_STEP
|
422 |
+
Load the checkpoint at the specified step. If -1, load
|
423 |
+
the latest checkpoint.
|
424 |
+
--float8.enable_float8_linear
|
425 |
+
If true, swaps `torch.nn.Linear` with `Float8Linear`.
|
426 |
+
This feature requires you to install 'torchao' which
|
427 |
+
can be found here: https://github.com/pytorch/ao
|
428 |
+
--float8.enable_fsdp_float8_all_gather
|
429 |
+
Whether enable float8 all-gather in FSDP
|
430 |
+
--float8.precompute_float8_dynamic_scale_for_fsdp
|
431 |
+
Whether precompute float8 scales dynamically for FSDP
|
432 |
+
--float8.scaling_type_input {dynamic,delayed}
|
433 |
+
float8 scaling for input, dynamic (default) or delayed
|
434 |
+
--float8.scaling_type_weight FLOAT8.SCALING_TYPE_WEIGHT
|
435 |
+
float8 scaling for input, dynamic (default) or delayed
|
436 |
+
--float8.scaling_type_grad_output FLOAT8.SCALING_TYPE_GRAD_OUTPUT
|
437 |
+
float8 scaling for input, dynamic (default) or delayed
|
438 |
+
--comm.init_timeout_seconds COMM.INIT_TIMEOUT_SECONDS
|
439 |
+
Timeout for communication operations, during
|
440 |
+
initialization and first train step.
|
441 |
+
--comm.train_timeout_seconds COMM.TRAIN_TIMEOUT_SECONDS
|
442 |
+
Timeout for communication operations after the first
|
443 |
+
train step -- usually a tighter bound than during
|
444 |
+
initialization.
|
445 |
+
--comm.trace_buf_size COMM.TRACE_BUF_SIZE
|
446 |
+
Flight recorder ring buffer size, >0 means recording
|
447 |
+
by default, 0 means disabled
|
448 |
+
--memory_estimation.enabled
|
449 |
+
Whether to estimate memory usage for FSDP
|
450 |
+
--memory_estimation.disable_fake_mode
|
451 |
+
Whether to estimate memory under FakeTensorMode
|
452 |
+
```
|
453 |
+
</details>
|
454 |
+
|
455 |
+
### Training with `torch.compile`
|
456 |
+
|
457 |
+
Starting from `torch 2.0`, `torch.compile` has been introduced as a new feature to seamlessly accelerate training processes.
|
458 |
+
In `flame`, one can simply enable `torch.compile` by adding `--training.compile` flag to your training script.
|
459 |
+
|
460 |
+
However, `fla` has integrated numerous fused kernels for acceleration, which may potentially conflict with `torch.compile`.
|
461 |
+
We are actively working on resolving these issues to make compilation transparent to users.
|
462 |
+
In the meantime, please ensure you are using the latest dependencies.
|
463 |
+
|
464 |
+
Specifically, **we recommend using `torch>=2.6` and `triton>=3.0`**.
|
465 |
+
|
466 |
+
### Training with multiple datasets
|
467 |
+
|
468 |
+
If you wish to train a model with all-round capabilities (e.g., code, math, and multilingual ability), it's necessary to train on multiple datasets.
|
469 |
+
`flame` allows training with multiple datasets easily.
|
470 |
+
For example, you can specify the following arguments to train on 6 datasets with different proportions:
|
471 |
+
|
472 |
+
```sh
|
473 |
+
--training.dataset HuggingFaceFW/fineweb-edu,opencsg/Fineweb-Edu-Chinese-V2.1,OpenCoder-LLM/opc-fineweb-code-corpus,math-ai/AutoMathText,EleutherAI/proof-pile-2,OpenCoder-LLM/opc-fineweb-math-corpus \
|
474 |
+
--training.data_probs 0.6,0.15,0.15,0.014,0.058,0.028 \
|
475 |
+
```
|
476 |
+
|
477 |
+
### ~Finalizing training~
|
478 |
+
|
479 |
+
> [!NOTE]
|
480 |
+
> We have done this conversion automatically in the training script since our latest updates.
|
481 |
+
|
482 |
+
Once training is complete, you may want to convert the distributed checkpoints (DCPs) into the 🤗 format for broader use.
|
483 |
+
To facilitate this, we provide a straightforward conversion script:
|
484 |
+
|
485 |
+
```sh
|
486 |
+
python -m flame.utils.convert_dcp_to_hf --path <path_to_model> --step <step> --config <path_to_config> --tokenizer <path_to_tokenizer>
|
487 |
+
```
|
488 |
+
After this, your model will be in the 🤗 format, ready to be shared or deployed.
|
489 |
+
You can then easily publish your model using the `huggingface_hub` for wider accessibility.
|
490 |
+
|
491 |
+
### Continual training
|
492 |
+
|
493 |
+
If you wish to build upon a strong pre-trained model (in 🤗 format) and continue training, we also offer a script to convert the 🤗 format model back into DCP format.
|
494 |
+
This allows you to seamlessly resume training with `flame`.
|
495 |
+
```sh
|
496 |
+
python -m flame.utils.convert_hf_to_dcp --model <path_to_hf> --checkpoint <path_to_dcp/checkpoint/step-0>
|
497 |
+
```
|
498 |
+
Here, `<path_to_dcp>` is the directory where your distributed checkpoints will be stored.
|
499 |
+
The checkpoint is intentionally saved at `<step-0>` within the checkpoint folder to ensure it is loadable by `flame` during the initial training step, similar to how a seed checkpoint is handled.
|
500 |
+
|
501 |
+
Once the conversion is complete, you can proceed with training using `flame` as usual, continuing from where the pretrained model left off.
|
502 |
+
|
503 |
+
## Multi-node training
|
504 |
+
|
505 |
+
If you have access to multi-node GPUs, consider leveraging them for optimal performance.
|
506 |
+
This process is straightforward and well-documented in the PyTorch [docs](https://pytorch.org/docs/stable/elastic/run.html).
|
507 |
+
|
508 |
+
To set up multi-node training:
|
509 |
+
* Set the environment variables `MASTER_ADDR=<ip>` and `MASTER_PORT=<port>` before running the training script across all nodes.
|
510 |
+
* If you're using a job scheduler like Slurm, it will handle these variables for you.
|
511 |
+
|
512 |
+
`torchtitan` provides a [Slurm script](https://github.com/pytorch/torchtitan/blob/main/multinode_trainer.slurm) for multi-node training, which you can use as a reference or starting point.
|
configs/delta_net_1B.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn": null,
|
3 |
+
"attn_mode": "chunk",
|
4 |
+
"bos_token_id": 1,
|
5 |
+
"conv_size": 4,
|
6 |
+
"eos_token_id": 2,
|
7 |
+
"expand_k": 1,
|
8 |
+
"expand_v": 1,
|
9 |
+
"fuse_cross_entropy": true,
|
10 |
+
"fuse_norm": true,
|
11 |
+
"hidden_act": "swish",
|
12 |
+
"hidden_ratio": 4,
|
13 |
+
"hidden_size": 2048,
|
14 |
+
"initializer_range": 0.006,
|
15 |
+
"intermediate_size": null,
|
16 |
+
"model_type": "delta_net",
|
17 |
+
"norm_eps": 1e-06,
|
18 |
+
"num_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"pad_token_id": 2,
|
21 |
+
"qk_activation": "silu",
|
22 |
+
"qk_norm": "l2",
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"use_beta": true,
|
25 |
+
"use_cache": true,
|
26 |
+
"use_gate": false,
|
27 |
+
"use_output_norm": true,
|
28 |
+
"use_short_conv": true
|
29 |
+
}
|
configs/delta_net_340M.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_mode": "chunk",
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"conv_size": 4,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"expand_k": 1,
|
7 |
+
"expand_v": 1,
|
8 |
+
"fuse_cross_entropy": true,
|
9 |
+
"hidden_act": "swish",
|
10 |
+
"hidden_ratio": 4,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_range": 0.006,
|
13 |
+
"intermediate_size": null,
|
14 |
+
"model_type": "delta_net",
|
15 |
+
"norm_eps": 1e-06,
|
16 |
+
"norm_first": false,
|
17 |
+
"num_heads": 8,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"qk_activation": "silu",
|
20 |
+
"qk_norm": "l2",
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"use_beta": true,
|
23 |
+
"use_cache": true,
|
24 |
+
"use_gate": false,
|
25 |
+
"use_output_norm": true,
|
26 |
+
"use_short_conv": true
|
27 |
+
}
|
configs/gla_340M.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_mode": "chunk",
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"clamp_min": null,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"expand_k": 0.5,
|
7 |
+
"expand_v": 1,
|
8 |
+
"fuse_cross_entropy": true,
|
9 |
+
"fuse_norm": true,
|
10 |
+
"hidden_act": "swish",
|
11 |
+
"hidden_ratio": 4,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.006,
|
14 |
+
"intermediate_size": null,
|
15 |
+
"model_type": "gla",
|
16 |
+
"num_heads": 4,
|
17 |
+
"num_hidden_layers": 24,
|
18 |
+
"norm_eps": 1e-06,
|
19 |
+
"tie_word_embeddings": false,
|
20 |
+
"use_cache": true,
|
21 |
+
"use_gk": true,
|
22 |
+
"use_gv": false,
|
23 |
+
"vocab_size": 32000
|
24 |
+
}
|
configs/gla_7B.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn": null,
|
3 |
+
"attn_mode": "chunk",
|
4 |
+
"bos_token_id": 1,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"expand_k": 0.5,
|
7 |
+
"expand_v": 1,
|
8 |
+
"fuse_cross_entropy": true,
|
9 |
+
"fuse_norm": true,
|
10 |
+
"hidden_act": "swish",
|
11 |
+
"hidden_ratio": 4,
|
12 |
+
"hidden_size": 4096,
|
13 |
+
"initializer_range": 0.006,
|
14 |
+
"intermediate_size": 11008,
|
15 |
+
"model_type": "gla",
|
16 |
+
"norm_eps": 1e-06,
|
17 |
+
"num_heads": 16,
|
18 |
+
"num_hidden_layers": 32,
|
19 |
+
"tie_word_embeddings": false,
|
20 |
+
"use_cache": true,
|
21 |
+
"use_gk": true,
|
22 |
+
"use_gv": false,
|
23 |
+
"use_output_gate": true,
|
24 |
+
"use_short_conv": false
|
25 |
+
}
|
configs/gsa_340M.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"conv_size": 4,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"expand_k": 1,
|
6 |
+
"expand_v": 1,
|
7 |
+
"elementwise_affine": false,
|
8 |
+
"feature_map": "swish",
|
9 |
+
"fuse_cross_entropy": true,
|
10 |
+
"fuse_norm": true,
|
11 |
+
"gate_logit_normalizer": 4,
|
12 |
+
"hidden_act": "swish",
|
13 |
+
"hidden_ratio": 4,
|
14 |
+
"hidden_size": 1024,
|
15 |
+
"initializer_range": 0.006,
|
16 |
+
"intermediate_size": null,
|
17 |
+
"model_type": "gsa",
|
18 |
+
"num_heads": 4,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"num_slots": 64,
|
21 |
+
"norm_eps": 1e-06,
|
22 |
+
"share_conv_kernel": true,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"use_cache": true,
|
25 |
+
"use_norm": true,
|
26 |
+
"use_output_gate": true,
|
27 |
+
"use_rope": false,
|
28 |
+
"use_short_conv": false
|
29 |
+
}
|
configs/hgrn2_340M.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_mode": "chunk",
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"expand_ratio": 128,
|
6 |
+
"fuse_cross_entropy": true,
|
7 |
+
"fuse_norm": true,
|
8 |
+
"hidden_act": "swish",
|
9 |
+
"hidden_ratio": 4,
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"initializer_range": 0.006,
|
12 |
+
"intermediate_size": null,
|
13 |
+
"model_type": "hgrn2",
|
14 |
+
"num_heads": 8,
|
15 |
+
"num_hidden_layers": 24,
|
16 |
+
"norm_eps": 1e-06,
|
17 |
+
"tie_word_embeddings": false,
|
18 |
+
"use_cache": true,
|
19 |
+
"vocab_size": 32000
|
20 |
+
}
|
configs/rectified_transformer_120M.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": false,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"max_position_embeddings": 4096,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 12,
|
13 |
+
"num_hidden_layers": 14,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": true,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000,
|
18 |
+
"attn_impl": "naive_rectified_attn"
|
19 |
+
}
|
configs/scaled_softpick_transformer_120M.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": false,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"max_position_embeddings": 4096,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 12,
|
13 |
+
"num_hidden_layers": 14,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": true,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000,
|
18 |
+
"attn_impl": "parallel_scaled_softpick_attn"
|
19 |
+
}
|
configs/scaled_softpick_transformer_340M.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": true,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 1024,
|
9 |
+
"initializer_range": 0.006,
|
10 |
+
"max_position_embeddings": 8192,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 16,
|
13 |
+
"num_hidden_layers": 24,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": false,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000,
|
18 |
+
"attn_impl": "parallel_scaled_softpick_attn"
|
19 |
+
}
|
configs/scaled_vanilla_transformer_340M.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": true,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 1024,
|
9 |
+
"initializer_range": 0.006,
|
10 |
+
"max_position_embeddings": 8192,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 16,
|
13 |
+
"num_hidden_layers": 24,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": false,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000,
|
18 |
+
"attn_impl": "parallel_scaled_attn"
|
19 |
+
}
|
configs/softpick_transformer_120M.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": false,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"max_position_embeddings": 4096,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 12,
|
13 |
+
"num_hidden_layers": 14,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": true,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000,
|
18 |
+
"attn_impl": "naive_softpick_attn"
|
19 |
+
}
|
configs/softpick_transformer_1B.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"elementwise_affine": true,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": true,
|
7 |
+
"fuse_swiglu": true,
|
8 |
+
"hidden_act": "swish",
|
9 |
+
"hidden_ratio": 4,
|
10 |
+
"hidden_size": 2048,
|
11 |
+
"initializer_range": 0.006,
|
12 |
+
"intermediate_size": null,
|
13 |
+
"max_position_embeddings": 8192,
|
14 |
+
"model_type": "transformer",
|
15 |
+
"norm_eps": 1e-06,
|
16 |
+
"num_heads": 32,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_kv_heads": null,
|
19 |
+
"pad_token_id": 2,
|
20 |
+
"rope_theta": 10000.0,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"attn_impl": "parallel_softpick_attn"
|
23 |
+
}
|
configs/softpick_transformer_340M.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": true,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 1024,
|
9 |
+
"initializer_range": 0.006,
|
10 |
+
"max_position_embeddings": 8192,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 16,
|
13 |
+
"num_hidden_layers": 24,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": false,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000,
|
18 |
+
"attn_impl": "parallel_softpick_attn"
|
19 |
+
}
|
configs/softpick_transformer_7B.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": true,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_ratio": 4,
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.006,
|
11 |
+
"intermediate_size": 14336,
|
12 |
+
"model_type": "transformer",
|
13 |
+
"norm_eps": 1e-06,
|
14 |
+
"num_heads": 32,
|
15 |
+
"num_hidden_layers": 32,
|
16 |
+
"num_kv_heads": 8,
|
17 |
+
"rope_theta": 10000.0,
|
18 |
+
"tie_word_embeddings": false,
|
19 |
+
"use_cache": true,
|
20 |
+
"window_size": null,
|
21 |
+
"attn_impl": "parallel_softpick_attn"
|
22 |
+
}
|
configs/softpick_transformer_with_pruning_340M.json
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"attn_impl": "parallel_softpick_attn",
|
4 |
+
"bos_token_id": 1,
|
5 |
+
"elementwise_affine": true,
|
6 |
+
"eos_token_id": 2,
|
7 |
+
"fuse_cross_entropy": true,
|
8 |
+
"fuse_norm": true,
|
9 |
+
"fuse_swiglu": true,
|
10 |
+
"hidden_act": "swish",
|
11 |
+
"hidden_ratio": 4,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.006,
|
14 |
+
"intermediate_size": null,
|
15 |
+
"layer_head_pruned": [
|
16 |
+
[
|
17 |
+
2,
|
18 |
+
1
|
19 |
+
],
|
20 |
+
[
|
21 |
+
2,
|
22 |
+
7
|
23 |
+
],
|
24 |
+
[
|
25 |
+
2,
|
26 |
+
12
|
27 |
+
],
|
28 |
+
[
|
29 |
+
2,
|
30 |
+
13
|
31 |
+
],
|
32 |
+
[
|
33 |
+
3,
|
34 |
+
5
|
35 |
+
],
|
36 |
+
[
|
37 |
+
3,
|
38 |
+
13
|
39 |
+
],
|
40 |
+
[
|
41 |
+
3,
|
42 |
+
14
|
43 |
+
],
|
44 |
+
[
|
45 |
+
13,
|
46 |
+
6
|
47 |
+
]
|
48 |
+
],
|
49 |
+
"max_position_embeddings": 8192,
|
50 |
+
"model_type": "transformer_with_pruning",
|
51 |
+
"norm_eps": 1e-06,
|
52 |
+
"num_heads": 16,
|
53 |
+
"num_hidden_layers": 24,
|
54 |
+
"num_kv_heads": null,
|
55 |
+
"qk_norm": false,
|
56 |
+
"qkv_bias": false,
|
57 |
+
"rope_theta": 10000.0,
|
58 |
+
"tie_word_embeddings": false,
|
59 |
+
"transformers_version": "4.51.3",
|
60 |
+
"use_cache": true,
|
61 |
+
"vocab_size": 32000,
|
62 |
+
"window_size": null
|
63 |
+
}
|
configs/transformer_120M.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": false,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 768,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"max_position_embeddings": 4096,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 12,
|
13 |
+
"num_hidden_layers": 14,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": true,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000
|
18 |
+
}
|
configs/transformer_7B.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": true,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_ratio": 4,
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.006,
|
11 |
+
"intermediate_size": 14336,
|
12 |
+
"model_type": "transformer",
|
13 |
+
"norm_eps": 1e-06,
|
14 |
+
"num_heads": 32,
|
15 |
+
"num_hidden_layers": 32,
|
16 |
+
"num_kv_heads": 8,
|
17 |
+
"rope_theta": 10000.0,
|
18 |
+
"tie_word_embeddings": false,
|
19 |
+
"use_cache": true,
|
20 |
+
"window_size": null
|
21 |
+
}
|
configs/vanilla_transformer_1B.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"elementwise_affine": true,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": true,
|
7 |
+
"fuse_swiglu": true,
|
8 |
+
"hidden_act": "swish",
|
9 |
+
"hidden_ratio": 4,
|
10 |
+
"hidden_size": 2048,
|
11 |
+
"initializer_range": 0.006,
|
12 |
+
"intermediate_size": null,
|
13 |
+
"max_position_embeddings": 8192,
|
14 |
+
"model_type": "transformer",
|
15 |
+
"norm_eps": 1e-06,
|
16 |
+
"num_heads": 32,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_kv_heads": null,
|
19 |
+
"pad_token_id": 2,
|
20 |
+
"rope_theta": 10000.0,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"attn_impl": "parallel_attn"
|
23 |
+
}
|
configs/vanilla_transformer_340M.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": true,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_size": 1024,
|
9 |
+
"initializer_range": 0.006,
|
10 |
+
"max_position_embeddings": 8192,
|
11 |
+
"model_type": "transformer",
|
12 |
+
"num_heads": 16,
|
13 |
+
"num_hidden_layers": 24,
|
14 |
+
"norm_eps": 1e-06,
|
15 |
+
"tie_word_embeddings": false,
|
16 |
+
"use_cache": true,
|
17 |
+
"vocab_size": 32000,
|
18 |
+
"attn_impl": "parallel_attn"
|
19 |
+
}
|
configs/vanilla_transformer_7B.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_bias": false,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"fuse_cross_entropy": true,
|
6 |
+
"fuse_norm": true,
|
7 |
+
"hidden_act": "swish",
|
8 |
+
"hidden_ratio": 4,
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.006,
|
11 |
+
"intermediate_size": 14336,
|
12 |
+
"model_type": "transformer",
|
13 |
+
"norm_eps": 1e-06,
|
14 |
+
"num_heads": 32,
|
15 |
+
"num_hidden_layers": 32,
|
16 |
+
"num_kv_heads": 8,
|
17 |
+
"rope_theta": 10000.0,
|
18 |
+
"tie_word_embeddings": false,
|
19 |
+
"use_cache": true,
|
20 |
+
"window_size": null,
|
21 |
+
"attn_impl": "parallel_attn"
|
22 |
+
}
|
download_checkpoint.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from huggingface_hub import HfApi, HfFolder, snapshot_download
|
4 |
+
|
5 |
+
def main(args):
|
6 |
+
api = HfApi()
|
7 |
+
token = HfFolder.get_token()
|
8 |
+
experiment_checkpoint_folder = os.path.join(args.experiment_checkpoint_folder, "checkpoint")
|
9 |
+
os.makedirs(
|
10 |
+
experiment_checkpoint_folder,
|
11 |
+
exist_ok=True
|
12 |
+
)
|
13 |
+
|
14 |
+
snapshot_download(
|
15 |
+
repo_id=args.repo_id,
|
16 |
+
token=token,
|
17 |
+
local_dir=experiment_checkpoint_folder,
|
18 |
+
)
|
19 |
+
|
20 |
+
if __name__ == "__main__":
|
21 |
+
parser = argparse.ArgumentParser(description="Download a checkpoint from Hugging Face Hub.")
|
22 |
+
parser.add_argument(
|
23 |
+
"--repo_id",
|
24 |
+
type=str,
|
25 |
+
required=True,
|
26 |
+
help="The repository ID on Hugging Face Hub.",
|
27 |
+
)
|
28 |
+
parser.add_argument(
|
29 |
+
"--experiment_checkpoint_folder",
|
30 |
+
type=str,
|
31 |
+
required=True,
|
32 |
+
help="The local directory to save the downloaded checkpoint.",
|
33 |
+
)
|
34 |
+
args = parser.parse_args()
|
35 |
+
main(args)
|
fla/layers/abc.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from einops import rearrange
|
12 |
+
|
13 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, RotaryEmbedding, ShortConvolution
|
14 |
+
from fla.modules.activations import swiglu, swish
|
15 |
+
from fla.ops.abc.chunk import chunk_abc
|
16 |
+
|
17 |
+
if TYPE_CHECKING:
|
18 |
+
from fla.models.utils import Cache
|
19 |
+
|
20 |
+
|
21 |
+
class ABCAttention(nn.Module):
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
hidden_size: int = 1024,
|
26 |
+
expand_k: float = 0.5,
|
27 |
+
expand_v: float = 1.0,
|
28 |
+
num_heads: int = 4,
|
29 |
+
use_short_conv: bool = False,
|
30 |
+
conv_size: int = 4,
|
31 |
+
conv_bias: bool = False,
|
32 |
+
num_slots: Optional[int] = None,
|
33 |
+
elementwise_affine: Optional[bool] = True,
|
34 |
+
norm_eps: float = 1e-5,
|
35 |
+
gate_low_rank_dim: int = 16,
|
36 |
+
gate_logit_normalizer: int = 16,
|
37 |
+
use_rope: bool = True,
|
38 |
+
use_input_gate: bool = False,
|
39 |
+
use_output_gate: bool = True,
|
40 |
+
use_norm: bool = True,
|
41 |
+
clamp_min: Optional[float] = -32,
|
42 |
+
clamp_max: Optional[float] = 32,
|
43 |
+
layer_idx: Optional[int] = None,
|
44 |
+
**kwargs
|
45 |
+
) -> ABCAttention:
|
46 |
+
super().__init__()
|
47 |
+
|
48 |
+
self.hidden_size = hidden_size
|
49 |
+
self.expand_k = expand_k
|
50 |
+
self.expand_v = expand_v
|
51 |
+
self.num_heads = num_heads
|
52 |
+
self.key_dim = int(self.hidden_size * self.expand_k)
|
53 |
+
self.value_dim = int(self.hidden_size * self.expand_v)
|
54 |
+
self.head_k_dim = self.key_dim // self.num_heads
|
55 |
+
self.head_v_dim = self.value_dim // self.num_heads
|
56 |
+
|
57 |
+
self.use_short_conv = use_short_conv
|
58 |
+
self.conv_size = conv_size
|
59 |
+
self.conv_bias = conv_bias
|
60 |
+
|
61 |
+
self.gate_low_rank_dim = gate_low_rank_dim
|
62 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
63 |
+
|
64 |
+
self.use_rope = use_rope
|
65 |
+
self.use_input_gate = use_input_gate
|
66 |
+
self.use_output_gate = use_output_gate
|
67 |
+
self.use_norm = use_norm
|
68 |
+
|
69 |
+
if num_slots is None:
|
70 |
+
num_slots = self.head_k_dim
|
71 |
+
self.num_slots = num_slots
|
72 |
+
|
73 |
+
self.norm_eps = norm_eps
|
74 |
+
|
75 |
+
self.clamp_min = clamp_min
|
76 |
+
self.clamp_max = clamp_max
|
77 |
+
self.layer_idx = layer_idx
|
78 |
+
|
79 |
+
if layer_idx is None:
|
80 |
+
warnings.warn(
|
81 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
82 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
83 |
+
"when creating this class."
|
84 |
+
)
|
85 |
+
|
86 |
+
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
87 |
+
self.k_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
88 |
+
self.v_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
|
89 |
+
|
90 |
+
if use_output_gate:
|
91 |
+
self.g_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
|
92 |
+
self.s_proj = nn.Linear(self.hidden_size, self.num_heads * self.num_slots, bias=False)
|
93 |
+
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
|
94 |
+
|
95 |
+
if use_short_conv:
|
96 |
+
self.conv_size = conv_size
|
97 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
98 |
+
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
99 |
+
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation='silu')
|
100 |
+
|
101 |
+
if self.use_norm:
|
102 |
+
if self.use_output_gate:
|
103 |
+
self.g_norm = FusedRMSNormGated(
|
104 |
+
hidden_size=self.head_v_dim,
|
105 |
+
elementwise_affine=elementwise_affine,
|
106 |
+
eps=norm_eps
|
107 |
+
)
|
108 |
+
else:
|
109 |
+
self.g_norm = RMSNorm(
|
110 |
+
hidden_size=self.head_v_dim,
|
111 |
+
elementwise_affine=elementwise_affine,
|
112 |
+
eps=norm_eps
|
113 |
+
)
|
114 |
+
|
115 |
+
if self.use_rope:
|
116 |
+
self.rotary = RotaryEmbedding(self.head_k_dim)
|
117 |
+
|
118 |
+
def forward(
|
119 |
+
self,
|
120 |
+
hidden_states: torch.Tensor,
|
121 |
+
attention_mask: Optional[torch.Tensor] = None,
|
122 |
+
past_key_values: Optional[Cache] = None,
|
123 |
+
use_cache: Optional[bool] = False,
|
124 |
+
output_attentions: Optional[bool] = False,
|
125 |
+
**kwargs
|
126 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
127 |
+
if attention_mask is not None:
|
128 |
+
assert len(attention_mask.shape) == 2, (
|
129 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
130 |
+
"for padding purposes (0 indicating padding). "
|
131 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
132 |
+
)
|
133 |
+
|
134 |
+
last_state = None
|
135 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
136 |
+
last_state = past_key_values[self.layer_idx]
|
137 |
+
|
138 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
139 |
+
if cu_seqlens is not None:
|
140 |
+
raise NotImplementedError("Training with cu_seqlens is not supported yet for ABCAttention")
|
141 |
+
if self.use_short_conv:
|
142 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
143 |
+
if last_state is not None:
|
144 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
145 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
146 |
+
q, conv_state_q = self.q_conv1d(
|
147 |
+
x=self.q_proj(hidden_states),
|
148 |
+
mask=conv_mask,
|
149 |
+
cache=conv_state_q,
|
150 |
+
output_final_state=use_cache,
|
151 |
+
cu_seqlens=cu_seqlens
|
152 |
+
)
|
153 |
+
k, conv_state_k = self.k_conv1d(
|
154 |
+
x=self.k_proj(hidden_states),
|
155 |
+
mask=conv_mask,
|
156 |
+
cache=conv_state_k,
|
157 |
+
output_final_state=use_cache,
|
158 |
+
cu_seqlens=cu_seqlens
|
159 |
+
)
|
160 |
+
v, conv_state_v = self.v_conv1d(
|
161 |
+
x=self.v_proj(hidden_states),
|
162 |
+
mask=conv_mask,
|
163 |
+
cache=conv_state_v,
|
164 |
+
output_final_state=use_cache,
|
165 |
+
cu_seqlens=cu_seqlens
|
166 |
+
)
|
167 |
+
else:
|
168 |
+
q = self.q_proj(hidden_states)
|
169 |
+
k = self.k_proj(hidden_states)
|
170 |
+
v = self.v_proj(hidden_states)
|
171 |
+
|
172 |
+
if self.use_input_gate:
|
173 |
+
q, k, v = map(lambda x: swish(x), (q, k, v))
|
174 |
+
# dealing with left-padding
|
175 |
+
if attention_mask is not None:
|
176 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
177 |
+
|
178 |
+
q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_k_dim), (q, k))
|
179 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_v_dim)
|
180 |
+
if self.use_rope:
|
181 |
+
seqlen_offset = 0
|
182 |
+
if past_key_values is not None:
|
183 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
184 |
+
q, k = self.rotary(q, k, seqlen_offset=seqlen_offset)
|
185 |
+
|
186 |
+
s = rearrange(self.s_proj(hidden_states), '... (h m) -> ... h m', m=self.num_slots)
|
187 |
+
s = s.clamp_(self.clamp_min, self.clamp_max)
|
188 |
+
|
189 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
190 |
+
o, recurrent_state = chunk_abc(
|
191 |
+
q=q,
|
192 |
+
k=k,
|
193 |
+
v=v,
|
194 |
+
s=s,
|
195 |
+
initial_state=recurrent_state,
|
196 |
+
output_final_state=use_cache,
|
197 |
+
head_first=False
|
198 |
+
)
|
199 |
+
if past_key_values is not None:
|
200 |
+
past_key_values.update(
|
201 |
+
recurrent_state=recurrent_state,
|
202 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
203 |
+
layer_idx=self.layer_idx,
|
204 |
+
offset=q.shape[1]
|
205 |
+
)
|
206 |
+
|
207 |
+
if self.use_norm and not self.use_output_gate:
|
208 |
+
o = self.g_norm(o)
|
209 |
+
elif self.use_output_gate:
|
210 |
+
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim)
|
211 |
+
o = self.g_norm(o, g) if self.use_norm else swiglu(g, o)
|
212 |
+
o = rearrange(o, '... h d -> ... (h d)')
|
213 |
+
o = self.o_proj(o)
|
214 |
+
|
215 |
+
return o, None, past_key_values
|
216 |
+
|
217 |
+
def state_size(self, seq_len: int = 2048):
|
218 |
+
return 2 * self.num_slots * self.hidden_size
|
fla/layers/based.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
"""
|
5 |
+
Linear attention in Based.
|
6 |
+
https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from einops import rearrange
|
12 |
+
|
13 |
+
from fla.modules.feature_map import TaylorFeatureMap
|
14 |
+
from fla.ops.based import parallel_based
|
15 |
+
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn
|
16 |
+
|
17 |
+
|
18 |
+
class BasedLinearAttention(nn.Module):
|
19 |
+
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
hidden_size: int,
|
23 |
+
feature_dim: int = 16,
|
24 |
+
num_key_value_heads: int = 12,
|
25 |
+
num_heads: int = 12,
|
26 |
+
feature_name: str = "taylor_exp",
|
27 |
+
eps: float = 1e-12,
|
28 |
+
causal: bool = True,
|
29 |
+
mode: str = "parallel",
|
30 |
+
):
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.hidden_size = hidden_size
|
34 |
+
self.mode = mode
|
35 |
+
self.feature_name = feature_name
|
36 |
+
self.feature_dim = feature_dim
|
37 |
+
self.num_key_value_heads = num_key_value_heads
|
38 |
+
self.num_heads = num_heads
|
39 |
+
self.head_dim = self.hidden_size // self.num_key_value_heads
|
40 |
+
assert self.hidden_size % self.head_dim == 0
|
41 |
+
self.causal = causal
|
42 |
+
|
43 |
+
self.q_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
44 |
+
self.k_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
45 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
46 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
47 |
+
self.dropout = nn.Identity()
|
48 |
+
self.feature_map = TaylorFeatureMap(feature_dim)
|
49 |
+
self.eps = eps
|
50 |
+
|
51 |
+
def forward(self, hidden_states: torch.Tensor, **kwargs):
|
52 |
+
mode = self.mode
|
53 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
54 |
+
q, k, v = map(lambda x: rearrange(x, "... (h d) -> ... h d", d=self.head_dim), [q, k, v])
|
55 |
+
if mode == "fused_chunk":
|
56 |
+
q, k = self.feature_map(q), self.feature_map(k)
|
57 |
+
o, _ = fused_chunk_linear_attn(q, k, v, normalize=True, scale=1, head_first=False)
|
58 |
+
elif mode == 'chunk':
|
59 |
+
q, k = self.feature_map(q), self.feature_map(k)
|
60 |
+
o, _ = chunk_linear_attn(q, k, v, normalize=True, scale=1, head_first=False)
|
61 |
+
elif mode == 'parallel':
|
62 |
+
assert q.shape[-1] <= 128
|
63 |
+
o = parallel_based(q, k, v, scale=1, use_norm=True, head_first=False)
|
64 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
65 |
+
o = self.o_proj(o)
|
66 |
+
o = self.dropout(o)
|
67 |
+
return o
|
68 |
+
|
69 |
+
# https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py#L119
|
70 |
+
|
71 |
+
def forward_reference(self, hidden_states: torch.Tensor, filters: torch.Tensor = None, *args, **kwargs):
|
72 |
+
"""
|
73 |
+
x (torch.Tensor): tensor of shape (b, d, t)
|
74 |
+
y (torch.Tensor): tensor of shape (b, d, t)
|
75 |
+
"""
|
76 |
+
# hidden_states = hidden_states.transpose(1, 2)
|
77 |
+
b, t, _ = hidden_states.size()
|
78 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
79 |
+
|
80 |
+
q = q.view(b, t, self.num_heads, self.feature_dim).transpose(1, 2)
|
81 |
+
k = k.view(b, t, self.num_key_value_heads, self.feature_dim).transpose(1, 2)
|
82 |
+
v = v.view(b, t, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
83 |
+
|
84 |
+
# Linear attention
|
85 |
+
q, k = self.feature_map(q), self.feature_map(k)
|
86 |
+
q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
|
87 |
+
|
88 |
+
# Compute attention
|
89 |
+
if self.causal:
|
90 |
+
y = ((q * (k * v).cumsum(2)).sum(-1) / ((q * k.cumsum(2)).sum(-1) + self.eps))
|
91 |
+
else:
|
92 |
+
y = ((q * (k * v).sum(2, True)).sum(-1) / ((q * k.sum(2, True)).sum(-1) + self.eps))
|
93 |
+
y = rearrange(y, 'b h t d -> b t (h d)')
|
94 |
+
y = self.o_proj(y.to(hidden_states.dtype))
|
95 |
+
y = self.dropout(y)
|
96 |
+
return y.to(hidden_states.dtype)
|
fla/layers/delta_net.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from einops import rearrange
|
11 |
+
from torch.nn import functional as F
|
12 |
+
|
13 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
|
14 |
+
from fla.ops.delta_rule import chunk_delta_rule, fused_recurrent_delta_rule
|
15 |
+
|
16 |
+
if TYPE_CHECKING:
|
17 |
+
from transformers.processing_utils import Unpack
|
18 |
+
|
19 |
+
from fla.models.utils import Cache
|
20 |
+
|
21 |
+
|
22 |
+
def elu_p1(x):
|
23 |
+
return (F.elu(x, 1., False) + 1.).to(x)
|
24 |
+
|
25 |
+
|
26 |
+
def sum_norm(x):
|
27 |
+
return (x / x.sum(-1, keepdim=True)).to(x)
|
28 |
+
|
29 |
+
|
30 |
+
class DeltaNet(nn.Module):
|
31 |
+
r"""
|
32 |
+
The layer implementaion for [Parallelizing Linear Transformers with the Delta Rule over Sequence Length](https://arxiv.org/abs/2406.06484). # noqa:
|
33 |
+
DeltaNet was originally proposed in [Linear Transformers Are Secretly Fast Weight Programmers](https://arxiv.org/abs/2102.11174). # noqa
|
34 |
+
|
35 |
+
Args:
|
36 |
+
mode (str, Optional):
|
37 |
+
Which DeltaNet kernel to use.
|
38 |
+
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
|
39 |
+
Default: `chunk`.
|
40 |
+
hidden_size (int, Optional):
|
41 |
+
The hidden size of the input. Default: 1024.
|
42 |
+
expand_k (float, Optional):
|
43 |
+
The expansion ratio for the key dim. Default: 1.0.
|
44 |
+
expand_v (float, Optional):
|
45 |
+
The expansion ratio for the value dim. Default: 1.0.
|
46 |
+
num_heads (int, Optional):
|
47 |
+
The number of heads. Default: 4.
|
48 |
+
use_beta (bool, Optional):
|
49 |
+
Whether to use beta. Default: `True`.
|
50 |
+
use_gate (bool, Optional):
|
51 |
+
Whether to use output gate. Default: `False`.
|
52 |
+
use_short_conv (bool, Optional):
|
53 |
+
Whether to use short convolutions. Default: `True`.
|
54 |
+
conv_size (int, Optional):
|
55 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
56 |
+
conv_bias (bool, Optional):
|
57 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
58 |
+
allow_neg_eigval (bool, Optional):
|
59 |
+
Allow negative eigenvalues. Default: `False`. If set to `True`, the beta will be multiplied by 2.
|
60 |
+
See reference: [Unlocking State-Tracking in Linear RNNs Through Negative Eigenvalues](https://arxiv.org/abs/2411.12537)
|
61 |
+
layer_idx (int, Optional):
|
62 |
+
The index of the layer. Default: None.
|
63 |
+
norm_eps (float, Optional):
|
64 |
+
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
65 |
+
qk_activation (str, Optional):
|
66 |
+
The activation function for the query and key. Default: `silu`.
|
67 |
+
qk_norm (str, Optional):
|
68 |
+
The normalization method for the query and key. Default: `l2`.
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
mode: str = 'chunk',
|
74 |
+
d_model: int = None,
|
75 |
+
hidden_size: int = 1024,
|
76 |
+
expand_k: float = 1.0,
|
77 |
+
expand_v: float = 1.0,
|
78 |
+
num_heads: int = 4,
|
79 |
+
use_beta: bool = True,
|
80 |
+
use_gate: bool = False,
|
81 |
+
use_short_conv: bool = True,
|
82 |
+
conv_size: int = 4,
|
83 |
+
conv_bias: bool = False,
|
84 |
+
allow_neg_eigval: bool = False,
|
85 |
+
layer_idx: int = None,
|
86 |
+
qk_activation: str = 'silu',
|
87 |
+
qk_norm: str = 'l2',
|
88 |
+
norm_eps: float = 1e-5,
|
89 |
+
**kwargs
|
90 |
+
) -> DeltaNet:
|
91 |
+
super().__init__()
|
92 |
+
|
93 |
+
self.mode = mode
|
94 |
+
self.qk_activation = qk_activation
|
95 |
+
self.qk_norm = qk_norm
|
96 |
+
|
97 |
+
assert self.qk_activation in ['silu', 'relu', 'elu', 'identity']
|
98 |
+
assert self.qk_norm in ['l2', 'sum']
|
99 |
+
|
100 |
+
if d_model is not None:
|
101 |
+
hidden_size = d_model
|
102 |
+
self.hidden_size = hidden_size
|
103 |
+
self.expand_k = expand_k
|
104 |
+
self.expand_v = expand_v
|
105 |
+
self.num_heads = num_heads
|
106 |
+
self.use_gate = use_gate
|
107 |
+
self.use_short_conv = use_short_conv
|
108 |
+
self.conv_size = conv_size
|
109 |
+
self.conv_bias = conv_bias
|
110 |
+
self.allow_neg_eigval = allow_neg_eigval
|
111 |
+
|
112 |
+
self.key_dim = int(hidden_size * expand_k)
|
113 |
+
self.value_dim = int(hidden_size * expand_v)
|
114 |
+
self.head_k_dim = self.key_dim // num_heads
|
115 |
+
self.head_v_dim = self.value_dim // num_heads
|
116 |
+
self.layer_idx = layer_idx
|
117 |
+
|
118 |
+
self.silu = nn.SiLU()
|
119 |
+
if mode == 'fused_chunk':
|
120 |
+
raise NotImplementedError("fused_chunk_delta_rule is now deprecated. Please use `chunk_delta_rule` instead.")
|
121 |
+
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
122 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
123 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
124 |
+
|
125 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
126 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
127 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
128 |
+
|
129 |
+
self.use_beta = use_beta
|
130 |
+
if self.use_beta:
|
131 |
+
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
|
132 |
+
if use_short_conv:
|
133 |
+
self.conv_size = conv_size
|
134 |
+
self.q_conv1d = ShortConvolution(
|
135 |
+
hidden_size=self.key_dim,
|
136 |
+
kernel_size=conv_size,
|
137 |
+
activation='silu' if qk_activation == 'silu' else None
|
138 |
+
)
|
139 |
+
self.k_conv1d = ShortConvolution(
|
140 |
+
hidden_size=self.key_dim,
|
141 |
+
kernel_size=conv_size,
|
142 |
+
activation='silu' if qk_activation == 'silu' else None
|
143 |
+
)
|
144 |
+
self.v_conv1d = ShortConvolution(
|
145 |
+
hidden_size=self.value_dim,
|
146 |
+
kernel_size=conv_size,
|
147 |
+
activation='silu'
|
148 |
+
)
|
149 |
+
else:
|
150 |
+
raise UserWarning(
|
151 |
+
"ShortConvolution is crucial to the performance. "
|
152 |
+
"Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing."
|
153 |
+
)
|
154 |
+
if use_gate:
|
155 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
156 |
+
self.o_norm = FusedRMSNormGated(self.head_v_dim, eps=norm_eps)
|
157 |
+
else:
|
158 |
+
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)
|
159 |
+
|
160 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
161 |
+
|
162 |
+
def forward(
|
163 |
+
self,
|
164 |
+
hidden_states: torch.Tensor,
|
165 |
+
attention_mask: Optional[torch.Tensor] = None,
|
166 |
+
past_key_values: Optional[Cache] = None,
|
167 |
+
use_cache: Optional[bool] = False,
|
168 |
+
output_attentions: Optional[bool] = False,
|
169 |
+
**kwargs: Unpack[Dict]
|
170 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
171 |
+
if attention_mask is not None:
|
172 |
+
assert len(attention_mask.shape) == 2, (
|
173 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
174 |
+
"for padding purposes (0 indicating padding). "
|
175 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
176 |
+
)
|
177 |
+
|
178 |
+
# change to inference mode.
|
179 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
180 |
+
|
181 |
+
last_state = None
|
182 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
183 |
+
last_state = past_key_values[self.layer_idx]
|
184 |
+
|
185 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
186 |
+
if self.use_short_conv:
|
187 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
188 |
+
if last_state is not None:
|
189 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
190 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
191 |
+
q, conv_state_q = self.q_conv1d(
|
192 |
+
x=self.q_proj(hidden_states),
|
193 |
+
mask=conv_mask,
|
194 |
+
cache=conv_state_q,
|
195 |
+
output_final_state=use_cache,
|
196 |
+
cu_seqlens=cu_seqlens
|
197 |
+
)
|
198 |
+
k, conv_state_k = self.k_conv1d(
|
199 |
+
x=self.k_proj(hidden_states),
|
200 |
+
mask=conv_mask,
|
201 |
+
cache=conv_state_k,
|
202 |
+
output_final_state=use_cache,
|
203 |
+
cu_seqlens=cu_seqlens
|
204 |
+
)
|
205 |
+
v, conv_state_v = self.v_conv1d(
|
206 |
+
x=self.v_proj(hidden_states),
|
207 |
+
mask=conv_mask,
|
208 |
+
cache=conv_state_v,
|
209 |
+
output_final_state=use_cache,
|
210 |
+
cu_seqlens=cu_seqlens
|
211 |
+
)
|
212 |
+
else:
|
213 |
+
q = self.q_proj(hidden_states)
|
214 |
+
k = self.k_proj(hidden_states)
|
215 |
+
if self.qk_activation == 'silu':
|
216 |
+
q, k = self.silu(q), self.silu(k)
|
217 |
+
v = self.silu(self.v_proj(hidden_states))
|
218 |
+
|
219 |
+
q, k = map(lambda x: rearrange(x, '... (h d) -> ... h d', d=self.head_k_dim), (q, k))
|
220 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_v_dim)
|
221 |
+
if self.qk_activation != 'silu':
|
222 |
+
if self.qk_activation == 'relu':
|
223 |
+
q, k = q.relu(), k.relu()
|
224 |
+
elif self.qk_activation == 'elu':
|
225 |
+
q, k = elu_p1(q), elu_p1(k)
|
226 |
+
elif self.qk_activation == 'identity':
|
227 |
+
pass
|
228 |
+
else:
|
229 |
+
raise NotImplementedError
|
230 |
+
|
231 |
+
if self.qk_norm == 'sum':
|
232 |
+
q = sum_norm(q).to(q)
|
233 |
+
k = sum_norm(k).to(k)
|
234 |
+
|
235 |
+
if self.use_beta:
|
236 |
+
beta = self.b_proj(hidden_states).sigmoid()
|
237 |
+
else:
|
238 |
+
beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])
|
239 |
+
|
240 |
+
if self.allow_neg_eigval:
|
241 |
+
beta = beta * 2.
|
242 |
+
|
243 |
+
# dealing with padding
|
244 |
+
if attention_mask is not None:
|
245 |
+
beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None])
|
246 |
+
|
247 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
248 |
+
if mode == 'fused_recurrent':
|
249 |
+
o, recurrent_state = fused_recurrent_delta_rule(
|
250 |
+
q=q,
|
251 |
+
k=k,
|
252 |
+
v=v,
|
253 |
+
beta=beta,
|
254 |
+
initial_state=recurrent_state,
|
255 |
+
output_final_state=use_cache,
|
256 |
+
cu_seqlens=cu_seqlens,
|
257 |
+
head_first=False,
|
258 |
+
use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
|
259 |
+
)
|
260 |
+
elif mode == 'chunk':
|
261 |
+
o, recurrent_state = chunk_delta_rule(
|
262 |
+
q=q,
|
263 |
+
k=k,
|
264 |
+
v=v,
|
265 |
+
beta=beta,
|
266 |
+
initial_state=recurrent_state,
|
267 |
+
output_final_state=use_cache,
|
268 |
+
cu_seqlens=cu_seqlens,
|
269 |
+
head_first=False,
|
270 |
+
use_qk_l2norm_in_kernel=True if self.qk_norm == 'l2' else False
|
271 |
+
)
|
272 |
+
else:
|
273 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
274 |
+
|
275 |
+
if past_key_values is not None:
|
276 |
+
past_key_values.update(
|
277 |
+
recurrent_state=recurrent_state,
|
278 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
279 |
+
layer_idx=self.layer_idx,
|
280 |
+
offset=q.shape[1]
|
281 |
+
)
|
282 |
+
|
283 |
+
if self.use_gate:
|
284 |
+
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim)
|
285 |
+
o = self.o_norm(o, g)
|
286 |
+
else:
|
287 |
+
o = self.o_norm(o)
|
288 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
289 |
+
o = self.o_proj(o)
|
290 |
+
|
291 |
+
return o, None, past_key_values
|
fla/layers/forgetting_attn.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from einops import rearrange
|
13 |
+
from transformers.utils import logging
|
14 |
+
|
15 |
+
from fla.modules import GroupNorm
|
16 |
+
from fla.ops.forgetting_attn.parallel import parallel_forgetting_attn
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from fla.models.utils import Cache
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class ForgettingAttention(nn.Module):
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
hidden_size: int = 2048,
|
30 |
+
num_heads: int = 32,
|
31 |
+
num_kv_heads: Optional[int] = None,
|
32 |
+
qkv_bias: bool = False,
|
33 |
+
qk_norm: bool = False,
|
34 |
+
window_size: Optional[int] = None,
|
35 |
+
use_output_gate: bool = False,
|
36 |
+
layer_idx: int = None
|
37 |
+
):
|
38 |
+
super().__init__()
|
39 |
+
|
40 |
+
self.hidden_size = hidden_size
|
41 |
+
self.num_heads = num_heads
|
42 |
+
if num_kv_heads is None:
|
43 |
+
self.num_kv_heads = self.num_heads
|
44 |
+
else:
|
45 |
+
self.num_kv_heads = num_kv_heads
|
46 |
+
self.num_kv_groups = num_heads // self.num_kv_heads
|
47 |
+
self.head_dim = self.hidden_size // self.num_heads
|
48 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
49 |
+
self.qkv_bias = qkv_bias
|
50 |
+
self.qk_norm = qk_norm
|
51 |
+
|
52 |
+
self.window_size = window_size
|
53 |
+
self.use_output_gate = use_output_gate
|
54 |
+
self.layer_idx = layer_idx
|
55 |
+
|
56 |
+
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=self.qkv_bias)
|
57 |
+
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
58 |
+
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=self.qkv_bias)
|
59 |
+
self.f_proj = nn.Linear(self.hidden_size, self.num_heads, bias=True)
|
60 |
+
|
61 |
+
if use_output_gate:
|
62 |
+
self.g_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
63 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
64 |
+
|
65 |
+
if qk_norm:
|
66 |
+
self.q_norm = GroupNorm(
|
67 |
+
num_groups=self.num_heads,
|
68 |
+
hidden_size=self.hidden_size,
|
69 |
+
is_rms_norm=True,
|
70 |
+
)
|
71 |
+
self.k_norm = GroupNorm(
|
72 |
+
num_groups=self.num_kv_heads,
|
73 |
+
hidden_size=self.kv_dim,
|
74 |
+
is_rms_norm=True,
|
75 |
+
)
|
76 |
+
|
77 |
+
def forward(
|
78 |
+
self,
|
79 |
+
hidden_states: torch.Tensor,
|
80 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
81 |
+
past_key_values: Optional[Cache] = None,
|
82 |
+
output_attentions: bool = False,
|
83 |
+
use_cache: bool = False,
|
84 |
+
**kwargs,
|
85 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
86 |
+
if attention_mask is not None:
|
87 |
+
assert len(attention_mask.shape) == 2, (
|
88 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
89 |
+
"for padding purposes (0 indicating padding). "
|
90 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
91 |
+
)
|
92 |
+
|
93 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
94 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
95 |
+
f = F.logsigmoid(self.f_proj(hidden_states).float())
|
96 |
+
if self.qk_norm:
|
97 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
98 |
+
|
99 |
+
q = rearrange(q, '... (h d) -> ... h d', d=self.head_dim)
|
100 |
+
k = rearrange(k, '... (h d) -> ... h d', d=self.head_dim)
|
101 |
+
v = rearrange(v, '... (h d) -> ... h d', d=self.head_dim)
|
102 |
+
|
103 |
+
o = parallel_forgetting_attn(q, k, v, f, cu_seqlens=cu_seqlens)
|
104 |
+
o = rearrange(o, '... h d -> ... (h d)')
|
105 |
+
if self.use_output_gate:
|
106 |
+
o = self.g_proj(hidden_states).sigmoid() * o
|
107 |
+
o = self.o_proj(o)
|
108 |
+
|
109 |
+
return o, None, past_key_values
|
fla/layers/gated_deltanet.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import math
|
7 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from einops import rearrange
|
12 |
+
from torch.nn import functional as F
|
13 |
+
|
14 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
|
15 |
+
from fla.ops.gated_delta_rule import chunk_gated_delta_rule, fused_recurrent_gated_delta_rule
|
16 |
+
|
17 |
+
if TYPE_CHECKING:
|
18 |
+
from transformers.processing_utils import Unpack
|
19 |
+
|
20 |
+
from fla.models.utils import Cache
|
21 |
+
|
22 |
+
|
23 |
+
@torch.compile
|
24 |
+
def elu_p1(x):
|
25 |
+
return (F.elu(x, 1., False) + 1.).to(x)
|
26 |
+
|
27 |
+
|
28 |
+
@torch.compile
|
29 |
+
def sum_norm(x):
|
30 |
+
return (x / x.sum(-1, keepdim=True)).to(x)
|
31 |
+
|
32 |
+
|
33 |
+
class GatedDeltaNet(nn.Module):
|
34 |
+
"""
|
35 |
+
The layer implementaion for [Gated Delta Networks: Improving Mamba2 with Delta Rule](https://arxiv.org/abs/2412.06464). # noqa
|
36 |
+
|
37 |
+
Similar to Mamba2, each layer contains around 6*hidden_size*hidden_size parameters.
|
38 |
+
|
39 |
+
Parameter alloation when use_gate=True:
|
40 |
+
- 0.75 * hidden_size * hidden_size for the q_proj and k_proj each
|
41 |
+
- 1.5 * hidden_size * hidden_size for the v_proj, g_proj and o_proj each
|
42 |
+
- Others are ignorably small.
|
43 |
+
- In total = 0.75 * 2 + 1.5 * 3 = 6 * hidden_size * hidden_size
|
44 |
+
NOTE: num_heads * head_dim = 0.75 * hidden_size, please make sure to set the correct num_heads and head_dim.
|
45 |
+
|
46 |
+
Parameter allocation when use_gate=False:
|
47 |
+
- 1 * hidden_size * hidden_size for the q_proj and k_proj each
|
48 |
+
- 2 * hidden_size * hidden_size for the v_proj and o_proj each
|
49 |
+
- Others are ignorably small.
|
50 |
+
- In total = 1 * 2 + 2 * 2 = 6 * hidden_size * hidden_size
|
51 |
+
|
52 |
+
Args:
|
53 |
+
hidden_size (int, Optional):
|
54 |
+
The hidden size of the input. Default: 2048.
|
55 |
+
expand_v (float, Optional):
|
56 |
+
The expansion ratio for the value dim. Default: 2.0.
|
57 |
+
head_dim (int, Optional):
|
58 |
+
The dimension of each head. Default: 256.
|
59 |
+
num_heads (int, Optional):
|
60 |
+
The number of heads. Default: 4.
|
61 |
+
mode (str, Optional):
|
62 |
+
Which Gated DeltaNet kernel to use.
|
63 |
+
Currently available: `chunk` and `fused_recurrent`.
|
64 |
+
Default: `chunk`.
|
65 |
+
use_beta (bool, Optional):
|
66 |
+
Whether to use beta. Default: `True`.
|
67 |
+
use_gate (bool, Optional):
|
68 |
+
Whether to use output gate. Default: `True`.
|
69 |
+
use_short_conv (bool, Optional):
|
70 |
+
Whether to use short convolutions. Default: `True`.
|
71 |
+
conv_size (int, Optional):
|
72 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
73 |
+
conv_bias (bool, Optional):
|
74 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
75 |
+
layer_idx (int, Optional):
|
76 |
+
The index of the layer. Default: None.
|
77 |
+
norm_eps (float, Optional):
|
78 |
+
The epsilon value for the normalization layer. Default: 1e-5.
|
79 |
+
"""
|
80 |
+
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
hidden_size: int = 2048,
|
84 |
+
expand_v: float = 2,
|
85 |
+
head_dim: int = 256,
|
86 |
+
num_heads: int = 6,
|
87 |
+
mode: str = 'chunk',
|
88 |
+
use_gate: bool = True,
|
89 |
+
use_short_conv: bool = True,
|
90 |
+
conv_size: int = 4,
|
91 |
+
conv_bias: bool = False,
|
92 |
+
layer_idx: int = None,
|
93 |
+
norm_eps: float = 1e-5,
|
94 |
+
**kwargs
|
95 |
+
) -> GatedDeltaNet:
|
96 |
+
super().__init__()
|
97 |
+
|
98 |
+
self.mode = mode
|
99 |
+
|
100 |
+
self.hidden_size = hidden_size
|
101 |
+
self.expand_v = expand_v
|
102 |
+
|
103 |
+
self.use_gate = use_gate
|
104 |
+
self.use_short_conv = use_short_conv
|
105 |
+
self.conv_size = conv_size
|
106 |
+
self.conv_bias = conv_bias
|
107 |
+
|
108 |
+
self.head_dim = head_dim
|
109 |
+
self.num_heads = num_heads
|
110 |
+
|
111 |
+
self.key_dim = int(self.num_heads * self.head_dim)
|
112 |
+
self.value_dim = int(self.key_dim * self.expand_v)
|
113 |
+
self.head_k_dim = head_dim
|
114 |
+
self.head_v_dim = int(head_dim * self.expand_v)
|
115 |
+
self.layer_idx = layer_idx
|
116 |
+
|
117 |
+
# Consistency check: Ensure expand_v produces integer values
|
118 |
+
if not math.isclose(self.key_dim * expand_v, self.value_dim, rel_tol=1e-5):
|
119 |
+
raise ValueError(
|
120 |
+
f"expand_v={expand_v} does not produce an integer value when multiplied by key_dim={self.key_dim}. "
|
121 |
+
f"Resulting value_dim would be {self.key_dim * expand_v}, which is invalid for nn.Linear."
|
122 |
+
)
|
123 |
+
if not math.isclose(head_dim * expand_v, self.head_v_dim, rel_tol=1e-5):
|
124 |
+
raise ValueError(
|
125 |
+
f"expand_v={expand_v} does not produce an integer value when multiplied by head_dim={head_dim}. "
|
126 |
+
f"Resulting head_v_dim would be {head_dim * expand_v}, which is invalid for FusedRMSNormGated."
|
127 |
+
)
|
128 |
+
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
129 |
+
|
130 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
131 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
132 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
133 |
+
self.a_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
|
134 |
+
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
|
135 |
+
|
136 |
+
A = torch.empty(self.num_heads, dtype=torch.float32).uniform_(0, 16)
|
137 |
+
self.A_log = nn.Parameter(torch.log(A))
|
138 |
+
self.A_log._no_weight_decay = True
|
139 |
+
# hard coded for now
|
140 |
+
dt_min = 0.001
|
141 |
+
dt_max = 0.1
|
142 |
+
dt_init_floor = 1e-4
|
143 |
+
dt = torch.exp(
|
144 |
+
torch.rand(self.num_heads) * (math.log(dt_max) - math.log(dt_min))
|
145 |
+
+ math.log(dt_min)
|
146 |
+
)
|
147 |
+
dt = torch.clamp(dt, min=dt_init_floor)
|
148 |
+
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
149 |
+
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
150 |
+
self.dt_bias = nn.Parameter(inv_dt)
|
151 |
+
# Just to be explicit. Without this we already don't put wd on dt_bias because of the check
|
152 |
+
# name.endswith("bias") in param_grouping.py
|
153 |
+
self.dt_bias._no_weight_decay = True
|
154 |
+
|
155 |
+
if use_short_conv:
|
156 |
+
self.conv_size = conv_size
|
157 |
+
self.q_conv1d = ShortConvolution(
|
158 |
+
hidden_size=self.key_dim,
|
159 |
+
kernel_size=conv_size,
|
160 |
+
activation='silu'
|
161 |
+
)
|
162 |
+
self.k_conv1d = ShortConvolution(
|
163 |
+
hidden_size=self.key_dim,
|
164 |
+
kernel_size=conv_size,
|
165 |
+
activation='silu'
|
166 |
+
)
|
167 |
+
self.v_conv1d = ShortConvolution(
|
168 |
+
hidden_size=self.value_dim,
|
169 |
+
kernel_size=conv_size,
|
170 |
+
activation='silu'
|
171 |
+
)
|
172 |
+
else:
|
173 |
+
raise UserWarning(
|
174 |
+
"ShortConvolution is crucial to the performance. "
|
175 |
+
"Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing."
|
176 |
+
)
|
177 |
+
if use_gate:
|
178 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
179 |
+
self.o_norm = FusedRMSNormGated(self.head_v_dim, eps=norm_eps)
|
180 |
+
else:
|
181 |
+
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)
|
182 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
183 |
+
|
184 |
+
def forward(
|
185 |
+
self,
|
186 |
+
hidden_states: torch.Tensor,
|
187 |
+
attention_mask: Optional[torch.Tensor] = None,
|
188 |
+
past_key_values: Optional[Cache] = None,
|
189 |
+
use_cache: Optional[bool] = False,
|
190 |
+
output_attentions: Optional[bool] = False,
|
191 |
+
**kwargs: Unpack[Dict]
|
192 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
193 |
+
if attention_mask is not None:
|
194 |
+
assert len(attention_mask.shape) == 2, (
|
195 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
196 |
+
"for padding purposes (0 indicating padding). "
|
197 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
198 |
+
)
|
199 |
+
|
200 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
201 |
+
if self.training:
|
202 |
+
assert mode == 'chunk', "Only chunk mode is supported in training."
|
203 |
+
|
204 |
+
last_state = None
|
205 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
206 |
+
last_state = past_key_values[self.layer_idx]
|
207 |
+
|
208 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
209 |
+
if self.use_short_conv:
|
210 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
211 |
+
if last_state is not None:
|
212 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
213 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
214 |
+
q, conv_state_q = self.q_conv1d(
|
215 |
+
x=self.q_proj(hidden_states),
|
216 |
+
mask=conv_mask,
|
217 |
+
cache=conv_state_q,
|
218 |
+
output_final_state=use_cache,
|
219 |
+
cu_seqlens=cu_seqlens
|
220 |
+
)
|
221 |
+
k, conv_state_k = self.k_conv1d(
|
222 |
+
x=self.k_proj(hidden_states),
|
223 |
+
mask=conv_mask,
|
224 |
+
cache=conv_state_k,
|
225 |
+
output_final_state=use_cache,
|
226 |
+
cu_seqlens=cu_seqlens
|
227 |
+
)
|
228 |
+
v, conv_state_v = self.v_conv1d(
|
229 |
+
x=self.v_proj(hidden_states),
|
230 |
+
mask=conv_mask,
|
231 |
+
cache=conv_state_v,
|
232 |
+
output_final_state=use_cache,
|
233 |
+
cu_seqlens=cu_seqlens
|
234 |
+
)
|
235 |
+
else:
|
236 |
+
q = F.silu(self.q_proj(hidden_states))
|
237 |
+
k = F.silu(self.k_proj(hidden_states))
|
238 |
+
v = F.silu(self.v_proj(hidden_states))
|
239 |
+
|
240 |
+
q, k = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', d=self.head_k_dim), (q, k))
|
241 |
+
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
242 |
+
beta = self.b_proj(hidden_states).sigmoid()
|
243 |
+
g = -self.A_log.float().exp() * F.softplus(self.a_proj(hidden_states).float() + self.dt_bias)
|
244 |
+
|
245 |
+
# dealing with padding
|
246 |
+
if attention_mask is not None:
|
247 |
+
beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None])
|
248 |
+
g = g.mul(attention_mask[:, -g.shape[-2]:, None])
|
249 |
+
|
250 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
251 |
+
if mode == 'chunk':
|
252 |
+
o, recurrent_state = chunk_gated_delta_rule(
|
253 |
+
q=q,
|
254 |
+
k=k,
|
255 |
+
v=v,
|
256 |
+
g=g,
|
257 |
+
beta=beta,
|
258 |
+
initial_state=recurrent_state,
|
259 |
+
output_final_state=use_cache,
|
260 |
+
cu_seqlens=cu_seqlens,
|
261 |
+
head_first=False,
|
262 |
+
use_qk_l2norm_in_kernel=True
|
263 |
+
)
|
264 |
+
elif mode == 'fused_recurrent':
|
265 |
+
o, recurrent_state = fused_recurrent_gated_delta_rule(
|
266 |
+
q=q,
|
267 |
+
k=k,
|
268 |
+
v=v,
|
269 |
+
g=g,
|
270 |
+
beta=beta,
|
271 |
+
initial_state=recurrent_state,
|
272 |
+
output_final_state=use_cache,
|
273 |
+
cu_seqlens=cu_seqlens,
|
274 |
+
head_first=False,
|
275 |
+
use_qk_l2norm_in_kernel=True
|
276 |
+
)
|
277 |
+
if past_key_values is not None:
|
278 |
+
past_key_values.update(
|
279 |
+
recurrent_state=recurrent_state,
|
280 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
281 |
+
layer_idx=self.layer_idx,
|
282 |
+
offset=q.shape[1]
|
283 |
+
)
|
284 |
+
|
285 |
+
if self.use_gate:
|
286 |
+
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', d=self.head_v_dim)
|
287 |
+
o = self.o_norm(o, g)
|
288 |
+
else:
|
289 |
+
o = self.o_norm(o)
|
290 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
291 |
+
o = self.o_proj(o)
|
292 |
+
|
293 |
+
return o, None, past_key_values
|
fla/layers/gla.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from einops import rearrange, repeat
|
13 |
+
|
14 |
+
from fla.modules import FusedRMSNormGated, RMSNorm, ShortConvolution
|
15 |
+
from fla.modules.activations import ACT2FN
|
16 |
+
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from transformers.processing_utils import Unpack
|
20 |
+
|
21 |
+
from fla.models.utils import Cache
|
22 |
+
|
23 |
+
|
24 |
+
class GatedLinearAttention(nn.Module):
|
25 |
+
r"""
|
26 |
+
The layer implementaion for [Gated Linear Attention Transformers with Hardware-Efficient Training](https://arxiv.org/abs/2312.06635). # noqa
|
27 |
+
|
28 |
+
Args:
|
29 |
+
mode (str, Optional):
|
30 |
+
Which GLA kernel to use.
|
31 |
+
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
|
32 |
+
Default: `chunk`.
|
33 |
+
hidden_size (int, Optional):
|
34 |
+
The hidden size of the input. Default: 1024.
|
35 |
+
expand_k (float, Optional):
|
36 |
+
The expansion ratio for the key dim. Default: 0.5.
|
37 |
+
expand_v (float, Optional):
|
38 |
+
The expansion ratio for the value dim. Default: 1.0.
|
39 |
+
num_heads (int, Optional):
|
40 |
+
The number of heads. Default: 4.
|
41 |
+
num_kv_heads (int, Optional):
|
42 |
+
The number of key/value heads, used for MQA. Default: None.
|
43 |
+
feature_map (str, Optional):
|
44 |
+
Feature map function applied to queries/keys. Default: None.
|
45 |
+
use_short_conv (bool, Optional):
|
46 |
+
Whether to use short convolutions. Default: `False`.
|
47 |
+
conv_size (int, Optional):
|
48 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
49 |
+
conv_bias (bool, Optional):
|
50 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
51 |
+
use_output_gate (bool, Optional):
|
52 |
+
Whether to use output gate. Default: `True`.
|
53 |
+
gate_fn (str, Optional):
|
54 |
+
The activation function for the output gate. Default: `swish`.
|
55 |
+
elementwise_affine (bool, Optional):
|
56 |
+
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
|
57 |
+
norm_eps (float, Optional):
|
58 |
+
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
59 |
+
gate_logit_normalizer (int, Optional):
|
60 |
+
The normalizer for the gate logits, appied after `logsigmoid`. Default: 16.
|
61 |
+
gate_low_rank_dim (int, Optional):
|
62 |
+
The low rank dim for the gate projection. Default: 16.
|
63 |
+
clamp_min (float, Optional):
|
64 |
+
The minimum value for the gate logits. Default: None.
|
65 |
+
fuse_norm (bool, Optional):
|
66 |
+
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
|
67 |
+
layer_idx (int, Optional):
|
68 |
+
The index of the layer. Default: None.
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
mode: str = 'chunk',
|
74 |
+
hidden_size: int = 1024,
|
75 |
+
expand_k: float = 0.5,
|
76 |
+
expand_v: float = 1.0,
|
77 |
+
num_heads: int = 4,
|
78 |
+
num_kv_heads: Optional[int] = None,
|
79 |
+
feature_map: Optional[str] = None,
|
80 |
+
use_short_conv: bool = False,
|
81 |
+
conv_size: int = 4,
|
82 |
+
conv_bias: bool = False,
|
83 |
+
use_output_gate: bool = True,
|
84 |
+
gate_fn: str = 'swish',
|
85 |
+
elementwise_affine: Optional[bool] = True,
|
86 |
+
norm_eps: float = 1e-5,
|
87 |
+
gate_logit_normalizer: int = 16,
|
88 |
+
gate_low_rank_dim: int = 16,
|
89 |
+
clamp_min: Optional[float] = None,
|
90 |
+
fuse_norm: bool = True,
|
91 |
+
layer_idx: int = None,
|
92 |
+
) -> GatedLinearAttention:
|
93 |
+
super().__init__()
|
94 |
+
|
95 |
+
self.mode = mode
|
96 |
+
self.hidden_size = hidden_size
|
97 |
+
self.expand_k = expand_k
|
98 |
+
self.expand_v = expand_v
|
99 |
+
self.num_heads = num_heads
|
100 |
+
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
|
101 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
102 |
+
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
|
103 |
+
|
104 |
+
self.use_short_conv = use_short_conv
|
105 |
+
self.conv_size = conv_size
|
106 |
+
self.conv_bias = conv_bias
|
107 |
+
self.use_output_gate = use_output_gate
|
108 |
+
|
109 |
+
self.key_dim = int(hidden_size * expand_k)
|
110 |
+
self.value_dim = int(hidden_size * expand_v)
|
111 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
112 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
113 |
+
self.clamp_min = clamp_min
|
114 |
+
self.layer_idx = layer_idx
|
115 |
+
|
116 |
+
assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
|
117 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
118 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
119 |
+
|
120 |
+
self.head_k_dim = self.key_dim // num_heads
|
121 |
+
self.head_v_dim = self.value_dim // num_heads
|
122 |
+
|
123 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
124 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
|
125 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
|
126 |
+
if self.use_output_gate:
|
127 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
128 |
+
|
129 |
+
if use_short_conv:
|
130 |
+
self.conv_size = conv_size
|
131 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
132 |
+
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
133 |
+
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
134 |
+
|
135 |
+
self.gk_proj = nn.Sequential(nn.Linear(hidden_size, gate_low_rank_dim, bias=False),
|
136 |
+
nn.Linear(gate_low_rank_dim, self.key_dim_per_group, bias=True))
|
137 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
138 |
+
|
139 |
+
if gate_fn == 'swish' and fuse_norm and use_output_gate:
|
140 |
+
self.g_norm_swish_gate = FusedRMSNormGated(
|
141 |
+
hidden_size=self.head_v_dim,
|
142 |
+
elementwise_affine=elementwise_affine,
|
143 |
+
eps=norm_eps
|
144 |
+
)
|
145 |
+
self.fuse_norm_and_gate = True
|
146 |
+
else:
|
147 |
+
self.fuse_norm_and_gate = False
|
148 |
+
self.g_norm = RMSNorm(
|
149 |
+
hidden_size=self.head_v_dim,
|
150 |
+
elementwise_affine=elementwise_affine,
|
151 |
+
eps=norm_eps
|
152 |
+
)
|
153 |
+
self.gate_fn = ACT2FN[gate_fn]
|
154 |
+
|
155 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
156 |
+
|
157 |
+
def forward(
|
158 |
+
self,
|
159 |
+
hidden_states: torch.Tensor,
|
160 |
+
attention_mask: Optional[torch.Tensor] = None,
|
161 |
+
past_key_values: Optional[Cache] = None,
|
162 |
+
use_cache: Optional[bool] = False,
|
163 |
+
output_attentions: Optional[bool] = False,
|
164 |
+
**kwargs: Unpack[Dict]
|
165 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
166 |
+
if attention_mask is not None:
|
167 |
+
assert len(attention_mask.shape) == 2, (
|
168 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
169 |
+
"for padding purposes (0 indicating padding). "
|
170 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
171 |
+
)
|
172 |
+
|
173 |
+
# launching the triton kernel for just one token will actually be slower
|
174 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
175 |
+
|
176 |
+
last_state = None
|
177 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
178 |
+
last_state = past_key_values[self.layer_idx]
|
179 |
+
|
180 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
181 |
+
if self.use_short_conv:
|
182 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
183 |
+
if last_state is not None:
|
184 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
185 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
186 |
+
q, conv_state_q = self.q_conv1d(
|
187 |
+
x=self.q_proj(hidden_states),
|
188 |
+
mask=conv_mask,
|
189 |
+
cache=conv_state_q,
|
190 |
+
output_final_state=use_cache,
|
191 |
+
cu_seqlens=cu_seqlens
|
192 |
+
)
|
193 |
+
k, conv_state_k = self.k_conv1d(
|
194 |
+
x=self.k_proj(hidden_states),
|
195 |
+
mask=conv_mask,
|
196 |
+
cache=conv_state_k,
|
197 |
+
output_final_state=use_cache,
|
198 |
+
cu_seqlens=cu_seqlens
|
199 |
+
)
|
200 |
+
v, conv_state_v = self.v_conv1d(
|
201 |
+
x=self.v_proj(hidden_states),
|
202 |
+
mask=conv_mask,
|
203 |
+
cache=conv_state_v,
|
204 |
+
output_final_state=use_cache,
|
205 |
+
cu_seqlens=cu_seqlens
|
206 |
+
)
|
207 |
+
else:
|
208 |
+
q = self.q_proj(hidden_states)
|
209 |
+
k = self.k_proj(hidden_states)
|
210 |
+
v = self.v_proj(hidden_states)
|
211 |
+
gk = self.gk_proj(hidden_states)
|
212 |
+
|
213 |
+
if self.feature_map_fn is not None:
|
214 |
+
q, k = map(self.feature_map_fn, (q, k))
|
215 |
+
# dealing with left-padding
|
216 |
+
if attention_mask is not None:
|
217 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
218 |
+
q = rearrange(q, 'b t (h d) -> b t h d', d=self.head_k_dim)
|
219 |
+
if self.num_kv_groups > 1:
|
220 |
+
k, gk = (repeat(x, 'b t (h d) -> b t (h g) d', g=self.num_kv_groups, d=self.head_k_dim) for x in (k, gk))
|
221 |
+
v = repeat(v, 'b t (h d) -> b t (h g) d', g=self.num_kv_groups, d=self.head_v_dim)
|
222 |
+
else:
|
223 |
+
k, gk = (rearrange(x, 'b t (h d) -> b t h d', d=self.head_k_dim) for x in (k, gk))
|
224 |
+
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
225 |
+
gk = F.logsigmoid(gk) / self.gate_logit_normalizer
|
226 |
+
|
227 |
+
if self.clamp_min is not None:
|
228 |
+
gk = torch.clamp_min(gk, self.clamp_min)
|
229 |
+
|
230 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
231 |
+
if mode == 'fused_recurrent':
|
232 |
+
o, recurrent_state = fused_recurrent_gla(
|
233 |
+
q=q,
|
234 |
+
k=k,
|
235 |
+
v=v,
|
236 |
+
gk=gk,
|
237 |
+
initial_state=recurrent_state,
|
238 |
+
output_final_state=use_cache,
|
239 |
+
cu_seqlens=cu_seqlens,
|
240 |
+
head_first=False
|
241 |
+
)
|
242 |
+
elif mode == 'fused_chunk':
|
243 |
+
o, recurrent_state = fused_chunk_gla(
|
244 |
+
q=q,
|
245 |
+
k=k,
|
246 |
+
v=v,
|
247 |
+
g=gk,
|
248 |
+
initial_state=recurrent_state,
|
249 |
+
output_final_state=use_cache,
|
250 |
+
head_first=False
|
251 |
+
)
|
252 |
+
elif mode == 'chunk':
|
253 |
+
o, recurrent_state = chunk_gla(
|
254 |
+
q=q,
|
255 |
+
k=k,
|
256 |
+
v=v,
|
257 |
+
g=gk,
|
258 |
+
initial_state=recurrent_state,
|
259 |
+
output_final_state=use_cache,
|
260 |
+
cu_seqlens=cu_seqlens,
|
261 |
+
head_first=False
|
262 |
+
)
|
263 |
+
else:
|
264 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
265 |
+
|
266 |
+
if past_key_values is not None:
|
267 |
+
past_key_values.update(
|
268 |
+
recurrent_state=recurrent_state,
|
269 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
270 |
+
layer_idx=self.layer_idx,
|
271 |
+
offset=q.shape[1]
|
272 |
+
)
|
273 |
+
|
274 |
+
if self.use_output_gate:
|
275 |
+
g = self.g_proj(hidden_states)
|
276 |
+
if self.fuse_norm_and_gate:
|
277 |
+
g = rearrange(g, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
278 |
+
o = self.g_norm_swish_gate(o, g)
|
279 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
280 |
+
else:
|
281 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
282 |
+
o = o * self.gate_fn(g)
|
283 |
+
else:
|
284 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
285 |
+
o = self.o_proj(o)
|
286 |
+
|
287 |
+
return o, None, past_key_values
|
288 |
+
|
289 |
+
def state_size(self, **kwargs) -> int:
|
290 |
+
state_size = self.key_dim * self.head_v_dim
|
291 |
+
for module in self.children():
|
292 |
+
if isinstance(module, ShortConvolution):
|
293 |
+
state_size += module.state_size
|
294 |
+
return state_size
|
fla/layers/gsa.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Dict, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from einops import rearrange
|
13 |
+
|
14 |
+
from fla.modules import RMSNorm, ShortConvolution
|
15 |
+
from fla.modules.feature_map import ReLUFeatureMap, SwishFeatureMap, T2RFeatureMap
|
16 |
+
from fla.modules.layernorm import rms_norm_linear
|
17 |
+
from fla.ops.gsa import chunk_gsa, fused_recurrent_gsa
|
18 |
+
|
19 |
+
if TYPE_CHECKING:
|
20 |
+
from transformers.processing_utils import Unpack
|
21 |
+
|
22 |
+
from fla.models.utils import Cache
|
23 |
+
|
24 |
+
|
25 |
+
class GatedSlotAttention(nn.Module):
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
mode: str = 'chunk',
|
30 |
+
hidden_size: int = 1024,
|
31 |
+
expand_k: float = 1.,
|
32 |
+
expand_v: float = 1.,
|
33 |
+
num_heads: int = 4,
|
34 |
+
num_kv_heads: Optional[int] = None,
|
35 |
+
use_short_conv: bool = False,
|
36 |
+
conv_size: int = 4,
|
37 |
+
conv_bias: bool = False,
|
38 |
+
num_slots: Optional[int] = None,
|
39 |
+
elementwise_affine: Optional[bool] = True,
|
40 |
+
norm_eps: float = 1e-5,
|
41 |
+
gate_logit_normalizer: int = 8,
|
42 |
+
feature_map: str = 'swish',
|
43 |
+
use_output_gate: bool = False,
|
44 |
+
use_norm: bool = True,
|
45 |
+
layer_idx: Optional[int] = None,
|
46 |
+
scale: Optional[float] = 1.,
|
47 |
+
**kwargs
|
48 |
+
) -> GatedSlotAttention:
|
49 |
+
super().__init__()
|
50 |
+
|
51 |
+
self.mode = mode
|
52 |
+
self.hidden_size = hidden_size
|
53 |
+
self.expand_k = expand_k
|
54 |
+
self.expand_v = expand_v
|
55 |
+
self.num_heads = num_heads
|
56 |
+
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
|
57 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
58 |
+
self.key_dim = int(hidden_size * expand_k)
|
59 |
+
self.value_dim = int(hidden_size * expand_v)
|
60 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
61 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
62 |
+
self.head_k_dim = self.key_dim // self.num_heads
|
63 |
+
self.head_v_dim = self.value_dim // self.num_heads
|
64 |
+
|
65 |
+
self.use_short_conv = use_short_conv
|
66 |
+
self.conv_size = conv_size
|
67 |
+
self.conv_bias = conv_bias
|
68 |
+
|
69 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
70 |
+
|
71 |
+
self.use_output_gate = use_output_gate
|
72 |
+
self.use_norm = use_norm
|
73 |
+
self.scale = scale
|
74 |
+
|
75 |
+
if num_slots is None:
|
76 |
+
num_slots = self.head_k_dim
|
77 |
+
self.num_slots = num_slots
|
78 |
+
|
79 |
+
self.layer_idx = layer_idx
|
80 |
+
|
81 |
+
if layer_idx is None:
|
82 |
+
warnings.warn(
|
83 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
84 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
85 |
+
"when creating this class."
|
86 |
+
)
|
87 |
+
|
88 |
+
self.register_module('feature_map', None)
|
89 |
+
if feature_map == 'swish':
|
90 |
+
self.feature_map = SwishFeatureMap()
|
91 |
+
elif feature_map == 'relu':
|
92 |
+
self.feature_map = ReLUFeatureMap()
|
93 |
+
elif feature_map == 't2r':
|
94 |
+
self.feature_map = T2RFeatureMap(self.head_k_dim, self.head_k_dim)
|
95 |
+
else:
|
96 |
+
raise NotImplementedError(f"Feature map `{feature_map}` is not supported now.")
|
97 |
+
|
98 |
+
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
99 |
+
self.k_proj = nn.Linear(self.hidden_size, self.key_dim_per_group, bias=False)
|
100 |
+
self.v_proj = nn.Linear(self.hidden_size, self.value_dim_per_group, bias=False)
|
101 |
+
self.f_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.num_slots, bias=False)
|
102 |
+
|
103 |
+
if use_short_conv:
|
104 |
+
self.conv_size = conv_size
|
105 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
106 |
+
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
107 |
+
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
108 |
+
|
109 |
+
self.g_norm = RMSNorm(self.hidden_size, elementwise_affine, eps=norm_eps)
|
110 |
+
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
|
111 |
+
|
112 |
+
def forward(
|
113 |
+
self,
|
114 |
+
hidden_states: torch.Tensor,
|
115 |
+
attention_mask: Optional[torch.Tensor] = None,
|
116 |
+
past_key_values: Optional[Cache] = None,
|
117 |
+
use_cache: Optional[bool] = False,
|
118 |
+
output_attentions: Optional[bool] = False,
|
119 |
+
**kwargs: Unpack[Dict]
|
120 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
121 |
+
if attention_mask is not None:
|
122 |
+
assert len(attention_mask.shape) == 2, (
|
123 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
124 |
+
"for padding purposes (0 indicating padding). "
|
125 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
126 |
+
)
|
127 |
+
|
128 |
+
# launching the triton kernel for just one token will actually be slower
|
129 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
130 |
+
|
131 |
+
last_state = None
|
132 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
133 |
+
last_state = past_key_values[self.layer_idx]
|
134 |
+
|
135 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
136 |
+
if self.use_short_conv:
|
137 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
138 |
+
if last_state is not None:
|
139 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
140 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
141 |
+
q, conv_state_q = self.q_conv1d(
|
142 |
+
x=self.q_proj(hidden_states),
|
143 |
+
mask=conv_mask,
|
144 |
+
cache=conv_state_q,
|
145 |
+
output_final_state=use_cache,
|
146 |
+
cu_seqlens=cu_seqlens
|
147 |
+
)
|
148 |
+
k, conv_state_k = self.k_conv1d(
|
149 |
+
x=self.k_proj(hidden_states),
|
150 |
+
mask=conv_mask,
|
151 |
+
cache=conv_state_k,
|
152 |
+
output_final_state=use_cache,
|
153 |
+
cu_seqlens=cu_seqlens
|
154 |
+
)
|
155 |
+
v, conv_state_v = self.v_conv1d(
|
156 |
+
x=self.v_proj(hidden_states),
|
157 |
+
mask=conv_mask,
|
158 |
+
cache=conv_state_v,
|
159 |
+
output_final_state=use_cache,
|
160 |
+
cu_seqlens=cu_seqlens
|
161 |
+
)
|
162 |
+
else:
|
163 |
+
q = self.q_proj(hidden_states)
|
164 |
+
k = self.k_proj(hidden_states)
|
165 |
+
v = self.v_proj(hidden_states)
|
166 |
+
f = self.f_proj(hidden_states)
|
167 |
+
|
168 |
+
q = rearrange(q, 'b t (h d) -> b t h d', d=self.head_k_dim)
|
169 |
+
k = rearrange(k, 'b t (h d) -> b t h d', d=self.head_k_dim)
|
170 |
+
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
171 |
+
f = rearrange(f, 'b t (h m) -> b t h m', m=self.num_slots)
|
172 |
+
|
173 |
+
if self.feature_map is not None:
|
174 |
+
q, k = map(lambda x: self.feature_map(x), (q, k))
|
175 |
+
v = F.silu(v)
|
176 |
+
|
177 |
+
f = F.logsigmoid(f) / self.gate_logit_normalizer
|
178 |
+
s = (1 - f.exp()).to(f.dtype)
|
179 |
+
# dealing with left-padding
|
180 |
+
if attention_mask is not None:
|
181 |
+
s = s.mul_(attention_mask[:, -s.shape[1]:, None, None])
|
182 |
+
v = v.mul_(attention_mask[:, -v.shape[1]:, None, None])
|
183 |
+
|
184 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
185 |
+
if mode == 'fused_recurrent':
|
186 |
+
o, recurrent_state = fused_recurrent_gsa(
|
187 |
+
q=q,
|
188 |
+
k=k,
|
189 |
+
v=v,
|
190 |
+
s=s,
|
191 |
+
g=f,
|
192 |
+
initial_state=recurrent_state,
|
193 |
+
output_final_state=use_cache,
|
194 |
+
scale=self.scale,
|
195 |
+
cu_seqlens=cu_seqlens,
|
196 |
+
head_first=False
|
197 |
+
)
|
198 |
+
elif mode == 'chunk':
|
199 |
+
o, recurrent_state = chunk_gsa(
|
200 |
+
q=q,
|
201 |
+
k=k,
|
202 |
+
v=v,
|
203 |
+
s=s,
|
204 |
+
g=f,
|
205 |
+
initial_state=recurrent_state,
|
206 |
+
output_final_state=use_cache,
|
207 |
+
scale=self.scale,
|
208 |
+
cu_seqlens=cu_seqlens,
|
209 |
+
head_first=False
|
210 |
+
)
|
211 |
+
else:
|
212 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
213 |
+
|
214 |
+
if past_key_values is not None:
|
215 |
+
past_key_values.update(
|
216 |
+
recurrent_state=recurrent_state,
|
217 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
218 |
+
layer_idx=self.layer_idx,
|
219 |
+
offset=q.shape[1]
|
220 |
+
)
|
221 |
+
|
222 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
223 |
+
o = rms_norm_linear(F.silu(o), self.g_norm.weight, self.g_norm.bias, self.o_proj.weight, self.o_proj.bias)
|
224 |
+
return o, None, past_key_values
|
225 |
+
|
226 |
+
def state_size(self, *args, **kwargs) -> int:
|
227 |
+
return 2 * self.num_slots * self.hidden_size
|
fla/layers/rebased.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
"""
|
5 |
+
https://github.com/corl-team/rebased/blob/main/flash_linear_attention/fla/layers/rebased_fast.py
|
6 |
+
"""
|
7 |
+
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
from typing import Optional
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
from einops import rearrange
|
15 |
+
|
16 |
+
from fla.modules.feature_map import RebasedFeatureMap
|
17 |
+
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn
|
18 |
+
from fla.ops.rebased import parallel_rebased
|
19 |
+
|
20 |
+
|
21 |
+
class ReBasedLinearAttention(nn.Module):
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
hidden_size: int,
|
26 |
+
l_max: int = 2048,
|
27 |
+
feature_dim: int = 16,
|
28 |
+
num_key_value_heads: int = 16,
|
29 |
+
num_heads: int = 16,
|
30 |
+
use_gamma: Optional[bool] = True,
|
31 |
+
use_beta: Optional[bool] = True,
|
32 |
+
normalize: Optional[bool] = True,
|
33 |
+
causal: bool = True,
|
34 |
+
eps: float = 1e-5,
|
35 |
+
mode: str = "parallel",
|
36 |
+
layer_idx: Optional[int] = None,
|
37 |
+
**kwargs
|
38 |
+
) -> ReBasedLinearAttention:
|
39 |
+
super().__init__()
|
40 |
+
self.hidden_size = hidden_size
|
41 |
+
self.l_max = l_max
|
42 |
+
self.mode = mode
|
43 |
+
assert self.mode in ["fused_chunk", "parallel", 'chunk']
|
44 |
+
|
45 |
+
self.feature_dim = feature_dim
|
46 |
+
self.num_key_value_heads = num_key_value_heads
|
47 |
+
self.num_heads = num_heads
|
48 |
+
self.head_dim = self.hidden_size // self.num_key_value_heads
|
49 |
+
self.use_gamma = use_gamma
|
50 |
+
self.use_beta = use_beta
|
51 |
+
self.normalize = normalize
|
52 |
+
self.causal = causal
|
53 |
+
self.eps = eps
|
54 |
+
self.mode = mode
|
55 |
+
self.layer_idx = layer_idx
|
56 |
+
|
57 |
+
self.feature_map = RebasedFeatureMap(self.feature_dim, use_gamma, use_beta, normalize)
|
58 |
+
self.q_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
59 |
+
self.k_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
60 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
61 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
62 |
+
self.dropout = nn.Identity()
|
63 |
+
|
64 |
+
def forward(self, hidden_states: torch.Tensor, **kwargs):
|
65 |
+
mode = self.mode
|
66 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
67 |
+
q, k, v = map(lambda x: rearrange(x, "... (h d) -> ... h d", d=self.head_dim), [q, k, v])
|
68 |
+
q, k = self.feature_map(q, flatten=(mode != 'parallel')), self.feature_map(k, flatten=(mode != 'parallel'))
|
69 |
+
if mode == "fused_chunk":
|
70 |
+
o = fused_chunk_linear_attn(
|
71 |
+
q=q,
|
72 |
+
k=k,
|
73 |
+
v=v,
|
74 |
+
normalize=True,
|
75 |
+
scale=1,
|
76 |
+
head_first=False
|
77 |
+
)
|
78 |
+
elif mode == 'chunk':
|
79 |
+
o = chunk_linear_attn(
|
80 |
+
q=q,
|
81 |
+
k=k,
|
82 |
+
v=v,
|
83 |
+
normalize=True,
|
84 |
+
scale=1,
|
85 |
+
head_first=False
|
86 |
+
)
|
87 |
+
elif mode == 'parallel':
|
88 |
+
assert q.shape[-1] <= 128
|
89 |
+
o = parallel_rebased(
|
90 |
+
q=q,
|
91 |
+
k=k,
|
92 |
+
v=v,
|
93 |
+
eps=self.eps,
|
94 |
+
use_scale=True,
|
95 |
+
use_normalize=True,
|
96 |
+
head_first=False
|
97 |
+
)
|
98 |
+
o = self.o_proj(o)
|
99 |
+
o = self.dropout(o)
|
100 |
+
return o
|
101 |
+
|
102 |
+
# https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py#L119
|
103 |
+
def forward_reference(
|
104 |
+
self,
|
105 |
+
hidden_states: torch.Tensor,
|
106 |
+
filters: torch.Tensor = None,
|
107 |
+
*args,
|
108 |
+
**kwargs
|
109 |
+
):
|
110 |
+
"""
|
111 |
+
x (torch.Tensor): tensor of shape (b, d, t)
|
112 |
+
y (torch.Tensor): tensor of shape (b, d, t)
|
113 |
+
"""
|
114 |
+
b, t, _ = hidden_states.size()
|
115 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
116 |
+
|
117 |
+
q = q.view(b, t, -1, self.feature_dim).transpose(1, 2)
|
118 |
+
k = k.view(b, t, -1, self.feature_dim).transpose(1, 2)
|
119 |
+
v = v.view(b, t, -1, self.head_dim).transpose(1, 2)
|
120 |
+
|
121 |
+
# Linear attention
|
122 |
+
q, k = self.feature_map(q), self.feature_map(k)
|
123 |
+
q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
|
124 |
+
|
125 |
+
# Compute attention
|
126 |
+
if self.causal:
|
127 |
+
y = ((q * (k * v).cumsum(2)).sum(-1) / ((q * k.cumsum(2)).sum(-1) + self.eps))
|
128 |
+
else:
|
129 |
+
y = ((q * (k * v).sum(2, True)).sum(-1) / ((q * k.sum(2, True)).sum(-1) + self.eps))
|
130 |
+
y = rearrange(y, 'b h t d -> b t (h d)')
|
131 |
+
y = self.o_proj(y.to(hidden_states.dtype))
|
132 |
+
y = self.dropout(y)
|
133 |
+
return y.to(hidden_states.dtype)
|
fla/layers/rwkv7.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from einops import rearrange
|
11 |
+
from torch.nn import functional as F
|
12 |
+
|
13 |
+
from fla.layers.rwkv6 import LoRA
|
14 |
+
from fla.modules import GroupNorm
|
15 |
+
from fla.modules.l2norm import l2_norm
|
16 |
+
from fla.ops.rwkv7 import chunk_rwkv7, fused_recurrent_rwkv7
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from fla.models.utils import Cache
|
20 |
+
|
21 |
+
|
22 |
+
class RWKV7Attention(nn.Module):
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
mode: str = 'chunk',
|
27 |
+
hidden_size: int = 1024,
|
28 |
+
head_dim: Optional[int] = 64,
|
29 |
+
num_heads: Optional[int] = None,
|
30 |
+
decay_low_rank_dim: int = 64,
|
31 |
+
gate_low_rank_dim: int = 128,
|
32 |
+
a_low_rank_dim: int = 64,
|
33 |
+
v_low_rank_dim: int = 16,
|
34 |
+
elementwise_affine: Optional[bool] = True,
|
35 |
+
norm_eps: float = 1e-5,
|
36 |
+
layer_idx: int = None,
|
37 |
+
fuse_norm: bool = False,
|
38 |
+
value_dim: int = None,
|
39 |
+
**kwargs
|
40 |
+
) -> RWKV7Attention:
|
41 |
+
super().__init__()
|
42 |
+
|
43 |
+
self.mode = mode
|
44 |
+
assert mode in ['chunk', 'fused_recurrent'], f"Not supported mode `{mode}`."
|
45 |
+
self.hidden_size = hidden_size
|
46 |
+
|
47 |
+
self.key_dim = hidden_size
|
48 |
+
self.value_dim = value_dim if value_dim is not None else hidden_size
|
49 |
+
if head_dim is None and num_heads is None:
|
50 |
+
raise ValueError("Either `head_dim` or `num_heads` must be specified.")
|
51 |
+
elif head_dim is not None:
|
52 |
+
self.head_dim = head_dim
|
53 |
+
self.num_heads = int(hidden_size // head_dim)
|
54 |
+
elif num_heads is not None:
|
55 |
+
self.head_dim = int(hidden_size // num_heads)
|
56 |
+
self.num_heads = num_heads
|
57 |
+
self.head_v_dim = int(self.value_dim // self.num_heads)
|
58 |
+
|
59 |
+
self.decay_low_rank_dim = decay_low_rank_dim
|
60 |
+
self.gate_low_rank_dim = gate_low_rank_dim
|
61 |
+
self.a_low_rank_dim = a_low_rank_dim
|
62 |
+
self.v_low_rank_dim = v_low_rank_dim
|
63 |
+
self.layer_idx = layer_idx
|
64 |
+
self.fuse_norm = fuse_norm
|
65 |
+
|
66 |
+
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
67 |
+
|
68 |
+
self.x_x = nn.Parameter(torch.zeros(6, hidden_size))
|
69 |
+
|
70 |
+
self.k_k = nn.Parameter(torch.zeros(self.key_dim))
|
71 |
+
self.k_a = nn.Parameter(torch.zeros(self.key_dim))
|
72 |
+
self.r_k = nn.Parameter(torch.zeros(self.num_heads, self.head_dim))
|
73 |
+
|
74 |
+
self.r_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
75 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
76 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
77 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
78 |
+
|
79 |
+
self.w_lora = LoRA(hidden_size, self.key_dim, low_rank_dim=decay_low_rank_dim, activation='tanh')
|
80 |
+
if self.layer_idx != 0:
|
81 |
+
self.v_lora = LoRA(hidden_size, self.value_dim, low_rank_dim=v_low_rank_dim, activation=None)
|
82 |
+
self.a_lora = LoRA(hidden_size, self.key_dim, low_rank_dim=a_low_rank_dim, activation=None)
|
83 |
+
self.g_lora = LoRA(hidden_size, self.value_dim, low_rank_dim=gate_low_rank_dim, activation='sigmoid', bias=False)
|
84 |
+
|
85 |
+
if self.fuse_norm:
|
86 |
+
self.g_norm = GroupNorm(
|
87 |
+
num_groups=self.num_heads,
|
88 |
+
hidden_size=self.value_dim,
|
89 |
+
elementwise_affine=elementwise_affine,
|
90 |
+
eps=self.head_dim*norm_eps,
|
91 |
+
bias=True,
|
92 |
+
)
|
93 |
+
else:
|
94 |
+
self.g_norm = nn.GroupNorm(
|
95 |
+
num_groups=self.num_heads,
|
96 |
+
num_channels=self.value_dim,
|
97 |
+
eps=self.head_dim*norm_eps,
|
98 |
+
affine=elementwise_affine
|
99 |
+
)
|
100 |
+
|
101 |
+
self.apply(self._initialize_weights)
|
102 |
+
|
103 |
+
def _initialize_weights(self, module: nn.Module):
|
104 |
+
if getattr(module, "_is_hf_initialized", False):
|
105 |
+
return
|
106 |
+
if isinstance(module, nn.Linear):
|
107 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
108 |
+
if module.bias is not None:
|
109 |
+
nn.init.zeros_(module.bias)
|
110 |
+
if isinstance(module, nn.Parameter):
|
111 |
+
nn.init.xavier_uniform_(module, gain=2 ** -2.5)
|
112 |
+
module._is_hf_initialized = True
|
113 |
+
|
114 |
+
def forward(
|
115 |
+
self,
|
116 |
+
hidden_states: torch.Tensor,
|
117 |
+
attention_mask: Optional[torch.Tensor] = None,
|
118 |
+
past_key_values: Optional[Cache] = None,
|
119 |
+
use_cache: Optional[bool] = False,
|
120 |
+
output_attentions: Optional[bool] = False,
|
121 |
+
v_first: torch.Tensor = None,
|
122 |
+
**kwargs
|
123 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
124 |
+
if attention_mask is not None:
|
125 |
+
assert len(attention_mask.shape) == 2, (
|
126 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
127 |
+
"for padding purposes (0 indicating padding). "
|
128 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
129 |
+
)
|
130 |
+
|
131 |
+
batch_size, seq_len, _ = hidden_states.shape
|
132 |
+
|
133 |
+
if self.training:
|
134 |
+
# if training, use chunk mode no matter how short the sequence is
|
135 |
+
mode = 'chunk'
|
136 |
+
else:
|
137 |
+
# launching the triton kernel for just one token will actually be slower
|
138 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] <= 64 else self.mode
|
139 |
+
|
140 |
+
last_state = None
|
141 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
142 |
+
last_state = past_key_values[self.layer_idx]
|
143 |
+
|
144 |
+
if attention_mask is not None:
|
145 |
+
hidden_states = hidden_states.mul(attention_mask[:, -hidden_states.shape[-2]:, None])
|
146 |
+
if hidden_states.shape[1] == 1 and last_state is not None:
|
147 |
+
shifted = last_state['conv_state'].unsqueeze(1)
|
148 |
+
else:
|
149 |
+
shifted = self.time_shift(hidden_states)
|
150 |
+
if last_state is not None:
|
151 |
+
shifted[:, 0] = last_state['conv_state']
|
152 |
+
|
153 |
+
# [batch_size, seq_len, hidden_size]
|
154 |
+
delta = shifted - hidden_states
|
155 |
+
xr, xw, xk, xv, xa, xg = hidden_states.addcmul(delta, self.x_x.view(6, 1, 1, -1)).unbind(0)
|
156 |
+
|
157 |
+
r = self.r_proj(xr)
|
158 |
+
# -math.exp(-0.5) = -0.6065306597126334
|
159 |
+
# I think .to(torch.float) is unnecessary here, since we calculate lora in bloat16
|
160 |
+
# when we apply sigmoid, bf16 input will not have numerical issue
|
161 |
+
# FIXME: check if we can remove .to(torch.float)
|
162 |
+
w = -0.6065306597126334 * self.w_lora(xw).to(torch.float).sigmoid()
|
163 |
+
|
164 |
+
k = self.k_proj(xk)
|
165 |
+
v = self.v_proj(xv)
|
166 |
+
|
167 |
+
if self.layer_idx == 0:
|
168 |
+
v_first = v
|
169 |
+
else:
|
170 |
+
v = torch.lerp(v, v_first, self.v_lora(xv).sigmoid())
|
171 |
+
a = self.a_lora(xa).sigmoid()
|
172 |
+
g = self.g_lora(xg)
|
173 |
+
|
174 |
+
if self.fuse_norm:
|
175 |
+
kk = l2_norm(rearrange(k * self.k_k, 'b t (h d) -> b t h d', d=self.head_dim))
|
176 |
+
else:
|
177 |
+
kk = F.normalize(rearrange(k * self.k_k, 'b t (h d) -> b t h d', d=self.head_dim), dim=-1, p=2.0)
|
178 |
+
|
179 |
+
k = k.addcmul(k * (a - 1), self.k_a)
|
180 |
+
|
181 |
+
# dealing with left-padding
|
182 |
+
if attention_mask is not None:
|
183 |
+
v = v * attention_mask[:, -v.shape[-2]:, None]
|
184 |
+
r, w, k, a = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', d=self.head_dim), (r, w, k, a))
|
185 |
+
v = rearrange(v, 'b t (h d) -> b t h d', d=self.head_v_dim)
|
186 |
+
|
187 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
188 |
+
|
189 |
+
rwkv7_fn = chunk_rwkv7 if mode == 'chunk' else fused_recurrent_rwkv7
|
190 |
+
cu_seqlens = kwargs.get('cu_seqlens', None)
|
191 |
+
o, recurrent_state = rwkv7_fn(
|
192 |
+
r=r,
|
193 |
+
w=w,
|
194 |
+
k=k,
|
195 |
+
v=v,
|
196 |
+
a=-kk,
|
197 |
+
b=kk * a,
|
198 |
+
scale=1.,
|
199 |
+
initial_state=recurrent_state,
|
200 |
+
output_final_state=use_cache,
|
201 |
+
cu_seqlens=cu_seqlens,
|
202 |
+
head_first=False
|
203 |
+
)
|
204 |
+
|
205 |
+
if past_key_values is not None:
|
206 |
+
past_key_values.update(
|
207 |
+
recurrent_state=recurrent_state,
|
208 |
+
conv_state=hidden_states[:, -1],
|
209 |
+
layer_idx=self.layer_idx,
|
210 |
+
offset=r.shape[1]
|
211 |
+
)
|
212 |
+
|
213 |
+
if self.fuse_norm:
|
214 |
+
o = self.g_norm(rearrange(o, '... h d -> ... (h d)'))
|
215 |
+
else:
|
216 |
+
o = self.g_norm(rearrange(o, 'b t h d -> (b t) (h d)')).view(batch_size, seq_len, -1)
|
217 |
+
|
218 |
+
o = o + ((r * k * self.r_k).sum(-1, keepdim=True) * v).view(batch_size, seq_len, -1)
|
219 |
+
o = self.o_proj(o * g)
|
220 |
+
|
221 |
+
return o, None, past_key_values, v_first
|
fla/modules/__init__.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from fla.modules.convolution import ImplicitLongConvolution, LongConvolution, ShortConvolution
|
4 |
+
from fla.modules.fused_bitlinear import BitLinear, FusedBitLinear
|
5 |
+
from fla.modules.fused_cross_entropy import FusedCrossEntropyLoss
|
6 |
+
from fla.modules.fused_kl_div import FusedKLDivLoss
|
7 |
+
from fla.modules.fused_linear_cross_entropy import FusedLinearCrossEntropyLoss
|
8 |
+
from fla.modules.fused_norm_gate import (
|
9 |
+
FusedLayerNormGated,
|
10 |
+
FusedLayerNormSwishGate,
|
11 |
+
FusedLayerNormSwishGateLinear,
|
12 |
+
FusedRMSNormGated,
|
13 |
+
FusedRMSNormSwishGate,
|
14 |
+
FusedRMSNormSwishGateLinear
|
15 |
+
)
|
16 |
+
from fla.modules.layernorm import GroupNorm, GroupNormLinear, LayerNorm, LayerNormLinear, RMSNorm, RMSNormLinear
|
17 |
+
from fla.modules.mlp import GatedMLP
|
18 |
+
from fla.modules.rotary import RotaryEmbedding
|
19 |
+
|
20 |
+
__all__ = [
|
21 |
+
'ImplicitLongConvolution', 'LongConvolution', 'ShortConvolution',
|
22 |
+
'BitLinear', 'FusedBitLinear',
|
23 |
+
'FusedCrossEntropyLoss', 'FusedLinearCrossEntropyLoss', 'FusedKLDivLoss',
|
24 |
+
'GroupNorm', 'GroupNormLinear', 'LayerNorm', 'LayerNormLinear', 'RMSNorm', 'RMSNormLinear',
|
25 |
+
'FusedLayerNormGated', 'FusedLayerNormSwishGate', 'FusedLayerNormSwishGateLinear',
|
26 |
+
'FusedRMSNormGated', 'FusedRMSNormSwishGate', 'FusedRMSNormSwishGateLinear',
|
27 |
+
'GatedMLP',
|
28 |
+
'RotaryEmbedding'
|
29 |
+
]
|
fla/modules/convolution.py
ADDED
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
# from https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/convolution.py
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import triton
|
13 |
+
import triton.language as tl
|
14 |
+
from einops import rearrange
|
15 |
+
|
16 |
+
from fla.modules.activations import ACT2FN
|
17 |
+
from fla.ops.common.utils import prepare_position_ids, prepare_sequence_ids
|
18 |
+
from fla.utils import checkpoint, input_guard
|
19 |
+
|
20 |
+
try:
|
21 |
+
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
22 |
+
except ImportError:
|
23 |
+
causal_conv1d_fn = None
|
24 |
+
causal_conv1d_update = None
|
25 |
+
|
26 |
+
|
27 |
+
def fft_conv(u, k, dropout_mask, gelu=True, k_rev=None):
|
28 |
+
seqlen = u.shape[-1]
|
29 |
+
fft_size = 2 * seqlen
|
30 |
+
k_f = torch.fft.rfft(k, n=fft_size) / fft_size
|
31 |
+
if k_rev is not None:
|
32 |
+
k_rev_f = torch.fft.rfft(k_rev, n=fft_size) / fft_size
|
33 |
+
k_f = k_f + k_rev_f.conj()
|
34 |
+
u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size)
|
35 |
+
|
36 |
+
if len(u.shape) > 3:
|
37 |
+
k_f = k_f.unsqueeze(1)
|
38 |
+
y = torch.fft.irfft(u_f * k_f, n=fft_size, norm="forward")[..., :seqlen]
|
39 |
+
|
40 |
+
out = y + u
|
41 |
+
if gelu:
|
42 |
+
out = F.gelu(out)
|
43 |
+
if dropout_mask is not None:
|
44 |
+
return (out * rearrange(dropout_mask, "b H -> b H 1")).to(dtype=u.dtype)
|
45 |
+
else:
|
46 |
+
return out.to(dtype=u.dtype)
|
47 |
+
|
48 |
+
|
49 |
+
@checkpoint
|
50 |
+
def proj_then_conv1d(
|
51 |
+
x: torch.Tensor,
|
52 |
+
proj_weight: torch.Tensor,
|
53 |
+
conv1d_weight: torch.Tensor,
|
54 |
+
conv1d_bias: Optional[torch.Tensor] = None,
|
55 |
+
cache: Optional[torch.Tensor] = None
|
56 |
+
) -> torch.Tensor:
|
57 |
+
# We do matmul and transpose BLH -> HBL at the same time
|
58 |
+
x = rearrange(proj_weight @ rearrange(x, "b t d -> d (b t)"), "d (b t) -> b d t", t=x.shape[-2])
|
59 |
+
|
60 |
+
if causal_conv1d_fn is None:
|
61 |
+
raise ImportError("`causal_conv1d_fn` is not available. Please install `causal-conv1d` first.")
|
62 |
+
if cache is None:
|
63 |
+
x = causal_conv1d_fn(
|
64 |
+
x=x,
|
65 |
+
weight=rearrange(conv1d_weight, "d 1 w -> d w"),
|
66 |
+
bias=conv1d_bias,
|
67 |
+
activation="silu",
|
68 |
+
).transpose(1, 2)
|
69 |
+
else:
|
70 |
+
assert x.shape[-1] == 1, "Only support decoding with 1 token at a time for now"
|
71 |
+
x = x.squeeze(-1)
|
72 |
+
x = causal_conv1d_update(
|
73 |
+
x=x,
|
74 |
+
weight=rearrange(conv1d_weight, "d 1 w -> d w"),
|
75 |
+
bias=conv1d_bias,
|
76 |
+
cache=cache,
|
77 |
+
activation="silu",
|
78 |
+
)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
@triton.jit
|
83 |
+
def causal_conv1d_varlen_states_fwd_kernel(
|
84 |
+
x,
|
85 |
+
cache,
|
86 |
+
offsets,
|
87 |
+
D,
|
88 |
+
W,
|
89 |
+
BD: tl.constexpr,
|
90 |
+
BW: tl.constexpr
|
91 |
+
):
|
92 |
+
i_d, i_w, i_n = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
93 |
+
eos = tl.load(offsets + i_n + 1)
|
94 |
+
bos = tl.maximum(tl.load(offsets + i_n), eos - W)
|
95 |
+
o_t = eos - (i_w + 1) * BW + tl.arange(0, BW)
|
96 |
+
o_d = i_d * BD + tl.arange(0, BD)
|
97 |
+
o_w = W - (i_w + 1) * BW + tl.arange(0, BW)
|
98 |
+
|
99 |
+
b_x = tl.load(x + o_t * D + o_d[:, None], mask=(o_t >= bos) & (o_d[:, None] < D), other=0)
|
100 |
+
tl.store(cache + i_n * D*W + o_d[:, None] * W + o_w, b_x, mask=(o_d[:, None] < D) & (o_w >= 0))
|
101 |
+
|
102 |
+
|
103 |
+
@input_guard
|
104 |
+
def causal_conv1d_varlen_states_fwd(
|
105 |
+
x: torch.Tensor,
|
106 |
+
cache: torch.Tensor,
|
107 |
+
cu_seqlens: torch.Tensor,
|
108 |
+
state_len: int
|
109 |
+
) -> torch.Tensor:
|
110 |
+
N, D, W = len(cu_seqlens) - 1, x.shape[-1], state_len
|
111 |
+
cache = torch.empty(N, D, W, dtype=x.dtype, device=x.device) if cache is None else cache
|
112 |
+
BD = min(triton.next_power_of_2(D), 256)
|
113 |
+
BW = min(triton.next_power_of_2(state_len), 16)
|
114 |
+
grid = (triton.cdiv(D, BD), triton.cdiv(W, BW), N)
|
115 |
+
with torch.cuda.device(x.device.index):
|
116 |
+
causal_conv1d_varlen_states_fwd_kernel[grid](
|
117 |
+
x=x,
|
118 |
+
cache=cache,
|
119 |
+
offsets=cu_seqlens,
|
120 |
+
D=D,
|
121 |
+
W=W,
|
122 |
+
BW=BW,
|
123 |
+
BD=BD
|
124 |
+
)
|
125 |
+
return cache
|
126 |
+
|
127 |
+
|
128 |
+
class ShortConvolution(nn.Conv1d):
|
129 |
+
"""
|
130 |
+
Simple wrapper around `nn.Conv1d` that accepts dimension last.
|
131 |
+
"""
|
132 |
+
|
133 |
+
def __init__(
|
134 |
+
self,
|
135 |
+
hidden_size: int,
|
136 |
+
kernel_size: int,
|
137 |
+
bias: bool = False,
|
138 |
+
activation: Optional[str] = 'silu',
|
139 |
+
use_fast_conv1d: Optional[bool] = True,
|
140 |
+
device: Optional[torch.device] = None,
|
141 |
+
dtype: Optional[torch.dtype] = None,
|
142 |
+
):
|
143 |
+
super().__init__(
|
144 |
+
in_channels=hidden_size,
|
145 |
+
out_channels=hidden_size,
|
146 |
+
kernel_size=kernel_size,
|
147 |
+
groups=hidden_size,
|
148 |
+
bias=bias,
|
149 |
+
padding=kernel_size - 1,
|
150 |
+
device=device,
|
151 |
+
dtype=dtype,
|
152 |
+
)
|
153 |
+
|
154 |
+
self.hidden_size = hidden_size
|
155 |
+
self.activation = None
|
156 |
+
if activation is not None:
|
157 |
+
assert activation in ['silu', 'swish'], f"Activation `{activation}` not supported yet."
|
158 |
+
self.activation = activation
|
159 |
+
|
160 |
+
if causal_conv1d_fn is None:
|
161 |
+
if use_fast_conv1d:
|
162 |
+
raise RuntimeError(
|
163 |
+
"Please either install `causal-conv1d>=1.4.0` to enable fast causal short convolution CUDA kernel "
|
164 |
+
"or set `use_fast_conv1d` to False"
|
165 |
+
)
|
166 |
+
else:
|
167 |
+
warnings.warn(
|
168 |
+
"The naive Pytorch verison is very slow in practice, "
|
169 |
+
"please run `pip install causal-conv1d>=1.4.0` to install fast causal short convolution CUDA kernel",
|
170 |
+
category=ImportWarning
|
171 |
+
)
|
172 |
+
self.use_fast_conv1d = use_fast_conv1d
|
173 |
+
|
174 |
+
def extra_repr(self):
|
175 |
+
s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'
|
176 |
+
', stride={stride}')
|
177 |
+
if self.padding != (0,) * len(self.padding):
|
178 |
+
s += ', padding={padding}'
|
179 |
+
if self.dilation != (1,) * len(self.dilation):
|
180 |
+
s += ', dilation={dilation}'
|
181 |
+
if self.output_padding != (0,) * len(self.output_padding):
|
182 |
+
s += ', output_padding={output_padding}'
|
183 |
+
if self.groups != 1:
|
184 |
+
s += ', groups={groups}'
|
185 |
+
if self.bias is None:
|
186 |
+
s += ', bias=False'
|
187 |
+
if self.padding_mode != 'zeros':
|
188 |
+
s += ', padding_mode={padding_mode}'
|
189 |
+
if self.activation is not None:
|
190 |
+
s += ', activation={activation}'
|
191 |
+
if not self.use_fast_conv1d:
|
192 |
+
s += ', use_fast_conv1d={use_fast_conv1d}'
|
193 |
+
return s.format(**self.__dict__)
|
194 |
+
|
195 |
+
def forward(
|
196 |
+
self,
|
197 |
+
x: torch.Tensor,
|
198 |
+
mask: Optional[torch.Tensor] = None,
|
199 |
+
cache: Optional[torch.Tensor] = None,
|
200 |
+
output_final_state: bool = False,
|
201 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
202 |
+
**kwargs,
|
203 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
204 |
+
"""
|
205 |
+
Args:
|
206 |
+
x (`torch.Tensor`):
|
207 |
+
Tensor of shape `[B, T, D]`.
|
208 |
+
If `seq_idx` is provided, `B` must be 1.
|
209 |
+
mask (`Optional[torch.Tensor]`):
|
210 |
+
Attention mask dealing with padded positions.
|
211 |
+
cache (`Optional[torch.Tensor]`):
|
212 |
+
Previous cache tensor of shape `[N, D, W]`, where `W` is the kernel size.
|
213 |
+
If provided, the cache is updated **inplace**.
|
214 |
+
output_final_state (Optional[bool]):
|
215 |
+
Whether to output the final state of shape `[N, D, W]`. Default: `False`.
|
216 |
+
cu_seqlens (Optional[torch.LongTensor]):
|
217 |
+
Cumulative sequence lengths for each batch. Used for varlen. Default: `None`.
|
218 |
+
Shape: [B+1]
|
219 |
+
|
220 |
+
Returns:
|
221 |
+
Tensor of shape `[B, T, D]`.
|
222 |
+
"""
|
223 |
+
|
224 |
+
B, T, D, W = *x.shape, self.kernel_size[0]
|
225 |
+
N = B if cu_seqlens is None else len(cu_seqlens) - 1
|
226 |
+
if mask is not None:
|
227 |
+
if cu_seqlens is not None:
|
228 |
+
raise ValueError("`mask` and `cu_seqlens` cannot be provided at the same time")
|
229 |
+
x = x.mul_(mask.unsqueeze(-1))
|
230 |
+
if output_final_state and cache is None:
|
231 |
+
cache = x.new_zeros(N, D, W)
|
232 |
+
# during the decoding phase, we assume the batch is composed of sequences of length 1
|
233 |
+
if cache is not None and B * T == N:
|
234 |
+
return self.step(x, cache, cu_seqlens)
|
235 |
+
|
236 |
+
if cache is not None:
|
237 |
+
if cu_seqlens is not None:
|
238 |
+
cache = causal_conv1d_varlen_states_fwd(x, cache, cu_seqlens, W)
|
239 |
+
else:
|
240 |
+
cache[:, :, -min(W, T):].copy_(rearrange(x[..., -min(W, T):, :], 'n w d -> n d w'))
|
241 |
+
|
242 |
+
x = rearrange(x, 'b t d -> b d t')
|
243 |
+
if self.use_fast_conv1d:
|
244 |
+
# Sequence index for each token. Used for varlen.
|
245 |
+
# Suppose a batch consists of two sequences with lengths 3 and 4,
|
246 |
+
# seq_idx=[0, 0, 0, 1, 1, 1, 1] for this batch.
|
247 |
+
# NOTE: No need to provide this arg if `cu_seqlens` is passed.
|
248 |
+
# This arg is just for BC, and will be removed in the future.
|
249 |
+
# [B, T]
|
250 |
+
seq_idx = kwargs.get('seq_idx', None)
|
251 |
+
if cu_seqlens is not None and seq_idx is None:
|
252 |
+
seq_idx = prepare_sequence_ids(prepare_position_ids(cu_seqlens)).to(torch.int32).unsqueeze(0)
|
253 |
+
x = causal_conv1d_fn(
|
254 |
+
x=x,
|
255 |
+
weight=rearrange(self.weight, "d 1 w -> d w"),
|
256 |
+
bias=self.bias,
|
257 |
+
activation=self.activation,
|
258 |
+
seq_idx=seq_idx,
|
259 |
+
)
|
260 |
+
else:
|
261 |
+
if cu_seqlens is not None:
|
262 |
+
raise ValueError("`cu_seqlens` is not supported for the naive Pytorch version")
|
263 |
+
x = self._conv_forward(x, self.weight, self.bias)[..., :x.shape[-1]]
|
264 |
+
if self.activation is not None:
|
265 |
+
x = ACT2FN[self.activation](x)
|
266 |
+
return rearrange(x, "b d t -> b t d"), cache
|
267 |
+
|
268 |
+
def step(
|
269 |
+
self,
|
270 |
+
x: torch.Tensor,
|
271 |
+
cache: torch.Tensor,
|
272 |
+
cu_seqlens: Optional[torch.LongTensor] = None
|
273 |
+
):
|
274 |
+
shape = x.shape
|
275 |
+
x = x.squeeze(0) if cu_seqlens is not None else x.squeeze(1)
|
276 |
+
if self.use_fast_conv1d:
|
277 |
+
x = causal_conv1d_update(
|
278 |
+
x=x,
|
279 |
+
conv_state=cache,
|
280 |
+
weight=rearrange(self.weight, "d 1 w -> d w"),
|
281 |
+
bias=self.bias,
|
282 |
+
activation=self.activation,
|
283 |
+
)
|
284 |
+
else:
|
285 |
+
dtype = x.dtype
|
286 |
+
# we follow the fast mode that updates the cache in-place
|
287 |
+
cache.copy_(cache.roll(shifts=-1, dims=-1))
|
288 |
+
cache[:, :, -1] = x
|
289 |
+
x = torch.sum(cache * rearrange(self.weight, "d 1 w -> d w"), dim=-1)
|
290 |
+
if self.bias is not None:
|
291 |
+
x = x + self.bias
|
292 |
+
if self.activation is not None:
|
293 |
+
x = ACT2FN[self.activation](x).to(dtype=dtype)
|
294 |
+
return x.view(shape), cache
|
295 |
+
|
296 |
+
@property
|
297 |
+
def state_size(self) -> int:
|
298 |
+
return self.hidden_size * self.kernel_size
|
299 |
+
|
300 |
+
|
301 |
+
class LongConvolution(nn.Module):
|
302 |
+
"""
|
303 |
+
LongConvolution applies a convolution operation on the input tensor using a fixed
|
304 |
+
filter of length max_len.
|
305 |
+
The filter is learned during training and is applied using FFT convolution.
|
306 |
+
Args:
|
307 |
+
hidden_size (int): The number of expected features in the input and output.
|
308 |
+
max_len (int): The maximum sequence length.
|
309 |
+
Returns:
|
310 |
+
y: [batch_size, seq_len, hidden_size] tensor
|
311 |
+
"""
|
312 |
+
|
313 |
+
def __init__(
|
314 |
+
self,
|
315 |
+
hidden_size: int,
|
316 |
+
max_len: int,
|
317 |
+
**kwargs,
|
318 |
+
):
|
319 |
+
"""
|
320 |
+
Initializes the LongConvolution module.
|
321 |
+
Args:
|
322 |
+
hidden_size (int): The number of expected features in the input and output.
|
323 |
+
max_len (int): The maximum sequence length.
|
324 |
+
"""
|
325 |
+
super().__init__()
|
326 |
+
self.hidden_size = hidden_size
|
327 |
+
self.filter = nn.Parameter(torch.randn(self.hidden_size, max_len), requires_grad=True)
|
328 |
+
|
329 |
+
def forward(self, x: torch.Tensor, *args, **kwargs):
|
330 |
+
"""
|
331 |
+
Applies the LongConvolution operation on the input tensor.
|
332 |
+
Args:
|
333 |
+
x: [batch_size, seq_len, hidden_size] tensor
|
334 |
+
Returns:
|
335 |
+
y: [batch_size, seq_len, hidden_size] tensor
|
336 |
+
"""
|
337 |
+
x = x.transpose(1, 2)
|
338 |
+
y = fft_conv(x, self.filter, dropout_mask=None, gelu=False)
|
339 |
+
y = y.transpose(1, 2)
|
340 |
+
return y.to(dtype=x.dtype)
|
341 |
+
|
342 |
+
|
343 |
+
class PositionalEmbedding(nn.Module):
|
344 |
+
def __init__(self, emb_dim: int, seq_len: int, **kwargs):
|
345 |
+
"""Complex exponential positional embeddings for implicit long convolution filters."""
|
346 |
+
super().__init__()
|
347 |
+
|
348 |
+
self.seq_len = seq_len
|
349 |
+
# The time embedding fed to the filteres is normalized so that t_f = 1
|
350 |
+
t = torch.linspace(0, 1, self.seq_len)[None, :, None] # 1, L, 1
|
351 |
+
|
352 |
+
if emb_dim > 1:
|
353 |
+
bands = (emb_dim - 1) // 2
|
354 |
+
# To compute the right embeddings we use the "proper" linspace
|
355 |
+
t_rescaled = torch.linspace(0, seq_len - 1, seq_len)[None, :, None]
|
356 |
+
w = 2 * math.pi * t_rescaled / seq_len # 1, L, 1
|
357 |
+
|
358 |
+
f = torch.linspace(1e-4, bands - 1, bands)[None, None]
|
359 |
+
z = torch.exp(-1j * f * w)
|
360 |
+
z = torch.cat([t, z.real, z.imag], dim=-1)
|
361 |
+
self.z = nn.Parameter(z, requires_grad=False)
|
362 |
+
|
363 |
+
def forward(self, L):
|
364 |
+
return self.z[:, :L]
|
365 |
+
|
366 |
+
|
367 |
+
class ImplicitLongConvolution(nn.Module):
|
368 |
+
"""
|
369 |
+
Long convolution with implicit filter parameterized by an MLP.
|
370 |
+
|
371 |
+
Args:
|
372 |
+
hidden_size (int):
|
373 |
+
The number of expected features in the input and output.
|
374 |
+
max_len (int):
|
375 |
+
The maximum sequence length.
|
376 |
+
d_emb (Optional[int]):
|
377 |
+
The dimension of the positional embeddings. Must be odd and greater or equal to 3 (time, sine and cosine).
|
378 |
+
Defaults to 3.
|
379 |
+
d_hidden (Optional[int]):
|
380 |
+
The number of features in the hidden layer of the MLP. Defaults to 16.
|
381 |
+
|
382 |
+
Attributes:
|
383 |
+
pos_emb (`PositionalEmbedding`): The positional embedding layer.
|
384 |
+
mlp (`nn.Sequential`): The MLP that parameterizes the implicit filter.
|
385 |
+
|
386 |
+
"""
|
387 |
+
|
388 |
+
def __init__(
|
389 |
+
self,
|
390 |
+
hidden_size: int,
|
391 |
+
max_len: int,
|
392 |
+
d_emb: int = 3,
|
393 |
+
d_hidden: int = 16,
|
394 |
+
**kwargs,
|
395 |
+
):
|
396 |
+
"""
|
397 |
+
Long convolution with implicit filter parameterized by an MLP.
|
398 |
+
|
399 |
+
|
400 |
+
"""
|
401 |
+
super().__init__()
|
402 |
+
self.hidden_size = hidden_size
|
403 |
+
self.d_emb = d_emb
|
404 |
+
|
405 |
+
assert (
|
406 |
+
d_emb % 2 != 0 and d_emb >= 3
|
407 |
+
), "d_emb must be odd and greater or equal to 3 (time, sine and cosine)"
|
408 |
+
self.pos_emb = PositionalEmbedding(d_emb, max_len)
|
409 |
+
|
410 |
+
# final linear layer
|
411 |
+
self.mlp = nn.Sequential(
|
412 |
+
nn.Linear(d_emb, d_hidden),
|
413 |
+
torch.nn.ReLU(),
|
414 |
+
nn.Linear(d_hidden, hidden_size),
|
415 |
+
)
|
416 |
+
|
417 |
+
def filter(self, seq_len: int, *args, **kwargs):
|
418 |
+
k = self.mlp(self.pos_emb(seq_len))
|
419 |
+
|
420 |
+
return k.transpose(1, 2)
|
421 |
+
|
422 |
+
def forward(self, x: torch.Tensor, *args, **kwargs):
|
423 |
+
"""
|
424 |
+
Args:
|
425 |
+
x: [batch_size, seq_len, hidden_size] tensor
|
426 |
+
Returns:
|
427 |
+
y: [batch_size, seq_len, hidden_size] tensor
|
428 |
+
"""
|
429 |
+
x = x.transpose(1, 2)
|
430 |
+
k = self.filter(x.shape[-1])
|
431 |
+
y = fft_conv(x, k, dropout_mask=None, gelu=False)
|
432 |
+
|
433 |
+
y = y.transpose(1, 2)
|
434 |
+
return y.to(dtype=x.dtype)
|
fla/ops/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (2.09 kB). View file
|
|
fla/ops/based/fused_chunk.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard
|
11 |
+
|
12 |
+
|
13 |
+
@triton.jit(do_not_specialize=['T'])
|
14 |
+
def fused_chunk_based_fwd_kernel(
|
15 |
+
q,
|
16 |
+
k,
|
17 |
+
v,
|
18 |
+
o,
|
19 |
+
z,
|
20 |
+
scale, # K ** -0.5
|
21 |
+
T,
|
22 |
+
B: tl.constexpr,
|
23 |
+
H: tl.constexpr,
|
24 |
+
K: tl.constexpr,
|
25 |
+
V: tl.constexpr,
|
26 |
+
BT: tl.constexpr,
|
27 |
+
BK: tl.constexpr,
|
28 |
+
BV: tl.constexpr,
|
29 |
+
):
|
30 |
+
# indices
|
31 |
+
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
32 |
+
|
33 |
+
o_i = tl.arange(0, BT)
|
34 |
+
|
35 |
+
# [BT, BT]
|
36 |
+
m_s = o_i[:, None] >= o_i[None, :]
|
37 |
+
|
38 |
+
# [BV], zero-order taylor expansion
|
39 |
+
b_h_0o = tl.zeros([BV], dtype=tl.float32)
|
40 |
+
# [BK, BV], first-order taylor expansion
|
41 |
+
b_h_1o = tl.zeros([BK, BV], dtype=tl.float32)
|
42 |
+
# [BK, BK, BV] second-order taylor expansion
|
43 |
+
b_h_2o = tl.zeros([BK*BK, BV], dtype=tl.float32)
|
44 |
+
|
45 |
+
# make block pointers
|
46 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (0, i_k * BK), (BT, BK), (1, 0))
|
47 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, 0), (BK, BT), (0, 1))
|
48 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (0, i_v * BV), (BT, BV), (1, 0))
|
49 |
+
p_o = tl.make_block_ptr(o + (i_bh + i_k*B*H) * T*V, (T, V), (V, 1), (0, i_v * BV), (BT, BV), (1, 0))
|
50 |
+
|
51 |
+
p_z = z + (i_bh + i_k * B * H) * T + tl.arange(0, BT)
|
52 |
+
k_2o = tl.zeros([1, BK * BK], dtype=tl.float32)
|
53 |
+
k_1o = tl.zeros([1, BK], dtype=tl.float32)
|
54 |
+
k_0o = 0
|
55 |
+
|
56 |
+
for i in range(0, tl.cdiv(T, BT)):
|
57 |
+
# [BK, BT]
|
58 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
59 |
+
# [BK*BK, BT]
|
60 |
+
b_k_2o = b_k[:, None, :] * b_k[None, :, :]
|
61 |
+
b_k_2o = tl.reshape(b_k_2o, [BK * BK, BT]).to(b_k.dtype)
|
62 |
+
# [BT, BV]
|
63 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
64 |
+
# [BT, BK]
|
65 |
+
b_q = (tl.load(p_q, boundary_check=(0, 1)) * scale).to(b_k.dtype)
|
66 |
+
b_o = tl.zeros([BT, BV], dtype=tl.float32)
|
67 |
+
b_z = tl.zeros([BT], dtype=tl.float32)
|
68 |
+
|
69 |
+
# interchunk
|
70 |
+
# zero-order
|
71 |
+
b_o += b_h_0o
|
72 |
+
b_z += k_0o
|
73 |
+
# first-order
|
74 |
+
b_o += tl.dot(b_q, b_h_1o.to(b_q.dtype), allow_tf32=False)
|
75 |
+
b_z += tl.sum(b_q * k_1o, axis=1)
|
76 |
+
# second-order
|
77 |
+
b_q_2o = b_q[:, :, None] * b_q[:, None, :]
|
78 |
+
b_q_2o = tl.reshape(b_q_2o, [BT, BK * BK]).to(b_k.dtype)
|
79 |
+
b_o += tl.dot(b_q_2o, b_h_2o.to(b_q_2o.dtype), allow_tf32=False) * 0.5
|
80 |
+
b_z += tl.sum(b_q_2o * k_2o, axis=1) * 0.5
|
81 |
+
|
82 |
+
# update running statistics
|
83 |
+
k_1o += tl.sum(b_k, axis=1)[None, :]
|
84 |
+
k_2o += tl.sum(b_k_2o, axis=1)[None, :]
|
85 |
+
k_0o += BT
|
86 |
+
|
87 |
+
# intrachunk
|
88 |
+
# [BT, BT]
|
89 |
+
b_s = tl.dot(b_q, b_k, allow_tf32=False)
|
90 |
+
b_s = 1 + b_s + 0.5 * b_s * b_s
|
91 |
+
b_s = tl.where(m_s, b_s, 0)
|
92 |
+
b_z += tl.sum(b_s, axis=1)
|
93 |
+
b_o += tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False)
|
94 |
+
# [TB, BV]
|
95 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
96 |
+
tl.store(p_z, b_z.to(p_z.dtype.element_ty), mask=(i * BT + tl.arange(0, BT)) < T)
|
97 |
+
|
98 |
+
# update hidden state
|
99 |
+
# [BK, BV]
|
100 |
+
b_h_2o = b_h_2o + tl.dot(b_k_2o.to(b_v.dtype), b_v, allow_tf32=False)
|
101 |
+
b_h_1o = b_h_1o + tl.dot(b_k, b_v, allow_tf32=False)
|
102 |
+
b_h_0o = b_h_0o + tl.sum(b_v, axis=0)
|
103 |
+
|
104 |
+
p_q = tl.advance(p_q, (BT, 0))
|
105 |
+
p_k = tl.advance(p_k, (0, BT))
|
106 |
+
p_v = tl.advance(p_v, (BT, 0))
|
107 |
+
p_o = tl.advance(p_o, (BT, 0))
|
108 |
+
p_z += BT
|
109 |
+
|
110 |
+
|
111 |
+
# Similar to Algorithm1 of https://arxiv.org/abs/2006.16236
|
112 |
+
@triton.jit
|
113 |
+
def fused_chunk_based_bwd_kernel(
|
114 |
+
# NV: number of split in the V dimension. NK: number of split in the K dimension
|
115 |
+
q,
|
116 |
+
k,
|
117 |
+
v,
|
118 |
+
do,
|
119 |
+
dz,
|
120 |
+
dq,
|
121 |
+
dk,
|
122 |
+
dv,
|
123 |
+
scale, # K ** -0.5
|
124 |
+
T,
|
125 |
+
B: tl.constexpr,
|
126 |
+
H: tl.constexpr,
|
127 |
+
K: tl.constexpr,
|
128 |
+
V: tl.constexpr,
|
129 |
+
BT: tl.constexpr,
|
130 |
+
BK: tl.constexpr,
|
131 |
+
BV: tl.constexpr,
|
132 |
+
):
|
133 |
+
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
134 |
+
|
135 |
+
o_i = tl.arange(0, BT)
|
136 |
+
m_s = o_i[:, None] >= o_i[None, :]
|
137 |
+
|
138 |
+
# [BV], zero-order taylor expansion
|
139 |
+
# b_h_0o = tl.zeros([BV], dtype=tl.float32)
|
140 |
+
# [BK, BV], first-order taylor expansion
|
141 |
+
b_h_1o = tl.zeros([BV, BK], dtype=tl.float32)
|
142 |
+
# [BK, BK, BV] second-order taylor expansion
|
143 |
+
b_h_2o = tl.zeros([BV, BK*BK], dtype=tl.float32)
|
144 |
+
|
145 |
+
k_1o = tl.zeros([1, BK], dtype=tl.float32)
|
146 |
+
k_2o = tl.zeros([1, BK * BK], dtype=tl.float32)
|
147 |
+
|
148 |
+
for i in range(0, tl.cdiv(T, BT)):
|
149 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i * BT, i_k * BK), (BT, BK), (1, 0))
|
150 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i * BT, i_k * BK), (BT, BK), (1, 0))
|
151 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (V, T), (1, V), (i_v * BV, i * BT), (BV, BT), (0, 1))
|
152 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i * BT, i_v * BV), (BT, BV), (1, 0))
|
153 |
+
p_dq = tl.make_block_ptr(dq + (i_bh + i_v*B*H) * T*K, (T, K), (K, 1), (i*BT, i_k*BK), (BT, BK), (1, 0))
|
154 |
+
p_dz = dz + (i_bh) * T + tl.arange(0, BT) + i * BT
|
155 |
+
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
|
156 |
+
|
157 |
+
# load tensors
|
158 |
+
# [BT, BK]
|
159 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
160 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
161 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
162 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype)
|
163 |
+
b_dz = tl.load(p_dz, mask=(tl.arange(0, BT) + i * BT) < T)
|
164 |
+
# [BV, BT]
|
165 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
166 |
+
|
167 |
+
# inter-chunk
|
168 |
+
b_dq += tl.dot(b_do, (b_h_1o).to(b_do.dtype), allow_tf32=False)
|
169 |
+
if i_v == 0:
|
170 |
+
b_dq += b_dz[:, None] * k_1o
|
171 |
+
b_dq_2o = tl.dot(b_do, (b_h_2o).to(b_do.dtype), allow_tf32=False) * 0.5
|
172 |
+
if i_v == 0:
|
173 |
+
b_dq_2o += (b_dz[:, None] * k_2o) * 0.5
|
174 |
+
b_dq_2o = tl.reshape(b_dq_2o, [BT, BK, BK])
|
175 |
+
b_dq += tl.sum(b_dq_2o * b_q[:, :, None], axis=1)
|
176 |
+
b_dq += tl.sum(b_dq_2o * b_q[:, None, :], axis=2)
|
177 |
+
b_dq *= scale
|
178 |
+
|
179 |
+
# intra-chunk
|
180 |
+
# [BT, BT]
|
181 |
+
b_ds = tl.dot(b_do, b_v, allow_tf32=False)
|
182 |
+
if i_v == 0:
|
183 |
+
b_ds += b_dz[:, None]
|
184 |
+
b_ds = tl.where(m_s, b_ds, 0) * scale
|
185 |
+
b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False)
|
186 |
+
b_s = tl.where(m_s, b_s, 0)
|
187 |
+
b_dq += tl.dot((b_ds * (1 + b_s)).to(b_q.dtype), b_k, allow_tf32=False)
|
188 |
+
|
189 |
+
# store
|
190 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
191 |
+
|
192 |
+
# update hidden state
|
193 |
+
# [BT, BK*BK]
|
194 |
+
b_k_2o = b_k[:, :, None] * b_k[:, None, :]
|
195 |
+
b_k_2o = tl.reshape(b_k_2o, [BT, BK * BK]).to(b_k.dtype)
|
196 |
+
# [BV, BK*BK]
|
197 |
+
b_h_2o = b_h_2o + tl.dot(b_v, b_k_2o.to(b_v.dtype), allow_tf32=False)
|
198 |
+
# [BV, BK]
|
199 |
+
b_h_1o = b_h_1o + tl.dot(b_v, b_k, allow_tf32=False)
|
200 |
+
|
201 |
+
if i_v == 0:
|
202 |
+
# update running statistics
|
203 |
+
k_1o += tl.sum(b_k, axis=0)[None, :]
|
204 |
+
k_2o += tl.sum(b_k_2o, axis=0)[None, :]
|
205 |
+
|
206 |
+
tl.debug_barrier()
|
207 |
+
b_h_1o = None
|
208 |
+
b_h_2o = None
|
209 |
+
|
210 |
+
# [BK, BV], first-order taylor expansion
|
211 |
+
b_dh_1o = tl.zeros([BK, BV], dtype=tl.float32)
|
212 |
+
# [BK, BK, BV] second-order taylor expansion
|
213 |
+
b_dh_2o = tl.zeros([BK*BK, BV], dtype=tl.float32)
|
214 |
+
b_dh_0o = tl.zeros([BV], dtype=tl.float32)
|
215 |
+
m_s = tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :]
|
216 |
+
|
217 |
+
dq_1o = tl.zeros([1, BK], dtype=tl.float32)
|
218 |
+
dq_2o = tl.zeros([BK * BK, 1], dtype=tl.float32)
|
219 |
+
|
220 |
+
for i in range(tl.cdiv(T, BT) * BT - BT, -BT, -BT):
|
221 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k * BK, i), (BK, BT), (0, 1))
|
222 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i, i_k * BK), (BT, BK), (1, 0))
|
223 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i, i_v * BV), (BT, BV), (1, 0))
|
224 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i, i_v * BV), (BT, BV), (1, 0))
|
225 |
+
p_dk = tl.make_block_ptr(dk + (i_bh+i_v*B*H) * T*K, (T, K), (K, 1), (i, i_k*BK), (BT, BK), (1, 0))
|
226 |
+
p_dv = tl.make_block_ptr(dv + (i_bh+i_k*B*H) * T*V, (T, V), (V, 1), (i, i_v*BV), (BT, BV), (1, 0))
|
227 |
+
p_dz = dz + (i_bh) * T + tl.arange(0, BT) + i
|
228 |
+
|
229 |
+
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
|
230 |
+
b_dv = tl.zeros([BT, BV], dtype=tl.float32)
|
231 |
+
|
232 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
233 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
234 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
235 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype)
|
236 |
+
b_dz = tl.load(p_dz, mask=(tl.arange(0, BT)+i) < T)
|
237 |
+
b_q = (b_q * scale).to(b_k.dtype)
|
238 |
+
|
239 |
+
# intra chunk
|
240 |
+
b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False)
|
241 |
+
if i_v == 0:
|
242 |
+
b_ds += b_dz[None, :]
|
243 |
+
b_ds = tl.where(m_s, b_ds, 0)
|
244 |
+
b_s = tl.dot(b_k, b_q, allow_tf32=False)
|
245 |
+
b_s2 = 1 + b_s + 0.5 * b_s * b_s
|
246 |
+
b_s = tl.where(m_s, b_s, 0)
|
247 |
+
b_s2 = tl.where(m_s, b_s2, 0)
|
248 |
+
b_ds *= (1+b_s)
|
249 |
+
|
250 |
+
b_dk += tl.dot(b_ds.to(b_k.dtype), tl.trans(b_q), allow_tf32=False)
|
251 |
+
b_dv += tl.dot(b_s2.to(b_do.dtype), b_do, allow_tf32=False)
|
252 |
+
|
253 |
+
# inter chunk
|
254 |
+
b_k_2o = b_k[:, :, None] * b_k[:, None, :]
|
255 |
+
b_k_2o = tl.reshape(b_k_2o, [BT, BK * BK]).to(b_k.dtype)
|
256 |
+
|
257 |
+
b_dv += tl.dot(b_k, b_dh_1o.to(b_k.dtype), allow_tf32=False)
|
258 |
+
b_dv += tl.dot(b_k_2o, b_dh_2o.to(b_k.dtype), allow_tf32=False)
|
259 |
+
b_dv += b_dh_0o
|
260 |
+
|
261 |
+
b_dk += tl.dot(b_v, tl.trans(b_dh_1o).to(b_k.dtype), allow_tf32=False)
|
262 |
+
|
263 |
+
if i_v == 0:
|
264 |
+
b_dk += dq_1o
|
265 |
+
|
266 |
+
b_dk_2o = tl.dot(b_dh_2o.to(b_k.dtype), tl.trans(b_v), allow_tf32=False)
|
267 |
+
if i_v == 0:
|
268 |
+
b_dk_2o += dq_2o
|
269 |
+
b_dk_2o = tl.reshape(b_dk_2o, [BK, BK, BT])
|
270 |
+
b_k_fp32 = tl.trans(b_k.to(tl.float32))
|
271 |
+
b_dk2 = tl.sum(b_dk_2o * b_k_fp32[:, None, :], axis=0)
|
272 |
+
b_dk2 += tl.sum(b_dk_2o * b_k_fp32[None, :, :], axis=1)
|
273 |
+
b_dk += tl.trans(b_dk2)
|
274 |
+
|
275 |
+
# hidden state update
|
276 |
+
b_dh_0o += tl.sum(b_do, axis=0)
|
277 |
+
b_dh_1o = b_dh_1o + tl.dot(b_q, b_do, allow_tf32=False)
|
278 |
+
b_q_2o = b_q[None, :, :] * b_q[:, None, :]
|
279 |
+
b_q_2o = tl.reshape(b_q_2o, [BK * BK, BT]).to(b_k.dtype)
|
280 |
+
b_dh_2o = b_dh_2o + tl.dot(b_q_2o, b_do, allow_tf32=False) * 0.5
|
281 |
+
|
282 |
+
if i_v == 0:
|
283 |
+
dq_1o += (tl.sum(b_dz[None, :] * b_q, axis=1))[None, :]
|
284 |
+
dq_2o += (tl.sum(b_dz[None, :] * b_q_2o, axis=1) * 0.5)[:, None]
|
285 |
+
|
286 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
287 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
288 |
+
|
289 |
+
|
290 |
+
class FusedChunkBasedFunction(torch.autograd.Function):
|
291 |
+
|
292 |
+
@staticmethod
|
293 |
+
@input_guard
|
294 |
+
@autocast_custom_fwd
|
295 |
+
def forward(ctx, q, k, v, scale=1):
|
296 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
297 |
+
|
298 |
+
scale = scale
|
299 |
+
BT = 16
|
300 |
+
BK, BV = min(K, 16), min(V, 32)
|
301 |
+
BK, BV = max(BK, 16), max(BV, 16)
|
302 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
303 |
+
|
304 |
+
num_warps = 4
|
305 |
+
|
306 |
+
# the norm of o might explode, so we need to use float32 here
|
307 |
+
o = q.new_empty(NK, B, H, T, V, dtype=torch.float32)
|
308 |
+
z = q.new_empty(NK, B, H, T, dtype=torch.float32)
|
309 |
+
|
310 |
+
grid = (NV, NK, B * H)
|
311 |
+
fused_chunk_based_fwd_kernel[grid](
|
312 |
+
q, k, v, o, z,
|
313 |
+
scale,
|
314 |
+
T=T, B=B, H=H, K=K, V=V, BT=BT, BK=BK, BV=BV,
|
315 |
+
num_warps=num_warps,
|
316 |
+
)
|
317 |
+
o = o.sum(0)
|
318 |
+
z = z.sum(0)
|
319 |
+
ctx.save_for_backward(q, k, v)
|
320 |
+
ctx.scale = scale
|
321 |
+
return o.to(q.dtype), z.to(z.dtype)
|
322 |
+
|
323 |
+
@staticmethod
|
324 |
+
@input_guard
|
325 |
+
@autocast_custom_bwd
|
326 |
+
def backward(ctx, do, dz):
|
327 |
+
q, k, v = ctx.saved_tensors
|
328 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
329 |
+
scale = ctx.scale
|
330 |
+
|
331 |
+
BT = 16
|
332 |
+
BK, BV = min(K, 16), min(V, 32)
|
333 |
+
BK, BV = max(BK, 16), max(BV, 16)
|
334 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
335 |
+
num_stages = 1
|
336 |
+
num_warps = 4
|
337 |
+
|
338 |
+
dq = q.new_empty(NV, B, H, T, K)
|
339 |
+
dk = q.new_empty(NV, B, H, T, K)
|
340 |
+
dv = q.new_empty(NK, B, H, T, V)
|
341 |
+
grid = (NV, NK, B * H)
|
342 |
+
|
343 |
+
fused_chunk_based_bwd_kernel[grid](
|
344 |
+
q, k, v, do, dz, dq, dk, dv,
|
345 |
+
scale,
|
346 |
+
T=T, B=B, H=H, K=K, V=V, BT=BT, BK=BK, BV=BV,
|
347 |
+
num_warps=num_warps,
|
348 |
+
num_stages=num_stages
|
349 |
+
)
|
350 |
+
dq = dq.sum(0)
|
351 |
+
dk = dk.sum(0)
|
352 |
+
dv = dv.sum(0)
|
353 |
+
return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), None
|
354 |
+
|
355 |
+
|
356 |
+
def fused_chunk_based(
|
357 |
+
q: torch.Tensor,
|
358 |
+
k: torch.Tensor,
|
359 |
+
v: torch.Tensor,
|
360 |
+
scale: Optional[float] = None,
|
361 |
+
use_norm: bool = True,
|
362 |
+
head_first: bool = True
|
363 |
+
):
|
364 |
+
assert q.shape[-1] <= 16, 'only support feature dimension up to 16.'
|
365 |
+
if scale is None:
|
366 |
+
scale = q.shape[-1] ** -0.5
|
367 |
+
if not head_first:
|
368 |
+
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
|
369 |
+
o, z = FusedChunkBasedFunction.apply(q, k, v, scale)
|
370 |
+
if use_norm:
|
371 |
+
o = o / (z[..., None] + 1e-6)
|
372 |
+
if not head_first:
|
373 |
+
o = o.transpose(1, 2)
|
374 |
+
return o.to(q.dtype)
|
fla/ops/common/chunk_h_parallel.py
ADDED
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
"""
|
5 |
+
Fully parallelized state passing.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from typing import Optional, Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import triton
|
12 |
+
import triton.language as tl
|
13 |
+
|
14 |
+
from fla.ops.utils.op import exp
|
15 |
+
|
16 |
+
|
17 |
+
@triton.heuristics({
|
18 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
19 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
20 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
21 |
+
})
|
22 |
+
@triton.autotune(
|
23 |
+
configs=[
|
24 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
25 |
+
for BK in [32, 64, 128]
|
26 |
+
for BV in [32, 64, 128]
|
27 |
+
for num_warps in [2, 4, 8]
|
28 |
+
for num_stages in [2, 3, 4]
|
29 |
+
],
|
30 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV']
|
31 |
+
)
|
32 |
+
@triton.jit(do_not_specialize=['T'])
|
33 |
+
def chunk_fwd_kernel_h_parallel(
|
34 |
+
k,
|
35 |
+
v,
|
36 |
+
h,
|
37 |
+
g,
|
38 |
+
gk,
|
39 |
+
gv,
|
40 |
+
h0,
|
41 |
+
ht,
|
42 |
+
offsets,
|
43 |
+
indices,
|
44 |
+
T,
|
45 |
+
H: tl.constexpr,
|
46 |
+
K: tl.constexpr,
|
47 |
+
V: tl.constexpr,
|
48 |
+
BT: tl.constexpr,
|
49 |
+
BK: tl.constexpr,
|
50 |
+
BV: tl.constexpr,
|
51 |
+
USE_G: tl.constexpr,
|
52 |
+
USE_GK: tl.constexpr,
|
53 |
+
USE_GV: tl.constexpr,
|
54 |
+
USE_INITIAL_STATE: tl.constexpr,
|
55 |
+
STORE_FINAL_STATE: tl.constexpr,
|
56 |
+
USE_OFFSETS: tl.constexpr,
|
57 |
+
HEAD_FIRST: tl.constexpr
|
58 |
+
):
|
59 |
+
i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
60 |
+
|
61 |
+
NV = tl.cdiv(V, BV)
|
62 |
+
# i_b: batch index
|
63 |
+
# i_h: head index
|
64 |
+
# i_n: sequence index
|
65 |
+
# i_t: chunk index within current sequence
|
66 |
+
# i_tg: (global) chunk index across all sequences
|
67 |
+
i_k, i_v = i_kv // NV, i_kv % NV
|
68 |
+
i_b, i_h = i_bh // H, i_bh % H
|
69 |
+
if USE_OFFSETS:
|
70 |
+
i_tg = i_t
|
71 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
72 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
73 |
+
T = eos - bos
|
74 |
+
NT = tl.cdiv(T, BT)
|
75 |
+
else:
|
76 |
+
bos, eos = i_b * T, i_b * T + T
|
77 |
+
NT = tl.cdiv(T, BT)
|
78 |
+
i_n, i_tg = i_b, i_b * NT + i_t
|
79 |
+
i_nh = i_n * H + i_h
|
80 |
+
|
81 |
+
if HEAD_FIRST:
|
82 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
83 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
84 |
+
p_h = tl.make_block_ptr(h + (i_bh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
85 |
+
else:
|
86 |
+
p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
87 |
+
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
88 |
+
p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
89 |
+
|
90 |
+
if i_t == 0:
|
91 |
+
if USE_INITIAL_STATE:
|
92 |
+
p_h0 = tl.make_block_ptr(h0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
93 |
+
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
|
94 |
+
else:
|
95 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
96 |
+
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
97 |
+
|
98 |
+
# [BK, BT]
|
99 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
100 |
+
# [BT, BV]
|
101 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
102 |
+
|
103 |
+
last_idx = min(i_t * BT + BT, T) - 1
|
104 |
+
# scalar decay
|
105 |
+
if USE_G:
|
106 |
+
if HEAD_FIRST:
|
107 |
+
b_g_last = tl.load(g + i_bh * T + last_idx)
|
108 |
+
p_g = g + i_bh * T + i_t * BT + tl.arange(0, BT)
|
109 |
+
p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
|
110 |
+
else:
|
111 |
+
b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
|
112 |
+
p_g = g + bos*H + (i_t * BT + tl.arange(0, BT)) * H + i_h
|
113 |
+
b_g = tl.load(p_g, mask=(i_t * BT + tl.arange(0, BT) < T), other=0.)
|
114 |
+
b_v = (b_v * exp(b_g_last - b_g)[:, None]).to(b_v.dtype)
|
115 |
+
|
116 |
+
# vector decay, h = Diag(gk) @ h
|
117 |
+
if USE_GK:
|
118 |
+
if HEAD_FIRST:
|
119 |
+
p_gk = tl.make_block_ptr(gk + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
120 |
+
p_gk_last = gk + i_bh * T*K + last_idx * K + i_k * BK + tl.arange(0, BK)
|
121 |
+
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
|
122 |
+
else:
|
123 |
+
p_gk = tl.make_block_ptr(gk + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
124 |
+
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
125 |
+
|
126 |
+
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
|
127 |
+
|
128 |
+
b_gk = tl.load(p_gk, boundary_check=(0, 1))
|
129 |
+
b_k = (b_k * exp(b_gk_last[:, None] - b_gk)).to(b_k.dtype)
|
130 |
+
|
131 |
+
# vector decay, h = h @ Diag(gv)
|
132 |
+
if USE_GV:
|
133 |
+
if HEAD_FIRST:
|
134 |
+
p_gv = tl.make_block_ptr(gv + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
135 |
+
p_gv_last = gv + i_bh * T*V + last_idx * V + i_v * BV + tl.arange(0, BV)
|
136 |
+
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
|
137 |
+
else:
|
138 |
+
p_gv = tl.make_block_ptr(gv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
139 |
+
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
140 |
+
|
141 |
+
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
|
142 |
+
|
143 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
144 |
+
b_v = (b_v * exp(b_gv_last[None, :] - b_gv)).to(b_v.dtype)
|
145 |
+
|
146 |
+
b_h = tl.dot(b_k, b_v)
|
147 |
+
if i_t < NT - 1:
|
148 |
+
if HEAD_FIRST:
|
149 |
+
p_h = tl.make_block_ptr(h + (i_bh * NT + i_t + 1) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
150 |
+
else:
|
151 |
+
p_h = tl.make_block_ptr(h + ((i_tg + 1) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
152 |
+
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
153 |
+
elif STORE_FINAL_STATE:
|
154 |
+
p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
155 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
|
156 |
+
|
157 |
+
|
158 |
+
@triton.heuristics({
|
159 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
160 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
161 |
+
})
|
162 |
+
@triton.autotune(
|
163 |
+
configs=[
|
164 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
165 |
+
for BK in [32, 64, 128]
|
166 |
+
for BV in [32, 64, 128]
|
167 |
+
for num_warps in [2, 4, 8, 16]
|
168 |
+
for num_stages in [2, 3]
|
169 |
+
],
|
170 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV']
|
171 |
+
)
|
172 |
+
@triton.jit(do_not_specialize=['T'])
|
173 |
+
def chunk_fwd_kernel_h_reduction(
|
174 |
+
h,
|
175 |
+
g,
|
176 |
+
gk,
|
177 |
+
gv,
|
178 |
+
kvt,
|
179 |
+
ht,
|
180 |
+
offsets,
|
181 |
+
chunk_offsets,
|
182 |
+
T,
|
183 |
+
H: tl.constexpr,
|
184 |
+
K: tl.constexpr,
|
185 |
+
V: tl.constexpr,
|
186 |
+
BT: tl.constexpr,
|
187 |
+
BK: tl.constexpr,
|
188 |
+
BV: tl.constexpr,
|
189 |
+
USE_G: tl.constexpr,
|
190 |
+
USE_GK: tl.constexpr,
|
191 |
+
USE_GV: tl.constexpr,
|
192 |
+
STORE_FINAL_STATE: tl.constexpr,
|
193 |
+
USE_OFFSETS: tl.constexpr,
|
194 |
+
HEAD_FIRST: tl.constexpr
|
195 |
+
):
|
196 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
197 |
+
i_n, i_h = i_nh // H, i_nh % H
|
198 |
+
if USE_OFFSETS:
|
199 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
200 |
+
T = eos - bos
|
201 |
+
NT = tl.cdiv(T, BT)
|
202 |
+
boh = tl.load(chunk_offsets + i_n).to(tl.int32)
|
203 |
+
else:
|
204 |
+
bos, eos = i_n * T, i_n * T + T
|
205 |
+
NT = tl.cdiv(T, BT)
|
206 |
+
boh = i_n * NT
|
207 |
+
|
208 |
+
# [BK, BV]
|
209 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
210 |
+
for i_t in range(NT):
|
211 |
+
if HEAD_FIRST:
|
212 |
+
p_h = tl.make_block_ptr(h + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
213 |
+
else:
|
214 |
+
p_h = tl.make_block_ptr(h + ((boh + i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
215 |
+
b_h += tl.load(p_h, boundary_check=(0, 1)).to(tl.float32)
|
216 |
+
if i_t > 0:
|
217 |
+
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
|
218 |
+
|
219 |
+
last_idx = min(i_t * BT + BT, T) - 1
|
220 |
+
# scalar decay
|
221 |
+
if USE_G:
|
222 |
+
if HEAD_FIRST:
|
223 |
+
b_g_last = tl.load(g + i_nh * T + last_idx)
|
224 |
+
else:
|
225 |
+
b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
|
226 |
+
b_h *= exp(b_g_last)
|
227 |
+
|
228 |
+
# vector decay, h = Diag(gk) @ h
|
229 |
+
if USE_GK:
|
230 |
+
if HEAD_FIRST:
|
231 |
+
p_gk_last = gk + i_nh * T*K + last_idx * K + i_k * BK + tl.arange(0, BK)
|
232 |
+
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
|
233 |
+
else:
|
234 |
+
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
235 |
+
|
236 |
+
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
|
237 |
+
b_h *= exp(b_gk_last)[:, None]
|
238 |
+
|
239 |
+
# vector decay, h = h @ Diag(gv)
|
240 |
+
if USE_GV:
|
241 |
+
if HEAD_FIRST:
|
242 |
+
p_gv_last = gv + i_nh * T*V + last_idx * V + i_v * BV + tl.arange(0, BV)
|
243 |
+
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
|
244 |
+
else:
|
245 |
+
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
246 |
+
|
247 |
+
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
|
248 |
+
b_h *= exp(b_gv_last)[None, :]
|
249 |
+
|
250 |
+
if STORE_FINAL_STATE:
|
251 |
+
p_kvt = tl.make_block_ptr(kvt + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
252 |
+
p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
253 |
+
b_h += tl.load(p_kvt, boundary_check=(0, 1)).to(tl.float32)
|
254 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
|
255 |
+
|
256 |
+
|
257 |
+
@triton.heuristics({
|
258 |
+
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None,
|
259 |
+
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
|
260 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
261 |
+
})
|
262 |
+
@triton.autotune(
|
263 |
+
configs=[
|
264 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
265 |
+
for BK in [32, 64, 128]
|
266 |
+
for BV in [32, 64, 128]
|
267 |
+
for num_warps in [2, 4, 8]
|
268 |
+
for num_stages in [2, 3, 4]
|
269 |
+
],
|
270 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV']
|
271 |
+
)
|
272 |
+
@triton.jit(do_not_specialize=['T'])
|
273 |
+
def chunk_bwd_kernel_dh_parallel(
|
274 |
+
q,
|
275 |
+
g,
|
276 |
+
gk,
|
277 |
+
gv,
|
278 |
+
do,
|
279 |
+
dh,
|
280 |
+
dht,
|
281 |
+
dh0,
|
282 |
+
offsets,
|
283 |
+
indices,
|
284 |
+
scale,
|
285 |
+
T,
|
286 |
+
HQ: tl.constexpr,
|
287 |
+
H: tl.constexpr,
|
288 |
+
K: tl.constexpr,
|
289 |
+
V: tl.constexpr,
|
290 |
+
BT: tl.constexpr,
|
291 |
+
BK: tl.constexpr,
|
292 |
+
BV: tl.constexpr,
|
293 |
+
NG: tl.constexpr,
|
294 |
+
USE_G: tl.constexpr,
|
295 |
+
USE_GK: tl.constexpr,
|
296 |
+
USE_GV: tl.constexpr,
|
297 |
+
STORE_INITIAL_STATE_GRADIENT: tl.constexpr,
|
298 |
+
USE_FINAL_STATE_GRADIENT: tl.constexpr,
|
299 |
+
USE_OFFSETS: tl.constexpr,
|
300 |
+
HEAD_FIRST: tl.constexpr
|
301 |
+
):
|
302 |
+
i_kv, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
303 |
+
|
304 |
+
NV = tl.cdiv(V, BV)
|
305 |
+
i_k, i_v = i_kv // NV, i_kv % NV
|
306 |
+
i_b, i_hq, i_bg = i_bh // HQ, i_bh % HQ, i_bh // NG
|
307 |
+
i_h = i_hq // NG
|
308 |
+
if USE_OFFSETS:
|
309 |
+
i_tg = i_t
|
310 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
311 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
312 |
+
T = eos - bos
|
313 |
+
NT = tl.cdiv(T, BT)
|
314 |
+
else:
|
315 |
+
bos, eos = i_b * T, i_b * T + T
|
316 |
+
NT = tl.cdiv(T, BT)
|
317 |
+
i_n, i_tg = i_b, i_b * NT + i_t
|
318 |
+
i_nh = i_n * HQ + i_hq
|
319 |
+
|
320 |
+
if HEAD_FIRST:
|
321 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
322 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
323 |
+
p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
324 |
+
else:
|
325 |
+
p_q = tl.make_block_ptr(q + (bos*HQ + i_hq) * K, (K, T), (1, HQ*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
326 |
+
p_do = tl.make_block_ptr(do + (bos*HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
327 |
+
p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
328 |
+
|
329 |
+
if i_t == NT - 1:
|
330 |
+
if USE_FINAL_STATE_GRADIENT:
|
331 |
+
p_dht = tl.make_block_ptr(dht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
332 |
+
b_dh = tl.load(p_dht, boundary_check=(0, 1)).to(tl.float32)
|
333 |
+
else:
|
334 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
335 |
+
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
|
336 |
+
|
337 |
+
# [BK, BT]
|
338 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
339 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
340 |
+
# [BT, BV]
|
341 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
342 |
+
|
343 |
+
if USE_G:
|
344 |
+
if HEAD_FIRST:
|
345 |
+
p_g = g + i_bg * T + i_t * BT + tl.arange(0, BT)
|
346 |
+
p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
|
347 |
+
else:
|
348 |
+
p_g = g + (bos + i_t * BT + tl.arange(0, BT)) * H + i_h
|
349 |
+
b_g = tl.load(p_g, mask=(i_t * BT + tl.arange(0, BT) < T), other=0.)
|
350 |
+
b_q = (b_q * exp(b_g)[None, :]).to(b_q.dtype)
|
351 |
+
|
352 |
+
if USE_GK:
|
353 |
+
if HEAD_FIRST:
|
354 |
+
p_gk = tl.make_block_ptr(gk + i_bg * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
355 |
+
else:
|
356 |
+
p_gk = tl.make_block_ptr(gk + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
357 |
+
b_gk = tl.load(p_gk, boundary_check=(0, 1))
|
358 |
+
b_q = (b_q * exp(b_gk)).to(b_q.dtype)
|
359 |
+
|
360 |
+
if USE_GV:
|
361 |
+
if HEAD_FIRST:
|
362 |
+
p_gv = tl.make_block_ptr(gv + i_bg * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
363 |
+
else:
|
364 |
+
p_gv = tl.make_block_ptr(gv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
365 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
366 |
+
b_do = (b_do * exp(b_gv)).to(b_do.dtype)
|
367 |
+
|
368 |
+
b_dh = tl.dot(b_q, b_do)
|
369 |
+
if i_t > 0:
|
370 |
+
if HEAD_FIRST:
|
371 |
+
p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t - 1) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
372 |
+
else:
|
373 |
+
p_dh = tl.make_block_ptr(dh + ((i_tg - 1) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
374 |
+
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
|
375 |
+
elif STORE_INITIAL_STATE_GRADIENT:
|
376 |
+
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
377 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
|
378 |
+
|
379 |
+
|
380 |
+
@triton.heuristics({
|
381 |
+
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None,
|
382 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
383 |
+
})
|
384 |
+
@triton.autotune(
|
385 |
+
configs=[
|
386 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
387 |
+
for BK in [32, 64, 128]
|
388 |
+
for BV in [32, 64, 128]
|
389 |
+
for num_warps in [2, 4, 8, 16]
|
390 |
+
for num_stages in [2, 3]
|
391 |
+
],
|
392 |
+
key=['BT', 'USE_G', 'USE_GK', 'USE_GV']
|
393 |
+
)
|
394 |
+
@triton.jit(do_not_specialize=['T'])
|
395 |
+
def chunk_bwd_kernel_dh_reduction(
|
396 |
+
g,
|
397 |
+
gk,
|
398 |
+
gv,
|
399 |
+
dh,
|
400 |
+
doq0,
|
401 |
+
dh0,
|
402 |
+
offsets,
|
403 |
+
chunk_offsets,
|
404 |
+
T,
|
405 |
+
HQ: tl.constexpr,
|
406 |
+
H: tl.constexpr,
|
407 |
+
K: tl.constexpr,
|
408 |
+
V: tl.constexpr,
|
409 |
+
BT: tl.constexpr,
|
410 |
+
BK: tl.constexpr,
|
411 |
+
BV: tl.constexpr,
|
412 |
+
NG: tl.constexpr,
|
413 |
+
USE_G: tl.constexpr,
|
414 |
+
USE_GK: tl.constexpr,
|
415 |
+
USE_GV: tl.constexpr,
|
416 |
+
STORE_INITIAL_STATE_GRADIENT: tl.constexpr,
|
417 |
+
USE_OFFSETS: tl.constexpr,
|
418 |
+
HEAD_FIRST: tl.constexpr
|
419 |
+
):
|
420 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
421 |
+
i_bg = i_nh // NG
|
422 |
+
i_n, i_hq = i_nh // HQ, i_nh % HQ
|
423 |
+
i_h = i_hq // NG
|
424 |
+
if USE_OFFSETS:
|
425 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
426 |
+
T = eos - bos
|
427 |
+
NT = tl.cdiv(T, BT)
|
428 |
+
boh = tl.load(chunk_offsets + i_n).to(tl.int32)
|
429 |
+
else:
|
430 |
+
bos, eos = i_n * T, i_n * T + T
|
431 |
+
NT = tl.cdiv(T, BT)
|
432 |
+
boh = i_n * NT
|
433 |
+
|
434 |
+
# [BK, BV]
|
435 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
436 |
+
for i_t in range(NT - 1, -1, -1):
|
437 |
+
if HEAD_FIRST:
|
438 |
+
p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
439 |
+
else:
|
440 |
+
p_dh = tl.make_block_ptr(dh + ((boh+i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
441 |
+
b_dh += tl.load(p_dh, boundary_check=(0, 1)).to(tl.float32)
|
442 |
+
if i_t < NT - 1:
|
443 |
+
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
|
444 |
+
|
445 |
+
last_idx = min(i_t * BT + BT, T) - 1
|
446 |
+
if USE_G:
|
447 |
+
if HEAD_FIRST:
|
448 |
+
b_g_last = tl.load(g + i_bg * T + last_idx)
|
449 |
+
else:
|
450 |
+
b_g_last = tl.load(g + (bos + last_idx) * H + i_h)
|
451 |
+
b_dh *= exp(b_g_last)
|
452 |
+
|
453 |
+
if USE_GK:
|
454 |
+
if HEAD_FIRST:
|
455 |
+
p_gk_last = gk + (i_bg * T + last_idx) * K + i_k * BK + tl.arange(0, BK)
|
456 |
+
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
|
457 |
+
else:
|
458 |
+
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
459 |
+
|
460 |
+
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
|
461 |
+
b_dh *= exp(b_gk_last)[:, None]
|
462 |
+
|
463 |
+
if USE_GV:
|
464 |
+
if HEAD_FIRST:
|
465 |
+
p_gv_last = gv + (i_bg * T + last_idx) * V + i_v * BV + tl.arange(0, BV)
|
466 |
+
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
|
467 |
+
else:
|
468 |
+
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
469 |
+
|
470 |
+
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
|
471 |
+
b_dh *= exp(b_gv_last)[None, :]
|
472 |
+
|
473 |
+
if STORE_INITIAL_STATE_GRADIENT:
|
474 |
+
p_doq0 = tl.make_block_ptr(doq0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
475 |
+
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
476 |
+
b_dh += tl.load(p_doq0, boundary_check=(0, 1)).to(tl.float32)
|
477 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
|
478 |
+
|
479 |
+
|
480 |
+
def chunk_fwd_h(
|
481 |
+
k: torch.Tensor,
|
482 |
+
v: torch.Tensor,
|
483 |
+
g: torch.Tensor,
|
484 |
+
gk: torch.Tensor,
|
485 |
+
gv: torch.Tensor,
|
486 |
+
h0: torch.Tensor,
|
487 |
+
output_final_state: bool,
|
488 |
+
states_in_fp32: bool = False,
|
489 |
+
offsets: Optional[torch.Tensor] = None,
|
490 |
+
indices: Optional[torch.Tensor] = None,
|
491 |
+
head_first: bool = True,
|
492 |
+
chunk_size: int = 64
|
493 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
494 |
+
if head_first:
|
495 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
496 |
+
else:
|
497 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
498 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
499 |
+
# N: the actual number of sequences in the batch with either equal or variable lengths
|
500 |
+
if offsets is None:
|
501 |
+
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
|
502 |
+
else:
|
503 |
+
if indices is None:
|
504 |
+
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], BT).tolist()])
|
505 |
+
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets)
|
506 |
+
N, NT = len(offsets) - 1, len(indices)
|
507 |
+
chunk_offsets = torch.cat([offsets.new_tensor([0]), triton.cdiv(offsets[1:] - offsets[:-1], BT)]).cumsum(-1)
|
508 |
+
|
509 |
+
h = k.new_empty(B, H, NT, K, V, dtype=torch.float) if head_first else k.new_empty(B, NT, H, K, V, dtype=torch.float)
|
510 |
+
ht = k.new_empty(N, H, K, V, dtype=torch.float) if output_final_state else None
|
511 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']) * triton.cdiv(V, meta['BV']), NT, B * H)
|
512 |
+
chunk_fwd_kernel_h_parallel[grid](
|
513 |
+
k=k,
|
514 |
+
v=v,
|
515 |
+
h=h,
|
516 |
+
g=g,
|
517 |
+
gk=gk,
|
518 |
+
gv=gv,
|
519 |
+
h0=h0,
|
520 |
+
ht=ht,
|
521 |
+
offsets=offsets,
|
522 |
+
indices=indices,
|
523 |
+
T=T,
|
524 |
+
H=H,
|
525 |
+
K=K,
|
526 |
+
V=V,
|
527 |
+
BT=BT,
|
528 |
+
USE_G=g is not None,
|
529 |
+
USE_GK=gk is not None,
|
530 |
+
USE_GV=gv is not None,
|
531 |
+
HEAD_FIRST=head_first
|
532 |
+
)
|
533 |
+
kvt, ht = ht, (torch.empty_like(ht) if output_final_state else None)
|
534 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), N * H)
|
535 |
+
chunk_fwd_kernel_h_reduction[grid](
|
536 |
+
h=h,
|
537 |
+
g=g,
|
538 |
+
gk=gk,
|
539 |
+
gv=gv,
|
540 |
+
kvt=kvt,
|
541 |
+
ht=ht,
|
542 |
+
offsets=offsets,
|
543 |
+
chunk_offsets=chunk_offsets,
|
544 |
+
T=T,
|
545 |
+
H=H,
|
546 |
+
K=K,
|
547 |
+
V=V,
|
548 |
+
BT=BT,
|
549 |
+
USE_G=g is not None,
|
550 |
+
USE_GK=gk is not None,
|
551 |
+
USE_GV=gv is not None,
|
552 |
+
HEAD_FIRST=head_first
|
553 |
+
)
|
554 |
+
h = h.to(k.dtype) if not states_in_fp32 else h
|
555 |
+
return h, ht
|
556 |
+
|
557 |
+
|
558 |
+
def chunk_bwd_dh(
|
559 |
+
q: torch.Tensor,
|
560 |
+
k: torch.Tensor,
|
561 |
+
v: torch.Tensor,
|
562 |
+
g: torch.Tensor,
|
563 |
+
gk: torch.Tensor,
|
564 |
+
gv: torch.Tensor,
|
565 |
+
do: torch.Tensor,
|
566 |
+
h0: torch.Tensor,
|
567 |
+
dht: torch.Tensor,
|
568 |
+
scale: float,
|
569 |
+
states_in_fp32: bool = False,
|
570 |
+
offsets: Optional[torch.Tensor] = None,
|
571 |
+
indices: Optional[torch.Tensor] = None,
|
572 |
+
head_first: bool = True,
|
573 |
+
chunk_size: int = 64
|
574 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
575 |
+
if head_first:
|
576 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
577 |
+
HQ = q.shape[1]
|
578 |
+
else:
|
579 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
580 |
+
HQ = q.shape[2]
|
581 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
582 |
+
# N: the actual number of sequences in the batch with either equal or variable lengths
|
583 |
+
# NG: number of groups in GQA
|
584 |
+
if offsets is None:
|
585 |
+
N, NT, chunk_offsets = B, triton.cdiv(T, BT), None
|
586 |
+
else:
|
587 |
+
if indices is None:
|
588 |
+
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], BT).tolist()])
|
589 |
+
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets)
|
590 |
+
N, NT = len(offsets) - 1, len(indices)
|
591 |
+
chunk_offsets = torch.cat([offsets.new_tensor([0]), triton.cdiv(offsets[1:] - offsets[:-1], BT)]).cumsum(-1)
|
592 |
+
NG = HQ // H
|
593 |
+
|
594 |
+
if head_first:
|
595 |
+
dh = k.new_empty(B, HQ, NT, K, V, dtype=k.dtype if not states_in_fp32 else torch.float)
|
596 |
+
else:
|
597 |
+
dh = k.new_empty(B, NT, HQ, K, V, dtype=k.dtype if not states_in_fp32 else torch.float)
|
598 |
+
dh0 = torch.empty_like(h0, dtype=torch.float) if h0 is not None else None
|
599 |
+
|
600 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']) * triton.cdiv(V, meta['BV']), NT, B * HQ)
|
601 |
+
chunk_bwd_kernel_dh_parallel[grid](
|
602 |
+
q=q,
|
603 |
+
g=g,
|
604 |
+
gk=gk,
|
605 |
+
gv=gv,
|
606 |
+
do=do,
|
607 |
+
dh=dh,
|
608 |
+
dht=dht,
|
609 |
+
dh0=dh0,
|
610 |
+
offsets=offsets,
|
611 |
+
indices=indices,
|
612 |
+
scale=scale,
|
613 |
+
T=T,
|
614 |
+
HQ=HQ,
|
615 |
+
H=H,
|
616 |
+
K=K,
|
617 |
+
V=V,
|
618 |
+
BT=BT,
|
619 |
+
NG=NG,
|
620 |
+
USE_G=g is not None,
|
621 |
+
USE_GK=gk is not None,
|
622 |
+
USE_GV=gv is not None,
|
623 |
+
HEAD_FIRST=head_first
|
624 |
+
)
|
625 |
+
|
626 |
+
doq0, dh0 = dh0, (torch.empty_like(dh0) if dh0 is not None else None)
|
627 |
+
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), N * HQ)
|
628 |
+
chunk_bwd_kernel_dh_reduction[grid](
|
629 |
+
g=g,
|
630 |
+
gk=gk,
|
631 |
+
gv=gv,
|
632 |
+
dh=dh,
|
633 |
+
doq0=doq0,
|
634 |
+
dh0=dh0,
|
635 |
+
offsets=offsets,
|
636 |
+
chunk_offsets=chunk_offsets,
|
637 |
+
T=T,
|
638 |
+
HQ=HQ,
|
639 |
+
H=H,
|
640 |
+
K=K,
|
641 |
+
V=V,
|
642 |
+
BT=BT,
|
643 |
+
NG=NG,
|
644 |
+
USE_G=g is not None,
|
645 |
+
USE_GK=gk is not None,
|
646 |
+
USE_GV=gv is not None,
|
647 |
+
HEAD_FIRST=head_first
|
648 |
+
)
|
649 |
+
dh = dh.to(q.dtype) if not states_in_fp32 else dh
|
650 |
+
return dh, dh0
|
fla/ops/common/fused_recurrent.py
ADDED
@@ -0,0 +1,575 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.ops.utils import chunk_global_cumsum
|
11 |
+
from fla.ops.utils.op import exp
|
12 |
+
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard
|
13 |
+
|
14 |
+
|
15 |
+
@triton.heuristics({
|
16 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
17 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
18 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
19 |
+
})
|
20 |
+
@triton.autotune(
|
21 |
+
configs=[
|
22 |
+
triton.Config({}, num_warps=num_warps)
|
23 |
+
for num_warps in [1, 2, 4]
|
24 |
+
],
|
25 |
+
key=["BK", "BV", "USE_GK", "USE_GV", "USE_G"],
|
26 |
+
)
|
27 |
+
@triton.jit(do_not_specialize=['T'])
|
28 |
+
def fused_recurrent_fwd_kernel(
|
29 |
+
q,
|
30 |
+
k,
|
31 |
+
v,
|
32 |
+
g,
|
33 |
+
gk,
|
34 |
+
gv,
|
35 |
+
o,
|
36 |
+
h0,
|
37 |
+
ht,
|
38 |
+
offsets,
|
39 |
+
scale,
|
40 |
+
T,
|
41 |
+
B: tl.constexpr,
|
42 |
+
H: tl.constexpr,
|
43 |
+
K: tl.constexpr,
|
44 |
+
V: tl.constexpr,
|
45 |
+
BK: tl.constexpr,
|
46 |
+
BV: tl.constexpr,
|
47 |
+
REVERSE: tl.constexpr,
|
48 |
+
USE_G: tl.constexpr,
|
49 |
+
USE_GK: tl.constexpr,
|
50 |
+
USE_GV: tl.constexpr,
|
51 |
+
USE_INITIAL_STATE: tl.constexpr,
|
52 |
+
STORE_FINAL_STATE: tl.constexpr,
|
53 |
+
USE_OFFSETS: tl.constexpr,
|
54 |
+
HEAD_FIRST: tl.constexpr
|
55 |
+
):
|
56 |
+
# indices
|
57 |
+
i_v, i_k, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64), tl.program_id(2).to(tl.int64)
|
58 |
+
i_n, i_h = i_nh // H, i_nh % H
|
59 |
+
if USE_OFFSETS:
|
60 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
|
61 |
+
all = T
|
62 |
+
T = eos - bos
|
63 |
+
else:
|
64 |
+
bos, eos = i_n * T, i_n * T + T
|
65 |
+
all = B * T
|
66 |
+
|
67 |
+
if HEAD_FIRST:
|
68 |
+
p_q = q + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
69 |
+
p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
70 |
+
p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
71 |
+
p_o = o + (i_k * B*H + i_nh) * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
72 |
+
if USE_G:
|
73 |
+
p_g = g + i_nh * T + ((T-1) if REVERSE else 0)
|
74 |
+
if USE_GK:
|
75 |
+
p_gk = gk + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
76 |
+
if USE_GV:
|
77 |
+
p_gv = gv + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
78 |
+
else:
|
79 |
+
p_q = q + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
80 |
+
p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
81 |
+
p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
82 |
+
p_o = o + ((i_k * all + bos) + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
83 |
+
if USE_G:
|
84 |
+
p_g = g + (bos + ((T-1) if REVERSE else 0)) * H + i_h
|
85 |
+
if USE_GK:
|
86 |
+
p_gk = gk + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
87 |
+
if USE_GV:
|
88 |
+
p_gv = gv + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
89 |
+
|
90 |
+
mask_k = (i_k * BK + tl.arange(0, BK)) < K
|
91 |
+
mask_v = (i_v * BV + tl.arange(0, BV)) < V
|
92 |
+
mask_h = mask_k[None, :] & mask_v[:, None]
|
93 |
+
b_h = tl.zeros([BV, BK], dtype=tl.float32)
|
94 |
+
|
95 |
+
if USE_INITIAL_STATE:
|
96 |
+
p_h0 = h0 + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
|
97 |
+
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
|
98 |
+
|
99 |
+
for _ in range(0, T):
|
100 |
+
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale
|
101 |
+
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
|
102 |
+
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
|
103 |
+
if USE_GK:
|
104 |
+
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
|
105 |
+
b_h = b_h * exp(b_gk[None, :])
|
106 |
+
if USE_GV:
|
107 |
+
b_gv = tl.load(p_gv, mask=mask_v, other=0).to(tl.float32)
|
108 |
+
b_h = b_h * exp(b_gv[:, None])
|
109 |
+
if USE_G:
|
110 |
+
b_g = tl.load(p_g).to(tl.float32)
|
111 |
+
b_h = b_h * exp(b_g)
|
112 |
+
b_h += b_k[None, :] * b_v[:, None]
|
113 |
+
b_o = b_h * b_q[None, :]
|
114 |
+
b_o = tl.sum(b_o, axis=1)
|
115 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v)
|
116 |
+
p_q += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
117 |
+
p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
118 |
+
p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
119 |
+
p_o += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
120 |
+
if USE_GK:
|
121 |
+
p_gk += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
122 |
+
if USE_GV:
|
123 |
+
p_gv += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
124 |
+
if USE_G:
|
125 |
+
p_g += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H)
|
126 |
+
|
127 |
+
if STORE_FINAL_STATE:
|
128 |
+
p_ht = ht + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
|
129 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h)
|
130 |
+
|
131 |
+
|
132 |
+
@triton.heuristics({
|
133 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
134 |
+
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None,
|
135 |
+
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
|
136 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
137 |
+
})
|
138 |
+
@triton.autotune(
|
139 |
+
configs=[
|
140 |
+
triton.Config({}, num_warps=num_warps)
|
141 |
+
for num_warps in [1, 2, 4]
|
142 |
+
],
|
143 |
+
key=['BK', 'BV', 'USE_GK', 'USE_GV', 'USE_G'],
|
144 |
+
)
|
145 |
+
@triton.jit(do_not_specialize=['T'])
|
146 |
+
def fused_recurrent_bwd_kernel(
|
147 |
+
q,
|
148 |
+
k,
|
149 |
+
v,
|
150 |
+
g,
|
151 |
+
gk,
|
152 |
+
gv,
|
153 |
+
h0,
|
154 |
+
do,
|
155 |
+
dq,
|
156 |
+
dk,
|
157 |
+
dv,
|
158 |
+
dht,
|
159 |
+
dh0,
|
160 |
+
offsets,
|
161 |
+
scale,
|
162 |
+
T,
|
163 |
+
B: tl.constexpr,
|
164 |
+
H: tl.constexpr,
|
165 |
+
K: tl.constexpr,
|
166 |
+
V: tl.constexpr,
|
167 |
+
BK: tl.constexpr,
|
168 |
+
BV: tl.constexpr,
|
169 |
+
REVERSE: tl.constexpr,
|
170 |
+
USE_G: tl.constexpr,
|
171 |
+
USE_GK: tl.constexpr,
|
172 |
+
USE_GV: tl.constexpr,
|
173 |
+
USE_INITIAL_STATE: tl.constexpr,
|
174 |
+
STORE_INITIAL_STATE_GRADIENT: tl.constexpr,
|
175 |
+
USE_FINAL_STATE_GRADIENT: tl.constexpr,
|
176 |
+
USE_OFFSETS: tl.constexpr,
|
177 |
+
HEAD_FIRST: tl.constexpr
|
178 |
+
):
|
179 |
+
i_v, i_k, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64), tl.program_id(2).to(tl.int64)
|
180 |
+
i_n, i_h = i_nh // H, i_nh % H
|
181 |
+
if USE_OFFSETS:
|
182 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
|
183 |
+
all = T
|
184 |
+
T = eos - bos
|
185 |
+
else:
|
186 |
+
bos, eos = i_n * T, i_n * T + T
|
187 |
+
all = B * T
|
188 |
+
|
189 |
+
if HEAD_FIRST:
|
190 |
+
p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
191 |
+
p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
192 |
+
p_do = do + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
193 |
+
p_dq = dq + (i_v * B*H + i_nh) * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
194 |
+
if USE_G:
|
195 |
+
p_g = g + i_nh * T + ((T-1) if REVERSE else 0)
|
196 |
+
if USE_GK:
|
197 |
+
p_gk = gk + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
198 |
+
if USE_GV:
|
199 |
+
p_gv = gv + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
200 |
+
else:
|
201 |
+
p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
202 |
+
p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
203 |
+
p_do = do + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
204 |
+
p_dq = dq + ((i_v * all + bos) + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
205 |
+
if USE_G:
|
206 |
+
p_g = g + (bos + ((T-1) if REVERSE else 0)) * H + i_h
|
207 |
+
if USE_GK:
|
208 |
+
p_gk = gk + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
209 |
+
if USE_GV:
|
210 |
+
p_gv = gv + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
211 |
+
|
212 |
+
mask_k = i_k * BK + tl.arange(0, BK) < K
|
213 |
+
mask_v = i_v * BV + tl.arange(0, BV) < V
|
214 |
+
mask_h = mask_k[:, None] & mask_v[None, :]
|
215 |
+
|
216 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
217 |
+
if USE_INITIAL_STATE:
|
218 |
+
p_h0 = h0 + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
|
219 |
+
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
|
220 |
+
|
221 |
+
for _ in range(0, T):
|
222 |
+
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
|
223 |
+
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
|
224 |
+
b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32)
|
225 |
+
if USE_G:
|
226 |
+
b_g = tl.load(p_g).to(tl.float32)
|
227 |
+
b_h = b_h * exp(b_g)
|
228 |
+
if USE_GK:
|
229 |
+
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
|
230 |
+
b_h = b_h * exp(b_gk[:, None])
|
231 |
+
if USE_GV:
|
232 |
+
b_gv = tl.load(p_gv, mask=mask_v, other=0).to(tl.float32)
|
233 |
+
b_h = b_h * exp(b_gv[None, :])
|
234 |
+
b_h += b_k[:, None] * b_v[None, :]
|
235 |
+
b_dq = b_h * b_do[None, :]
|
236 |
+
b_dq = tl.sum(b_dq, axis=1) * scale
|
237 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), mask=mask_k)
|
238 |
+
|
239 |
+
p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
240 |
+
p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
241 |
+
p_do += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
242 |
+
p_dq += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
243 |
+
if USE_G:
|
244 |
+
p_g += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H)
|
245 |
+
if USE_GK:
|
246 |
+
p_gk += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
|
247 |
+
if USE_GV:
|
248 |
+
p_gv += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
|
249 |
+
|
250 |
+
# sync threads
|
251 |
+
tl.debug_barrier()
|
252 |
+
|
253 |
+
if HEAD_FIRST:
|
254 |
+
p_q = q + i_nh * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
255 |
+
p_k = k + i_nh * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
256 |
+
p_v = v + i_nh * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
257 |
+
p_do = do + i_nh * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
258 |
+
p_dk = dk + (i_v * B*H + i_nh) * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
259 |
+
p_dv = dv + (i_k * B*H + i_nh) * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
260 |
+
if USE_G:
|
261 |
+
p_g = g + i_nh * T + ((T - 1) if not REVERSE else 0)
|
262 |
+
if USE_GK:
|
263 |
+
p_gk = gk + i_nh * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
|
264 |
+
if USE_GV:
|
265 |
+
p_gv = gv + i_nh * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
|
266 |
+
else:
|
267 |
+
p_q = q + (bos + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
268 |
+
p_k = k + (bos + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
269 |
+
p_v = v + (bos + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
270 |
+
p_do = do + (bos + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
271 |
+
p_dk = dk + ((i_v * all + bos) + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
272 |
+
p_dv = dv + ((i_k * all + bos) + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
273 |
+
if USE_G:
|
274 |
+
p_g = g + (bos + ((T - 1) if not REVERSE else 0)) * H + i_h
|
275 |
+
if USE_GK:
|
276 |
+
p_gk = gk + (bos + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
|
277 |
+
if USE_GV:
|
278 |
+
p_gv = gv + (bos + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
|
279 |
+
|
280 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
281 |
+
if USE_FINAL_STATE_GRADIENT:
|
282 |
+
p_dht = dht + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
|
283 |
+
b_dh += tl.load(p_dht, mask=mask_h, other=0).to(tl.float32)
|
284 |
+
|
285 |
+
for _ in range(T):
|
286 |
+
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale
|
287 |
+
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
|
288 |
+
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
|
289 |
+
b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32)
|
290 |
+
b_dh += b_q[:, None] * b_do[None, :]
|
291 |
+
b_dk = tl.sum(b_dh * b_v[None, :], axis=1)
|
292 |
+
b_dv = tl.sum(b_dh * b_k[:, None], axis=0)
|
293 |
+
if USE_G:
|
294 |
+
b_g = tl.load(p_g).to(tl.float32)
|
295 |
+
b_dh *= exp(b_g)
|
296 |
+
if USE_GK:
|
297 |
+
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
|
298 |
+
b_dh *= exp(b_gk)[:, None]
|
299 |
+
if USE_GV:
|
300 |
+
b_gv = tl.load(p_gv, mask=mask_v, other=0).to(tl.float32)
|
301 |
+
b_dh *= exp(b_gv)[None, :]
|
302 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_k)
|
303 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), mask=mask_v)
|
304 |
+
|
305 |
+
p_q += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
|
306 |
+
p_k += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
|
307 |
+
p_v += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
|
308 |
+
p_do += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
|
309 |
+
p_dk += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
|
310 |
+
p_dv += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
|
311 |
+
if USE_G:
|
312 |
+
p_g += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H)
|
313 |
+
if USE_GK:
|
314 |
+
p_gk += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
|
315 |
+
if USE_GV:
|
316 |
+
p_gv += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
|
317 |
+
|
318 |
+
if STORE_INITIAL_STATE_GRADIENT:
|
319 |
+
p_dh0 = dh0 + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
|
320 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), mask=mask_h)
|
321 |
+
|
322 |
+
|
323 |
+
def fused_recurrent_fwd(
|
324 |
+
q: torch.Tensor,
|
325 |
+
k: torch.Tensor,
|
326 |
+
v: torch.Tensor,
|
327 |
+
g: Optional[torch.Tensor] = None,
|
328 |
+
gk: Optional[torch.Tensor] = None,
|
329 |
+
gv: Optional[torch.Tensor] = None,
|
330 |
+
scale: Optional[float] = None,
|
331 |
+
initial_state: Optional[torch.Tensor] = None,
|
332 |
+
output_final_state: bool = False,
|
333 |
+
reverse: bool = False,
|
334 |
+
offsets: Optional[torch.LongTensor] = None,
|
335 |
+
head_first: bool = True
|
336 |
+
):
|
337 |
+
if head_first:
|
338 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
339 |
+
else:
|
340 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
341 |
+
N = B if offsets is None else len(offsets) - 1
|
342 |
+
BK, BV = min(K, 64), min(V, 64)
|
343 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
344 |
+
|
345 |
+
h0 = initial_state
|
346 |
+
if output_final_state:
|
347 |
+
ht = q.new_empty(N, H, K, V, dtype=torch.float32)
|
348 |
+
else:
|
349 |
+
ht = None
|
350 |
+
o = q.new_empty(NK, *v.shape, dtype=torch.float32)
|
351 |
+
|
352 |
+
grid = (NV, NK, N * H)
|
353 |
+
fused_recurrent_fwd_kernel[grid](
|
354 |
+
q,
|
355 |
+
k,
|
356 |
+
v,
|
357 |
+
g,
|
358 |
+
gk,
|
359 |
+
gv,
|
360 |
+
o,
|
361 |
+
h0,
|
362 |
+
ht,
|
363 |
+
offsets,
|
364 |
+
scale,
|
365 |
+
T=T,
|
366 |
+
B=B,
|
367 |
+
H=H,
|
368 |
+
K=K,
|
369 |
+
V=V,
|
370 |
+
BK=BK,
|
371 |
+
BV=BV,
|
372 |
+
USE_G=g is not None,
|
373 |
+
USE_GK=gk is not None,
|
374 |
+
USE_GV=gv is not None,
|
375 |
+
REVERSE=reverse,
|
376 |
+
HEAD_FIRST=head_first
|
377 |
+
)
|
378 |
+
o = o.sum(0)
|
379 |
+
return o, ht
|
380 |
+
|
381 |
+
|
382 |
+
def fused_recurrent_bwd(
|
383 |
+
q: torch.Tensor,
|
384 |
+
k: torch.Tensor,
|
385 |
+
v: torch.Tensor,
|
386 |
+
g: Optional[torch.Tensor] = None,
|
387 |
+
gk: Optional[torch.Tensor] = None,
|
388 |
+
gv: Optional[torch.Tensor] = None,
|
389 |
+
o: Optional[torch.Tensor] = None,
|
390 |
+
do: Optional[torch.Tensor] = None,
|
391 |
+
dht: Optional[torch.Tensor] = None,
|
392 |
+
scale: Optional[float] = None,
|
393 |
+
initial_state: Optional[torch.Tensor] = None,
|
394 |
+
reverse: bool = False,
|
395 |
+
offsets: Optional[torch.LongTensor] = None,
|
396 |
+
head_first: bool = True
|
397 |
+
):
|
398 |
+
if head_first:
|
399 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
400 |
+
else:
|
401 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
402 |
+
N = B if offsets is None else len(offsets) - 1
|
403 |
+
|
404 |
+
BK, BV = min(K, 64), min(V, 64)
|
405 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
406 |
+
|
407 |
+
dq = q.new_empty(NV, *q.shape, dtype=torch.float32)
|
408 |
+
dk = q.new_empty(NV, *k.shape, dtype=torch.float32)
|
409 |
+
dv = q.new_empty(NK, *v.shape, dtype=torch.float32)
|
410 |
+
h0 = initial_state
|
411 |
+
dh0 = torch.empty_like(initial_state) if initial_state is not None else None
|
412 |
+
|
413 |
+
grid = (NV, NK, N * H)
|
414 |
+
fused_recurrent_bwd_kernel[grid](
|
415 |
+
q,
|
416 |
+
k,
|
417 |
+
v,
|
418 |
+
g,
|
419 |
+
gk,
|
420 |
+
gv,
|
421 |
+
h0,
|
422 |
+
do,
|
423 |
+
dq,
|
424 |
+
dk,
|
425 |
+
dv,
|
426 |
+
dht,
|
427 |
+
dh0,
|
428 |
+
offsets,
|
429 |
+
scale,
|
430 |
+
B=B,
|
431 |
+
T=T,
|
432 |
+
H=H,
|
433 |
+
K=K,
|
434 |
+
V=V,
|
435 |
+
BK=BK,
|
436 |
+
BV=BV,
|
437 |
+
USE_G=g is not None,
|
438 |
+
USE_GK=gk is not None,
|
439 |
+
USE_GV=gv is not None,
|
440 |
+
REVERSE=reverse,
|
441 |
+
HEAD_FIRST=head_first
|
442 |
+
)
|
443 |
+
dq = dq.sum(0)
|
444 |
+
dk = dk.sum(0)
|
445 |
+
dv = dv.sum(0)
|
446 |
+
dg, dgk, dgv = None, None, None
|
447 |
+
if g is not None:
|
448 |
+
dg = chunk_global_cumsum(
|
449 |
+
(dq * q.float() - dk * k.float()).sum(-1),
|
450 |
+
reverse=not reverse,
|
451 |
+
offsets=offsets,
|
452 |
+
head_first=head_first
|
453 |
+
)
|
454 |
+
if gk is not None:
|
455 |
+
dgk = chunk_global_cumsum(
|
456 |
+
dq * q.float() - dk * k.float(),
|
457 |
+
reverse=not reverse,
|
458 |
+
offsets=offsets,
|
459 |
+
head_first=head_first
|
460 |
+
)
|
461 |
+
if gv is not None:
|
462 |
+
dgv = chunk_global_cumsum(
|
463 |
+
do.float() * o.float() - dv * v.float(),
|
464 |
+
reverse=not reverse,
|
465 |
+
offsets=offsets,
|
466 |
+
head_first=head_first
|
467 |
+
)
|
468 |
+
|
469 |
+
return dq, dk, dv, dg, dgk, dgv, dh0
|
470 |
+
|
471 |
+
|
472 |
+
class FusedRecurrentFunction(torch.autograd.Function):
|
473 |
+
|
474 |
+
@staticmethod
|
475 |
+
@input_guard
|
476 |
+
@autocast_custom_fwd
|
477 |
+
def forward(
|
478 |
+
ctx,
|
479 |
+
q: torch.Tensor,
|
480 |
+
k: torch.Tensor,
|
481 |
+
v: torch.Tensor,
|
482 |
+
g: Optional[torch.Tensor] = None,
|
483 |
+
gk: Optional[torch.Tensor] = None,
|
484 |
+
gv: Optional[torch.Tensor] = None,
|
485 |
+
scale: Optional[float] = None,
|
486 |
+
initial_state: Optional[torch.Tensor] = None,
|
487 |
+
output_final_state: bool = False,
|
488 |
+
reverse: bool = False,
|
489 |
+
offsets: Optional[torch.LongTensor] = None,
|
490 |
+
head_first: bool = True
|
491 |
+
):
|
492 |
+
o, ht = fused_recurrent_fwd(
|
493 |
+
q=q,
|
494 |
+
k=k,
|
495 |
+
v=v,
|
496 |
+
g=g,
|
497 |
+
gk=gk,
|
498 |
+
gv=gv,
|
499 |
+
scale=scale,
|
500 |
+
initial_state=initial_state,
|
501 |
+
output_final_state=output_final_state,
|
502 |
+
reverse=reverse,
|
503 |
+
offsets=offsets,
|
504 |
+
head_first=head_first
|
505 |
+
)
|
506 |
+
ctx.save_for_backward(q, k, v, g, gk, gv, initial_state, o)
|
507 |
+
ctx.scale = scale
|
508 |
+
ctx.reverse = reverse
|
509 |
+
ctx.offsets = offsets
|
510 |
+
ctx.head_first = head_first
|
511 |
+
return o.to(q.dtype), ht
|
512 |
+
|
513 |
+
@staticmethod
|
514 |
+
@input_guard
|
515 |
+
@autocast_custom_bwd
|
516 |
+
def backward(ctx, do, dht):
|
517 |
+
q, k, v, g, gk, gv, initial_state, o = ctx.saved_tensors
|
518 |
+
# not supported yet.
|
519 |
+
if dht is not None:
|
520 |
+
if not dht.eq(0).all():
|
521 |
+
if g is not None:
|
522 |
+
assert g.requires_grad is False, "Cannot load final state gradient and use gates at the same time"
|
523 |
+
if gk is not None:
|
524 |
+
assert gk.requires_grad is False, "Cannot load final state gradient and use gates at the same time"
|
525 |
+
if gv is not None:
|
526 |
+
assert gv.requires_grad is False, "Cannot load final state gradient and use gates at the same time"
|
527 |
+
dq, dk, dv, dg, dgk, dgv, dh0 = fused_recurrent_bwd(
|
528 |
+
q=q,
|
529 |
+
k=k,
|
530 |
+
v=v,
|
531 |
+
g=g,
|
532 |
+
gk=gk,
|
533 |
+
gv=gv,
|
534 |
+
o=o,
|
535 |
+
do=do,
|
536 |
+
dht=dht,
|
537 |
+
scale=ctx.scale,
|
538 |
+
initial_state=initial_state,
|
539 |
+
reverse=ctx.reverse,
|
540 |
+
offsets=ctx.offsets,
|
541 |
+
head_first=ctx.head_first
|
542 |
+
)
|
543 |
+
return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), dg, dgk, dgv, None, dh0, None, None, None, None
|
544 |
+
|
545 |
+
|
546 |
+
def fused_recurrent(
|
547 |
+
q: torch.Tensor,
|
548 |
+
k: torch.Tensor,
|
549 |
+
v: torch.Tensor,
|
550 |
+
g: Optional[torch.Tensor] = None,
|
551 |
+
gk: Optional[torch.Tensor] = None,
|
552 |
+
gv: Optional[torch.Tensor] = None,
|
553 |
+
scale: Optional[float] = None,
|
554 |
+
initial_state: Optional[torch.Tensor] = None,
|
555 |
+
output_final_state: bool = False,
|
556 |
+
reverse: bool = False,
|
557 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
558 |
+
head_first: bool = True
|
559 |
+
):
|
560 |
+
if scale is None:
|
561 |
+
scale = k.shape[-1] ** -0.5
|
562 |
+
return FusedRecurrentFunction.apply(
|
563 |
+
q,
|
564 |
+
k,
|
565 |
+
v,
|
566 |
+
g,
|
567 |
+
gk,
|
568 |
+
gv,
|
569 |
+
scale,
|
570 |
+
initial_state,
|
571 |
+
output_final_state,
|
572 |
+
reverse,
|
573 |
+
cu_seqlens,
|
574 |
+
head_first
|
575 |
+
)
|
fla/ops/delta_rule/fused_chunk.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
def fused_chunk_delta_rule(
|
4 |
+
**kwargs
|
5 |
+
):
|
6 |
+
raise NotImplementedError("fused_chunk_delta_rule is deprecated. Please use chunk_delta_rule instead.")
|
fla/ops/gated_delta_rule/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .chunk import chunk_gated_delta_rule
|
2 |
+
from .fused_recurrent import fused_recurrent_gated_delta_rule
|
3 |
+
|
4 |
+
__all__ = [
|
5 |
+
"chunk_gated_delta_rule",
|
6 |
+
"fused_recurrent_gated_delta_rule"
|
7 |
+
]
|
fla/ops/gated_delta_rule/fused_recurrent.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
from einops import rearrange
|
10 |
+
|
11 |
+
from fla.ops.utils.op import exp
|
12 |
+
from fla.utils import input_guard
|
13 |
+
|
14 |
+
|
15 |
+
@triton.heuristics({
|
16 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
17 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
18 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
19 |
+
})
|
20 |
+
@triton.jit(do_not_specialize=['T'])
|
21 |
+
def fused_recurrent_gated_delta_rule_fwd_kernel(
|
22 |
+
q,
|
23 |
+
k,
|
24 |
+
v,
|
25 |
+
g,
|
26 |
+
beta,
|
27 |
+
o,
|
28 |
+
h0,
|
29 |
+
ht,
|
30 |
+
offsets,
|
31 |
+
scale,
|
32 |
+
T,
|
33 |
+
B: tl.constexpr,
|
34 |
+
H: tl.constexpr,
|
35 |
+
K: tl.constexpr,
|
36 |
+
V: tl.constexpr,
|
37 |
+
BK: tl.constexpr,
|
38 |
+
BV: tl.constexpr,
|
39 |
+
USE_INITIAL_STATE: tl.constexpr, # whether to use initial state
|
40 |
+
STORE_FINAL_STATE: tl.constexpr, # whether to store final state
|
41 |
+
IS_BETA_HEADWISE: tl.constexpr, # whether beta is headwise vector or scalar,
|
42 |
+
USE_QK_L2NORM_IN_KERNEL: tl.constexpr,
|
43 |
+
USE_OFFSETS: tl.constexpr
|
44 |
+
):
|
45 |
+
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
46 |
+
i_n, i_h = i_nh // H, i_nh % H
|
47 |
+
if USE_OFFSETS:
|
48 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
|
49 |
+
all = T
|
50 |
+
T = eos - bos
|
51 |
+
else:
|
52 |
+
bos, eos = i_n * T, i_n * T + T
|
53 |
+
all = B * T
|
54 |
+
o_k = i_k * BK + tl.arange(0, BK)
|
55 |
+
o_v = i_v * BV + tl.arange(0, BV)
|
56 |
+
|
57 |
+
p_q = q + (bos * H + i_h) * K + o_k
|
58 |
+
p_k = k + (bos * H + i_h) * K + o_k
|
59 |
+
p_v = v + (bos * H + i_h) * V + o_v
|
60 |
+
if IS_BETA_HEADWISE:
|
61 |
+
p_beta = beta + (bos * H + i_h) * V + o_v
|
62 |
+
else:
|
63 |
+
p_beta = beta + bos * H + i_h
|
64 |
+
p_g = g + bos * H + i_h
|
65 |
+
p_o = o + ((i_k * all + bos) * H + i_h) * V + o_v
|
66 |
+
|
67 |
+
mask_k = o_k < K
|
68 |
+
mask_v = o_v < V
|
69 |
+
mask_h = mask_k[:, None] & mask_v[None, :]
|
70 |
+
|
71 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
72 |
+
if USE_INITIAL_STATE:
|
73 |
+
p_h0 = h0 + i_nh * K*V + o_k[:, None] * V + o_v[None, :]
|
74 |
+
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
|
75 |
+
|
76 |
+
for _ in range(0, T):
|
77 |
+
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32)
|
78 |
+
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
|
79 |
+
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
|
80 |
+
b_g = tl.load(p_g).to(tl.float32)
|
81 |
+
|
82 |
+
if USE_QK_L2NORM_IN_KERNEL:
|
83 |
+
b_q = b_q / (tl.sqrt(tl.sum(b_q * b_q)) + 1e-6)
|
84 |
+
b_k = b_k / (tl.sqrt(tl.sum(b_k * b_k)) + 1e-6)
|
85 |
+
b_q = b_q * scale
|
86 |
+
# [BK, BV]
|
87 |
+
b_h *= exp(b_g)
|
88 |
+
# [BV]
|
89 |
+
b_v -= tl.sum(b_h * b_k[:, None], 0)
|
90 |
+
if IS_BETA_HEADWISE:
|
91 |
+
b_beta = tl.load(p_beta, mask=mask_v, other=0).to(tl.float32)
|
92 |
+
else:
|
93 |
+
b_beta = tl.load(p_beta).to(tl.float32)
|
94 |
+
b_v *= b_beta
|
95 |
+
# [BK, BV]
|
96 |
+
b_h += b_k[:, None] * b_v[None, :]
|
97 |
+
# [BV]
|
98 |
+
b_o = tl.sum(b_h * b_q[:, None], 0)
|
99 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v)
|
100 |
+
|
101 |
+
p_q += H*K
|
102 |
+
p_k += H*K
|
103 |
+
p_o += H*V
|
104 |
+
p_v += H*V
|
105 |
+
p_g += H
|
106 |
+
p_beta += H * (V if IS_BETA_HEADWISE else 1)
|
107 |
+
|
108 |
+
if STORE_FINAL_STATE:
|
109 |
+
p_ht = ht + i_nh * K*V + o_k[:, None] * V + o_v[None, :]
|
110 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h)
|
111 |
+
|
112 |
+
|
113 |
+
def fused_recurrent_gated_delta_rule_fwd(
|
114 |
+
q: torch.Tensor,
|
115 |
+
k: torch.Tensor,
|
116 |
+
v: torch.Tensor,
|
117 |
+
g: torch.Tensor,
|
118 |
+
beta: torch.Tensor,
|
119 |
+
scale: float,
|
120 |
+
initial_state: torch.Tensor,
|
121 |
+
output_final_state: bool,
|
122 |
+
use_qk_l2norm_in_kernel: bool = False,
|
123 |
+
offsets: Optional[torch.LongTensor] = None,
|
124 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
125 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
126 |
+
N = B if offsets is None else len(offsets) - 1
|
127 |
+
BK, BV = triton.next_power_of_2(K), min(triton.next_power_of_2(V), 8)
|
128 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
129 |
+
assert NK == 1, "NK > 1 is not supported yet"
|
130 |
+
num_stages = 3
|
131 |
+
num_warps = 1
|
132 |
+
|
133 |
+
o = q.new_empty(NK, *v.shape)
|
134 |
+
if output_final_state:
|
135 |
+
final_state = q.new_empty(N, H, K, V, dtype=torch.float32)
|
136 |
+
else:
|
137 |
+
final_state = None
|
138 |
+
|
139 |
+
grid = (NK, NV, N * H)
|
140 |
+
fused_recurrent_gated_delta_rule_fwd_kernel[grid](
|
141 |
+
q=q,
|
142 |
+
k=k,
|
143 |
+
v=v,
|
144 |
+
g=g,
|
145 |
+
beta=beta,
|
146 |
+
o=o,
|
147 |
+
h0=initial_state,
|
148 |
+
ht=final_state,
|
149 |
+
offsets=offsets,
|
150 |
+
scale=scale,
|
151 |
+
T=T,
|
152 |
+
B=B,
|
153 |
+
H=H,
|
154 |
+
K=K,
|
155 |
+
V=V,
|
156 |
+
BK=BK,
|
157 |
+
BV=BV,
|
158 |
+
IS_BETA_HEADWISE=beta.ndim == v.ndim,
|
159 |
+
USE_QK_L2NORM_IN_KERNEL=use_qk_l2norm_in_kernel,
|
160 |
+
num_warps=num_warps,
|
161 |
+
num_stages=num_stages,
|
162 |
+
)
|
163 |
+
o = o.squeeze(0)
|
164 |
+
return o, final_state
|
165 |
+
|
166 |
+
|
167 |
+
class FusedRecurrentFunction(torch.autograd.Function):
|
168 |
+
|
169 |
+
@staticmethod
|
170 |
+
@input_guard
|
171 |
+
def forward(
|
172 |
+
ctx,
|
173 |
+
q: torch.Tensor,
|
174 |
+
k: torch.Tensor,
|
175 |
+
v: torch.Tensor,
|
176 |
+
g: torch.Tensor,
|
177 |
+
beta: torch.Tensor,
|
178 |
+
scale: float,
|
179 |
+
initial_state: torch.Tensor,
|
180 |
+
output_final_state: bool,
|
181 |
+
offsets: Optional[torch.LongTensor] = None,
|
182 |
+
use_qk_l2norm_in_kernel: bool = False
|
183 |
+
):
|
184 |
+
o, final_state = fused_recurrent_gated_delta_rule_fwd(
|
185 |
+
q=q,
|
186 |
+
k=k,
|
187 |
+
v=v,
|
188 |
+
g=g,
|
189 |
+
beta=beta,
|
190 |
+
scale=scale,
|
191 |
+
initial_state=initial_state,
|
192 |
+
output_final_state=output_final_state,
|
193 |
+
use_qk_l2norm_in_kernel=use_qk_l2norm_in_kernel,
|
194 |
+
offsets=offsets
|
195 |
+
)
|
196 |
+
|
197 |
+
return o, final_state
|
198 |
+
|
199 |
+
@staticmethod
|
200 |
+
@input_guard
|
201 |
+
def backward(ctx, do, dht):
|
202 |
+
raise NotImplementedError(
|
203 |
+
"Backward pass is not implemented yet and we do not have plans to implement it "
|
204 |
+
"because we haven't figured out how to compute dg without materializing the full "
|
205 |
+
"hidden states for all time steps."
|
206 |
+
)
|
207 |
+
|
208 |
+
|
209 |
+
def fused_recurrent_gated_delta_rule(
|
210 |
+
q: torch.Tensor,
|
211 |
+
k: torch.Tensor,
|
212 |
+
v: torch.Tensor,
|
213 |
+
g: torch.Tensor,
|
214 |
+
beta: torch.Tensor = None,
|
215 |
+
scale: float = None,
|
216 |
+
initial_state: torch.Tensor = None,
|
217 |
+
output_final_state: bool = False,
|
218 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
219 |
+
use_qk_l2norm_in_kernel: bool = False,
|
220 |
+
head_first: bool = False,
|
221 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
222 |
+
r"""
|
223 |
+
Args:
|
224 |
+
q (torch.Tensor):
|
225 |
+
queries of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`.
|
226 |
+
k (torch.Tensor):
|
227 |
+
keys of shape `[B, T, H, K]` if `head_first=False` else `[B, H, T, K]`.
|
228 |
+
v (torch.Tensor):
|
229 |
+
values of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`.
|
230 |
+
g (torch.Tensor):
|
231 |
+
g (decays) of shape `[B, T, H]` if `head_first=False` else `(B, H, T)`.
|
232 |
+
beta (torch.Tensor):
|
233 |
+
betas of shape `[B, T, H]` if `head_first=False` else `(B, H, T)`.
|
234 |
+
scale (Optional[int]):
|
235 |
+
Scale factor for the RetNet attention scores.
|
236 |
+
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
237 |
+
initial_state (Optional[torch.Tensor]):
|
238 |
+
Initial state of shape `[N, H, K, V]` for `N` input sequences.
|
239 |
+
For equal-length input sequences, `N` equals the batch size `B`.
|
240 |
+
Default: `None`.
|
241 |
+
output_final_state (Optional[bool]):
|
242 |
+
Whether to output the final state of shape `[N, H, K, V]`. Default: `False`.
|
243 |
+
cu_seqlens (torch.LongTensor):
|
244 |
+
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
245 |
+
consistent with the FlashAttention API.
|
246 |
+
|
247 |
+
Returns:
|
248 |
+
o (torch.Tensor):
|
249 |
+
Outputs of shape `[B, T, H, V]` if `head_first=False` else `[B, H, T, V]`.
|
250 |
+
final_state (torch.Tensor):
|
251 |
+
Final state of shape `[N, H, K, V]` if `output_final_state=True` else `None`.
|
252 |
+
|
253 |
+
Examples::
|
254 |
+
>>> import torch
|
255 |
+
>>> import torch.nn.functional as F
|
256 |
+
>>> from einops import rearrange
|
257 |
+
>>> from fla.ops.gated_delta_rule import fused_recurrent_gated_delta_rule
|
258 |
+
# inputs with equal lengths
|
259 |
+
>>> B, T, H, K, V = 4, 2048, 4, 512, 512
|
260 |
+
>>> q = torch.randn(B, T, H, K, device='cuda')
|
261 |
+
>>> k = F.normalize(torch.randn(B, T, H, K, device='cuda'), p=2, dim=-1)
|
262 |
+
>>> v = torch.randn(B, T, H, V, device='cuda')
|
263 |
+
>>> g = F.logsigmoid(torch.rand(B, T, H, device='cuda'))
|
264 |
+
>>> beta = torch.rand(B, T, H, device='cuda').sigmoid()
|
265 |
+
>>> h0 = torch.randn(B, H, K, V, device='cuda')
|
266 |
+
>>> o, ht = fused_gated_recurrent_delta_rule(
|
267 |
+
q, k, v, g, beta,
|
268 |
+
initial_state=h0,
|
269 |
+
output_final_state=True,
|
270 |
+
)
|
271 |
+
# for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required
|
272 |
+
>>> q, k, v, g, beta = map(lambda x: rearrange(x, 'b t ... -> 1 (b t) ...'), (q, k, v, g, beta))
|
273 |
+
# for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected
|
274 |
+
>>> cu_seqlens = q.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long)
|
275 |
+
>>> o_var, ht_var = fused_gated_recurrent_delta_rule(
|
276 |
+
q, k, v, g, beta,
|
277 |
+
initial_state=h0,
|
278 |
+
output_final_state=True,
|
279 |
+
cu_seqlens=cu_seqlens
|
280 |
+
)
|
281 |
+
>>> assert o.allclose(o_var.view(o.shape))
|
282 |
+
>>> assert ht.allclose(ht_var)
|
283 |
+
"""
|
284 |
+
if cu_seqlens is not None:
|
285 |
+
if q.shape[0] != 1:
|
286 |
+
raise ValueError(
|
287 |
+
f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
|
288 |
+
f"Please flatten variable-length inputs before processing."
|
289 |
+
)
|
290 |
+
if head_first:
|
291 |
+
raise RuntimeError(
|
292 |
+
"Sequences with variable lengths are not supported for head-first mode"
|
293 |
+
)
|
294 |
+
if initial_state is not None and initial_state.shape[0] != len(cu_seqlens) - 1:
|
295 |
+
raise ValueError(
|
296 |
+
f"The number of initial states is expected to be equal to the number of input sequences, "
|
297 |
+
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state.shape[0]}."
|
298 |
+
)
|
299 |
+
if scale is None:
|
300 |
+
scale = k.shape[-1] ** -0.5
|
301 |
+
else:
|
302 |
+
assert scale > 0, "scale must be positive"
|
303 |
+
if beta is None:
|
304 |
+
beta = torch.ones_like(q[..., 0])
|
305 |
+
if head_first:
|
306 |
+
q, k, v, g, beta = map(lambda x: rearrange(x, 'b h t ... -> b t h ...'), (q, k, v, g, beta))
|
307 |
+
o, final_state = FusedRecurrentFunction.apply(
|
308 |
+
q,
|
309 |
+
k,
|
310 |
+
v,
|
311 |
+
g,
|
312 |
+
beta,
|
313 |
+
scale,
|
314 |
+
initial_state,
|
315 |
+
output_final_state,
|
316 |
+
cu_seqlens,
|
317 |
+
use_qk_l2norm_in_kernel
|
318 |
+
)
|
319 |
+
if head_first:
|
320 |
+
o = rearrange(o, 'b t h v -> b h t v')
|
321 |
+
return o, final_state
|
fla/ops/gated_delta_rule/wy_fast.py
ADDED
@@ -0,0 +1,620 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.ops.utils.op import safe_exp
|
11 |
+
from fla.utils import check_shared_mem
|
12 |
+
|
13 |
+
|
14 |
+
@triton.heuristics({
|
15 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
16 |
+
})
|
17 |
+
@triton.autotune(
|
18 |
+
configs=[
|
19 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
20 |
+
for num_warps in [2, 4, 8]
|
21 |
+
for num_stages in [2, 3, 4]
|
22 |
+
],
|
23 |
+
key=['H', 'K', 'BT', 'BK', 'BC', 'HEAD_FIRST', 'USE_OFFSETS'],
|
24 |
+
)
|
25 |
+
@triton.jit(do_not_specialize=['T'])
|
26 |
+
def fwd_prepare_wy_repr_kernel_chunk32(
|
27 |
+
k,
|
28 |
+
g,
|
29 |
+
beta,
|
30 |
+
Aw,
|
31 |
+
Au,
|
32 |
+
offsets,
|
33 |
+
indices,
|
34 |
+
T,
|
35 |
+
H: tl.constexpr,
|
36 |
+
K: tl.constexpr,
|
37 |
+
BT: tl.constexpr,
|
38 |
+
BK: tl.constexpr,
|
39 |
+
BC: tl.constexpr,
|
40 |
+
HEAD_FIRST: tl.constexpr,
|
41 |
+
USE_OFFSETS: tl.constexpr
|
42 |
+
):
|
43 |
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
44 |
+
i_b, i_h = i_bh // H, i_bh % H
|
45 |
+
if USE_OFFSETS:
|
46 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
47 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
48 |
+
T = eos - bos
|
49 |
+
else:
|
50 |
+
bos, eos = i_b * T, i_b * T + T
|
51 |
+
|
52 |
+
b_Aw = tl.zeros([BC, BC], dtype=tl.float32)
|
53 |
+
if HEAD_FIRST:
|
54 |
+
p_beta = tl.make_block_ptr(beta + i_bh*T, (T,), (1,), (i_t * BT,), (BT,), (0,))
|
55 |
+
else:
|
56 |
+
p_beta = tl.make_block_ptr(beta + bos*H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,))
|
57 |
+
|
58 |
+
b_beta = tl.load(p_beta, boundary_check=(0,))
|
59 |
+
|
60 |
+
for i_k in range(tl.cdiv(K, BK)):
|
61 |
+
if HEAD_FIRST:
|
62 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
63 |
+
else:
|
64 |
+
p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
65 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
66 |
+
b_kb = (b_k * b_beta[:, None]).to(b_k.dtype)
|
67 |
+
b_Aw += tl.dot(b_kb, tl.trans(b_k))
|
68 |
+
|
69 |
+
b_Aw = -tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :], b_Aw, 0)
|
70 |
+
|
71 |
+
if HEAD_FIRST:
|
72 |
+
p_g = tl.make_block_ptr(g + i_bh*T, (T,), (1,), (i_t * BT,), (BT,), (0,))
|
73 |
+
else:
|
74 |
+
p_g = tl.make_block_ptr(g + bos*H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,))
|
75 |
+
|
76 |
+
b_g = tl.load(p_g, boundary_check=(0,))
|
77 |
+
b_Au = b_Aw * safe_exp(b_g[:, None] - b_g[None, :])
|
78 |
+
|
79 |
+
for i in range(1, BC):
|
80 |
+
mask = tl.arange(0, BC) == i
|
81 |
+
b_aw = tl.sum(tl.where(mask[:, None], b_Aw, 0), 0)
|
82 |
+
b_au = tl.sum(tl.where(mask[:, None], b_Au, 0), 0)
|
83 |
+
b_aw = b_aw + tl.sum(b_aw[:, None] * b_Aw, 0) * (tl.arange(0, BC) < i)
|
84 |
+
b_au = b_au + tl.sum(b_au[:, None] * b_Au, 0) * (tl.arange(0, BC) < i)
|
85 |
+
b_Aw = tl.where(mask[:, None], b_aw, b_Aw)
|
86 |
+
b_Au = tl.where(mask[:, None], b_au, b_Au)
|
87 |
+
|
88 |
+
# blockwise computation of lower triangular matrix's inverse
|
89 |
+
# i.e., [A11, 0; A21, A22]^-1 = [A11^-1, 0; -A22^-1 A21 A11^-1, A22^-1]
|
90 |
+
b_Aw += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :]
|
91 |
+
b_Au += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :]
|
92 |
+
if HEAD_FIRST:
|
93 |
+
p_Aw = tl.make_block_ptr(Aw + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BC, BC), (1, 0))
|
94 |
+
p_Au = tl.make_block_ptr(Au + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BC, BC), (1, 0))
|
95 |
+
else:
|
96 |
+
p_Aw = tl.make_block_ptr(Aw + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BC, BC), (1, 0))
|
97 |
+
p_Au = tl.make_block_ptr(Au + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BC, BC), (1, 0))
|
98 |
+
tl.store(p_Aw, b_Aw.to(p_Aw.dtype.element_ty), boundary_check=(0, 1))
|
99 |
+
tl.store(p_Au, b_Au.to(p_Au.dtype.element_ty), boundary_check=(0, 1))
|
100 |
+
|
101 |
+
|
102 |
+
@triton.heuristics({
|
103 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
104 |
+
})
|
105 |
+
@triton.autotune(
|
106 |
+
configs=[
|
107 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
108 |
+
for num_warps in [2, 4, 8]
|
109 |
+
for num_stages in [2, 3, 4]
|
110 |
+
],
|
111 |
+
key=['H', 'K', 'BT', 'BK', 'BC', 'USE_OFFSETS', 'HEAD_FIRST'],
|
112 |
+
)
|
113 |
+
@triton.jit(do_not_specialize=['T'])
|
114 |
+
def fwd_prepare_wy_repr_kernel_chunk64(
|
115 |
+
k,
|
116 |
+
g,
|
117 |
+
beta,
|
118 |
+
Aw,
|
119 |
+
Au,
|
120 |
+
offsets,
|
121 |
+
indices,
|
122 |
+
T,
|
123 |
+
H: tl.constexpr,
|
124 |
+
K: tl.constexpr,
|
125 |
+
BT: tl.constexpr,
|
126 |
+
BK: tl.constexpr,
|
127 |
+
BC: tl.constexpr,
|
128 |
+
USE_OFFSETS: tl.constexpr,
|
129 |
+
HEAD_FIRST: tl.constexpr
|
130 |
+
):
|
131 |
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
132 |
+
i_b, i_h = i_bh // H, i_bh % H
|
133 |
+
if USE_OFFSETS:
|
134 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
135 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
136 |
+
T = eos - bos
|
137 |
+
else:
|
138 |
+
bos, eos = i_b * T, i_b * T + T
|
139 |
+
|
140 |
+
b_Aw = tl.zeros([BC, BC], dtype=tl.float32)
|
141 |
+
b_Aw2 = tl.zeros([BC, BC], dtype=tl.float32)
|
142 |
+
b_Aw3 = tl.zeros([BC, BC], dtype=tl.float32)
|
143 |
+
if HEAD_FIRST:
|
144 |
+
p_beta = tl.make_block_ptr(beta + i_bh*T, (T,), (1,), (i_t * BT,), (BC,), (0,))
|
145 |
+
p_beta2 = tl.make_block_ptr(beta + i_bh*T, (T,), (1,), (i_t * BT + BC,), (BC,), (0,))
|
146 |
+
else:
|
147 |
+
p_beta = tl.make_block_ptr(beta + bos*H + i_h, (T,), (H,), (i_t * BT,), (BC,), (0,))
|
148 |
+
p_beta2 = tl.make_block_ptr(beta + bos*H + i_h, (T,), (H,), (i_t * BT + BC,), (BC,), (0,))
|
149 |
+
|
150 |
+
b_beta = tl.load(p_beta, boundary_check=(0,))
|
151 |
+
b_beta2 = tl.load(p_beta2, boundary_check=(0,))
|
152 |
+
|
153 |
+
for i_k in range(tl.cdiv(K, BK)):
|
154 |
+
if HEAD_FIRST:
|
155 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BC, BK), (1, 0))
|
156 |
+
p_k2 = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT + BC, i_k * BK), (BC, BK), (1, 0))
|
157 |
+
else:
|
158 |
+
p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BC, BK), (1, 0))
|
159 |
+
p_k2 = tl.make_block_ptr(k + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT + BC, i_k * BK), (BC, BK), (1, 0))
|
160 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
161 |
+
b_kb = (b_k * b_beta[:, None]).to(b_k.dtype)
|
162 |
+
b_k2 = tl.load(p_k2, boundary_check=(0, 1))
|
163 |
+
b_kb2 = (b_k2 * b_beta2[:, None]).to(b_k2.dtype)
|
164 |
+
b_Aw += tl.dot(b_kb, tl.trans(b_k))
|
165 |
+
b_Aw2 += tl.dot(b_kb2, tl.trans(b_k2))
|
166 |
+
b_Aw3 += tl.dot(b_kb2, tl.trans(b_k))
|
167 |
+
|
168 |
+
b_Aw = -tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :], b_Aw, 0)
|
169 |
+
b_Aw2 = -tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :], b_Aw2, 0)
|
170 |
+
|
171 |
+
if HEAD_FIRST:
|
172 |
+
p_g = tl.make_block_ptr(g + i_bh*T, (T,), (1,), (i_t * BT,), (BC,), (0,))
|
173 |
+
p_g2 = tl.make_block_ptr(g + i_bh*T, (T,), (1,), (i_t * BT + BC,), (BC,), (0,))
|
174 |
+
else:
|
175 |
+
p_g = tl.make_block_ptr(g + bos*H + i_h, (T,), (H,), (i_t * BT,), (BC,), (0,))
|
176 |
+
p_g2 = tl.make_block_ptr(g + bos*H + i_h, (T,), (H,), (i_t * BT + BC,), (BC,), (0,))
|
177 |
+
b_g = tl.load(p_g, boundary_check=(0,))
|
178 |
+
b_g2 = tl.load(p_g2, boundary_check=(0,))
|
179 |
+
|
180 |
+
mask_c = tl.arange(0, BC)[:, None] >= tl.arange(0, BC)[None, :]
|
181 |
+
mask_g = i_t * BT + tl.arange(0, BC) < T
|
182 |
+
mask_g2 = i_t * BT + BC + tl.arange(0, BC) < T
|
183 |
+
|
184 |
+
b_Au = tl.where(mask_g[None, :] & mask_c, b_Aw * safe_exp(b_g[:, None] - b_g[None, :]), 0)
|
185 |
+
b_Au2 = tl.where(mask_g2[None, :] & mask_c, b_Aw2 * safe_exp(b_g2[:, None] - b_g2[None, :]), 0)
|
186 |
+
b_Au3 = tl.where(mask_g[None, :], b_Aw3 * safe_exp(b_g2[:, None] - b_g[None, :]), 0)
|
187 |
+
|
188 |
+
for i in range(1, BC):
|
189 |
+
mask = tl.arange(0, BC) == i
|
190 |
+
b_aw = tl.sum(tl.where(mask[:, None], b_Aw, 0), 0)
|
191 |
+
b_aw2 = tl.sum(tl.where(mask[:, None], b_Aw2, 0), 0)
|
192 |
+
b_au = tl.sum(tl.where(mask[:, None], b_Au, 0), 0)
|
193 |
+
b_au2 = tl.sum(tl.where(mask[:, None], b_Au2, 0), 0)
|
194 |
+
b_aw = b_aw + tl.sum(b_aw[:, None] * b_Aw, 0) * (tl.arange(0, BC) < i)
|
195 |
+
b_aw2 = b_aw2 + tl.sum(b_aw2[:, None] * b_Aw2, 0) * (tl.arange(0, BC) < i)
|
196 |
+
b_au = b_au + tl.sum(b_au[:, None] * b_Au, 0) * (tl.arange(0, BC) < i)
|
197 |
+
b_au2 = b_au2 + tl.sum(b_au2[:, None] * b_Au2, 0) * (tl.arange(0, BC) < i)
|
198 |
+
b_Aw = tl.where(mask[:, None], b_aw, b_Aw)
|
199 |
+
b_Aw2 = tl.where(mask[:, None], b_aw2, b_Aw2)
|
200 |
+
b_Au = tl.where(mask[:, None], b_au, b_Au)
|
201 |
+
b_Au2 = tl.where(mask[:, None], b_au2, b_Au2)
|
202 |
+
# blockwise computation of lower triangular matrix's inverse
|
203 |
+
# i.e., [A11, 0; A21, A22]^-1 = [A11^-1, 0; -A22^-1 A21 A11^-1, A22^-1]
|
204 |
+
b_Aw += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :]
|
205 |
+
b_Aw2 += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :]
|
206 |
+
# improve precision by disallowing tf32.
|
207 |
+
b_Aw3 = -tl.dot(tl.dot(b_Aw2, b_Aw3, allow_tf32=False), b_Aw, allow_tf32=False)
|
208 |
+
b_Au += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :]
|
209 |
+
b_Au2 += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :]
|
210 |
+
b_Au3 = -tl.dot(tl.dot(b_Au2, b_Au3, allow_tf32=False), b_Au, allow_tf32=False)
|
211 |
+
|
212 |
+
if HEAD_FIRST:
|
213 |
+
p_Aw1 = tl.make_block_ptr(Aw + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BC, BC), (1, 0))
|
214 |
+
p_Aw2 = tl.make_block_ptr(Aw + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0))
|
215 |
+
p_Aw3 = tl.make_block_ptr(Aw + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0))
|
216 |
+
p_Aw4 = tl.make_block_ptr(Aw + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, BC), (BC, BC), (1, 0))
|
217 |
+
p_Au1 = tl.make_block_ptr(Au + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BC, BC), (1, 0))
|
218 |
+
p_Au2 = tl.make_block_ptr(Au + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0))
|
219 |
+
p_Au3 = tl.make_block_ptr(Au + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0))
|
220 |
+
p_Au4 = tl.make_block_ptr(Au + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, BC), (BC, BC), (1, 0))
|
221 |
+
else:
|
222 |
+
p_Aw1 = tl.make_block_ptr(Aw + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BC, BC), (1, 0))
|
223 |
+
p_Aw2 = tl.make_block_ptr(Aw + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0))
|
224 |
+
p_Aw3 = tl.make_block_ptr(Aw + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0))
|
225 |
+
p_Aw4 = tl.make_block_ptr(Aw + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, BC), (BC, BC), (1, 0))
|
226 |
+
p_Au1 = tl.make_block_ptr(Au + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BC, BC), (1, 0))
|
227 |
+
p_Au2 = tl.make_block_ptr(Au + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT + BC, BC), (BC, BC), (1, 0))
|
228 |
+
p_Au3 = tl.make_block_ptr(Au + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT + BC, 0), (BC, BC), (1, 0))
|
229 |
+
p_Au4 = tl.make_block_ptr(Au + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, BC), (BC, BC), (1, 0))
|
230 |
+
|
231 |
+
tl.store(p_Aw1, b_Aw.to(p_Aw1.dtype.element_ty), boundary_check=(0, 1))
|
232 |
+
tl.store(p_Aw2, b_Aw2.to(p_Aw2.dtype.element_ty), boundary_check=(0, 1))
|
233 |
+
tl.store(p_Aw3, b_Aw3.to(p_Aw3.dtype.element_ty), boundary_check=(0, 1))
|
234 |
+
tl.store(p_Aw4, tl.zeros([BC, BC], dtype=tl.float32).to(p_Aw4.dtype.element_ty), boundary_check=(0, 1))
|
235 |
+
tl.store(p_Au1, b_Au.to(p_Au1.dtype.element_ty), boundary_check=(0, 1))
|
236 |
+
tl.store(p_Au2, b_Au2.to(p_Au2.dtype.element_ty), boundary_check=(0, 1))
|
237 |
+
tl.store(p_Au3, b_Au3.to(p_Au3.dtype.element_ty), boundary_check=(0, 1))
|
238 |
+
tl.store(p_Au4, tl.zeros([BC, BC], dtype=tl.float32).to(p_Au4.dtype.element_ty), boundary_check=(0, 1))
|
239 |
+
|
240 |
+
|
241 |
+
@triton.heuristics({
|
242 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
243 |
+
})
|
244 |
+
@triton.autotune(
|
245 |
+
configs=[
|
246 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
247 |
+
for num_warps in [2, 4, 8]
|
248 |
+
for num_stages in [2, 3, 4]
|
249 |
+
],
|
250 |
+
key=['H', 'K', 'V', 'BT', 'BK', 'BV', 'HEAD_FIRST', 'USE_OFFSETS'],
|
251 |
+
)
|
252 |
+
@triton.jit(do_not_specialize=['T'])
|
253 |
+
def fwd_recompute_w_u_kernel(
|
254 |
+
k,
|
255 |
+
v,
|
256 |
+
beta,
|
257 |
+
w,
|
258 |
+
u,
|
259 |
+
Aw,
|
260 |
+
Au,
|
261 |
+
offsets,
|
262 |
+
indices,
|
263 |
+
T,
|
264 |
+
H: tl.constexpr,
|
265 |
+
K: tl.constexpr,
|
266 |
+
V: tl.constexpr,
|
267 |
+
BT: tl.constexpr,
|
268 |
+
BK: tl.constexpr,
|
269 |
+
BV: tl.constexpr,
|
270 |
+
HEAD_FIRST: tl.constexpr,
|
271 |
+
USE_OFFSETS: tl.constexpr
|
272 |
+
):
|
273 |
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
274 |
+
i_b, i_h = i_bh // H, i_bh % H
|
275 |
+
if USE_OFFSETS:
|
276 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
277 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
278 |
+
T = eos - bos
|
279 |
+
else:
|
280 |
+
bos, eos = i_b * T, i_b * T + T
|
281 |
+
if HEAD_FIRST:
|
282 |
+
p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,))
|
283 |
+
p_Au = tl.make_block_ptr(Au + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
284 |
+
else:
|
285 |
+
p_beta = tl.make_block_ptr(beta + bos*H + i_h, (T,), (H,), (i_t * BT,), (BT,), (0,))
|
286 |
+
p_Au = tl.make_block_ptr(Au + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
287 |
+
b_beta = tl.load(p_beta, boundary_check=(0,))
|
288 |
+
b_Au = tl.load(p_Au, boundary_check=(0, 1))
|
289 |
+
|
290 |
+
for i_v in range(tl.cdiv(V, BV)):
|
291 |
+
if HEAD_FIRST:
|
292 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
293 |
+
p_u = tl.make_block_ptr(u + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
294 |
+
else:
|
295 |
+
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
296 |
+
p_u = tl.make_block_ptr(u + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
297 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
298 |
+
b_vb = (b_v * b_beta[:, None]).to(b_v.dtype)
|
299 |
+
b_u = tl.dot(b_Au, b_vb, allow_tf32=False)
|
300 |
+
tl.store(p_u, b_u.to(p_u.dtype.element_ty), boundary_check=(0, 1))
|
301 |
+
|
302 |
+
tl.debug_barrier()
|
303 |
+
b_Au = None
|
304 |
+
if HEAD_FIRST:
|
305 |
+
p_Aw = tl.make_block_ptr(Aw + i_bh * T * BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
306 |
+
else:
|
307 |
+
p_Aw = tl.make_block_ptr(Aw + (bos*H + i_h) * BT, (T, BT), (H*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
308 |
+
b_Aw = tl.load(p_Aw, boundary_check=(0, 1))
|
309 |
+
|
310 |
+
for i_k in range(tl.cdiv(K, BK)):
|
311 |
+
if HEAD_FIRST:
|
312 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
313 |
+
p_w = tl.make_block_ptr(w + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
314 |
+
else:
|
315 |
+
p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
316 |
+
p_w = tl.make_block_ptr(w + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
317 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
318 |
+
b_kb = (b_k * b_beta[:, None]).to(b_k.dtype)
|
319 |
+
b_w = tl.dot(b_Aw, b_kb)
|
320 |
+
tl.store(p_w, b_w.to(p_w.dtype.element_ty), boundary_check=(0, 1))
|
321 |
+
|
322 |
+
|
323 |
+
def fwd_prepare_wy_repr(
|
324 |
+
k: torch.Tensor,
|
325 |
+
v: torch.Tensor,
|
326 |
+
g: torch.Tensor,
|
327 |
+
beta: torch.Tensor,
|
328 |
+
offsets: Optional[torch.LongTensor],
|
329 |
+
indices: Optional[torch.LongTensor],
|
330 |
+
head_first: bool = True,
|
331 |
+
chunk_size: int = 64
|
332 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
333 |
+
if head_first:
|
334 |
+
B, H, T, K = k.shape
|
335 |
+
else:
|
336 |
+
B, T, H, K = k.shape
|
337 |
+
BT = min(chunk_size, max(triton.next_power_of_2(T), 16))
|
338 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
339 |
+
BC = min(BT, 32)
|
340 |
+
BK = min(triton.next_power_of_2(K), 64)
|
341 |
+
# bf16 should be good enough.
|
342 |
+
Aw = torch.empty(B, *((H, T) if head_first else (T, H)), BT, device=k.device, dtype=k.dtype)
|
343 |
+
Au = torch.empty(B, *((H, T) if head_first else (T, H)), BT, device=k.device, dtype=k.dtype)
|
344 |
+
|
345 |
+
fwd_fn = fwd_prepare_wy_repr_kernel_chunk64 if BT == 64 else fwd_prepare_wy_repr_kernel_chunk32
|
346 |
+
fwd_fn[(NT, B*H)](
|
347 |
+
k=k,
|
348 |
+
g=g,
|
349 |
+
beta=beta,
|
350 |
+
Aw=Aw,
|
351 |
+
Au=Au,
|
352 |
+
offsets=offsets,
|
353 |
+
indices=indices,
|
354 |
+
T=T,
|
355 |
+
H=H,
|
356 |
+
K=K,
|
357 |
+
BT=BT,
|
358 |
+
BK=BK,
|
359 |
+
BC=BC,
|
360 |
+
HEAD_FIRST=head_first
|
361 |
+
)
|
362 |
+
w, u = fwd_recompute_w_u(
|
363 |
+
k=k,
|
364 |
+
v=v,
|
365 |
+
beta=beta,
|
366 |
+
Aw=Aw,
|
367 |
+
Au=Au,
|
368 |
+
offsets=offsets,
|
369 |
+
indices=indices,
|
370 |
+
head_first=head_first,
|
371 |
+
chunk_size=chunk_size
|
372 |
+
)
|
373 |
+
return w, u, Aw, Au
|
374 |
+
|
375 |
+
|
376 |
+
def fwd_recompute_w_u(
|
377 |
+
k: torch.Tensor,
|
378 |
+
v: torch.Tensor,
|
379 |
+
beta: torch.Tensor,
|
380 |
+
Aw: torch.Tensor,
|
381 |
+
Au: torch.Tensor,
|
382 |
+
offsets: Optional[torch.LongTensor],
|
383 |
+
indices: Optional[torch.LongTensor],
|
384 |
+
head_first: bool,
|
385 |
+
chunk_size: int
|
386 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
387 |
+
if head_first:
|
388 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
389 |
+
else:
|
390 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
391 |
+
BT = min(chunk_size, max(triton.next_power_of_2(T), 16))
|
392 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
393 |
+
BK = min(triton.next_power_of_2(K), 64)
|
394 |
+
BV = min(triton.next_power_of_2(V), 64)
|
395 |
+
|
396 |
+
u = torch.empty_like(v)
|
397 |
+
w = torch.empty_like(k)
|
398 |
+
fwd_recompute_w_u_kernel[(NT, B*H)](
|
399 |
+
k=k,
|
400 |
+
v=v,
|
401 |
+
beta=beta,
|
402 |
+
w=w,
|
403 |
+
u=u,
|
404 |
+
Aw=Aw,
|
405 |
+
Au=Au,
|
406 |
+
offsets=offsets,
|
407 |
+
indices=indices,
|
408 |
+
T=T,
|
409 |
+
H=H,
|
410 |
+
K=K,
|
411 |
+
V=V,
|
412 |
+
BT=BT,
|
413 |
+
BK=BK,
|
414 |
+
BV=BV,
|
415 |
+
HEAD_FIRST=head_first
|
416 |
+
)
|
417 |
+
return w, u
|
418 |
+
|
419 |
+
|
420 |
+
@triton.heuristics({
|
421 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
422 |
+
})
|
423 |
+
@triton.autotune(
|
424 |
+
configs=[
|
425 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
426 |
+
for num_warps in [2, 4]
|
427 |
+
for num_stages in [2, 3, 4]
|
428 |
+
],
|
429 |
+
key=['H', 'K', 'V', 'BT', 'BK', 'BV', 'HEAD_FIRST', 'USE_OFFSETS']
|
430 |
+
)
|
431 |
+
@triton.jit(do_not_specialize=['T'])
|
432 |
+
def bwd_prepare_wy_repr_kernel(
|
433 |
+
k,
|
434 |
+
v,
|
435 |
+
beta,
|
436 |
+
g,
|
437 |
+
Aw,
|
438 |
+
Au,
|
439 |
+
dw,
|
440 |
+
du,
|
441 |
+
dk,
|
442 |
+
dv,
|
443 |
+
dbeta,
|
444 |
+
dg,
|
445 |
+
offsets,
|
446 |
+
indices,
|
447 |
+
T,
|
448 |
+
H: tl.constexpr,
|
449 |
+
K: tl.constexpr,
|
450 |
+
V: tl.constexpr,
|
451 |
+
BT: tl.constexpr,
|
452 |
+
BK: tl.constexpr,
|
453 |
+
BV: tl.constexpr,
|
454 |
+
HEAD_FIRST: tl.constexpr,
|
455 |
+
USE_OFFSETS: tl.constexpr
|
456 |
+
):
|
457 |
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
458 |
+
i_b, i_h = i_bh // H, i_bh % H
|
459 |
+
if USE_OFFSETS:
|
460 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
461 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
462 |
+
T = eos - bos
|
463 |
+
else:
|
464 |
+
bos, eos = i_b * T, i_b * T + T
|
465 |
+
|
466 |
+
b_dbeta = tl.zeros([BT], dtype=tl.float32)
|
467 |
+
b_dA = tl.zeros([BT, BT], dtype=tl.float32)
|
468 |
+
if HEAD_FIRST:
|
469 |
+
p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,))
|
470 |
+
p_A = tl.make_block_ptr(Aw + i_bh * T * BT, (BT, T), (1, BT), (0, i_t * BT), (BT, BT), (0, 1))
|
471 |
+
else:
|
472 |
+
p_beta = tl.make_block_ptr(beta + (bos*H + i_h), (T,), (H,), (i_t * BT,), (BT,), (0,))
|
473 |
+
p_A = tl.make_block_ptr(Aw + (bos*H + i_h) * BT, (BT, T), (1, H*BT), (0, i_t * BT), (BT, BT), (0, 1))
|
474 |
+
|
475 |
+
b_A = tl.load(p_A, boundary_check=(0, 1))
|
476 |
+
b_beta = tl.load(p_beta, boundary_check=(0,))
|
477 |
+
|
478 |
+
for i_k in range(tl.cdiv(K, BK)):
|
479 |
+
if HEAD_FIRST:
|
480 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
481 |
+
p_dk = tl.make_block_ptr(dk + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
482 |
+
p_dw = tl.make_block_ptr(dw + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
483 |
+
else:
|
484 |
+
p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
485 |
+
p_dk = tl.make_block_ptr(dk + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
486 |
+
p_dw = tl.make_block_ptr(dw + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
487 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
488 |
+
b_k_beta = (b_k * b_beta[:, None]).to(b_k.dtype)
|
489 |
+
b_dw = tl.load(p_dw, boundary_check=(0, 1))
|
490 |
+
b_dA += tl.dot(b_dw, tl.trans(b_k_beta), allow_tf32=False)
|
491 |
+
b_dk_beta = tl.dot(b_A, b_dw, allow_tf32=False)
|
492 |
+
b_dk = b_dk_beta * b_beta[:, None]
|
493 |
+
b_dbeta += tl.sum(b_dk_beta * b_k, 1)
|
494 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
495 |
+
|
496 |
+
b_dA = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], b_dA, 0)
|
497 |
+
b_dA = tl.dot(b_dA.to(b_A.dtype), b_A)
|
498 |
+
b_dA = tl.dot(b_A, b_dA.to(b_A.dtype))
|
499 |
+
b_dA = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], -b_dA, 0).to(k.dtype.element_ty)
|
500 |
+
|
501 |
+
if HEAD_FIRST:
|
502 |
+
p_A = tl.make_block_ptr(Au + i_bh * T * BT, (BT, T), (1, BT), (0, i_t * BT), (BT, BT), (0, 1))
|
503 |
+
else:
|
504 |
+
p_A = tl.make_block_ptr(Au + (bos*H + i_h) * BT, (BT, T), (1, H*BT), (0, i_t * BT), (BT, BT), (0, 1))
|
505 |
+
b_A = tl.load(p_A, boundary_check=(0, 1))
|
506 |
+
b_dA2 = tl.zeros([BT, BT], dtype=tl.float32)
|
507 |
+
|
508 |
+
for i_v in range(tl.cdiv(V, BV)):
|
509 |
+
if HEAD_FIRST:
|
510 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
511 |
+
p_dv = tl.make_block_ptr(dv + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
512 |
+
p_du = tl.make_block_ptr(du + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
513 |
+
else:
|
514 |
+
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
515 |
+
p_dv = tl.make_block_ptr(dv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
516 |
+
p_du = tl.make_block_ptr(du + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
517 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
518 |
+
b_v_beta = (b_v * b_beta[:, None]).to(b_v.dtype)
|
519 |
+
b_du = tl.load(p_du, boundary_check=(0, 1))
|
520 |
+
b_dA2 += tl.dot(b_du, tl.trans(b_v_beta), allow_tf32=False)
|
521 |
+
b_dv_beta = tl.dot(b_A, b_du, allow_tf32=False)
|
522 |
+
b_dv = b_dv_beta * b_beta[:, None]
|
523 |
+
b_dbeta += tl.sum(b_dv_beta * b_v, 1)
|
524 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
525 |
+
|
526 |
+
b_dA2 = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], b_dA2, 0)
|
527 |
+
b_dA2 = tl.dot(b_dA2.to(b_A.dtype), b_A)
|
528 |
+
b_dA2 = tl.dot(b_A, b_dA2.to(b_A.dtype))
|
529 |
+
b_dA2 = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], -b_dA2, 0).to(k.dtype.element_ty)
|
530 |
+
if HEAD_FIRST:
|
531 |
+
p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,))
|
532 |
+
else:
|
533 |
+
p_g = tl.make_block_ptr(g + (bos*H + i_h), (T,), (H,), (i_t * BT,), (BT,), (0,))
|
534 |
+
b_g = tl.load(p_g, boundary_check=(0,))
|
535 |
+
b_dA2 *= safe_exp(b_g[:, None] - b_g[None, :])
|
536 |
+
b_dA += b_dA2
|
537 |
+
b_dA = b_dA.to(k.dtype.element_ty)
|
538 |
+
b_A = tl.zeros([BT, BT], dtype=tl.float32)
|
539 |
+
|
540 |
+
for i_k in range(tl.cdiv(K, BK)):
|
541 |
+
if HEAD_FIRST:
|
542 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
543 |
+
p_dk = tl.make_block_ptr(dk + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
544 |
+
else:
|
545 |
+
p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
546 |
+
p_dk = tl.make_block_ptr(dk + (bos*H + i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
547 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
548 |
+
b_dk = tl.load(p_dk, boundary_check=(0, 1))
|
549 |
+
b_k_beta = (b_k * b_beta[:, None]).to(b_k.dtype)
|
550 |
+
b_A += tl.dot(b_k_beta, tl.trans(b_k))
|
551 |
+
b_dk_beta = tl.dot(b_dA, b_k, allow_tf32=False)
|
552 |
+
b_dbeta += tl.sum(b_dk_beta * b_k, 1)
|
553 |
+
b_dk += tl.dot(tl.trans(b_dA), b_k_beta, allow_tf32=False)
|
554 |
+
b_dk += b_dk_beta * b_beta[:, None]
|
555 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
556 |
+
b_dA2 *= b_A
|
557 |
+
b_dg = tl.sum(b_dA2, axis=1) - tl.sum(b_dA2, axis=0)
|
558 |
+
if HEAD_FIRST:
|
559 |
+
p_dg = tl.make_block_ptr(dg + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,))
|
560 |
+
p_dbeta = tl.make_block_ptr(dbeta + i_bh * T, (T,), (1,), (i_t * BT,), (BT,), (0,))
|
561 |
+
else:
|
562 |
+
p_dg = tl.make_block_ptr(dg + (bos*H + i_h), (T,), (H,), (i_t * BT,), (BT,), (0,))
|
563 |
+
p_dbeta = tl.make_block_ptr(dbeta + (bos*H + i_h), (T,), (H,), (i_t * BT,), (BT,), (0,))
|
564 |
+
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0,))
|
565 |
+
tl.store(p_dbeta, b_dbeta.to(p_dbeta.dtype.element_ty), boundary_check=(0,))
|
566 |
+
|
567 |
+
|
568 |
+
def bwd_prepare_wy_repr(
|
569 |
+
k: torch.Tensor,
|
570 |
+
v: torch.Tensor,
|
571 |
+
g: torch.Tensor,
|
572 |
+
beta: torch.Tensor,
|
573 |
+
Aw: torch.Tensor,
|
574 |
+
Au: torch.Tensor,
|
575 |
+
dw: torch.Tensor,
|
576 |
+
du: torch.Tensor,
|
577 |
+
offsets: Optional[torch.LongTensor],
|
578 |
+
indices: Optional[torch.LongTensor],
|
579 |
+
head_first: bool,
|
580 |
+
chunk_size: int
|
581 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
582 |
+
if head_first:
|
583 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
584 |
+
else:
|
585 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
586 |
+
BT = min(chunk_size, max(triton.next_power_of_2(T), 16))
|
587 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
588 |
+
CONST_TILING = 64 if check_shared_mem() else 32
|
589 |
+
BK = min(triton.next_power_of_2(K), CONST_TILING)
|
590 |
+
BV = min(triton.next_power_of_2(V), CONST_TILING)
|
591 |
+
|
592 |
+
dk = torch.empty_like(k)
|
593 |
+
dv = torch.empty_like(v)
|
594 |
+
dbeta = torch.empty_like(beta)
|
595 |
+
dg = torch.empty_like(g)
|
596 |
+
bwd_prepare_wy_repr_kernel[(NT, B * H)](
|
597 |
+
k=k,
|
598 |
+
v=v,
|
599 |
+
beta=beta,
|
600 |
+
g=g,
|
601 |
+
Aw=Aw,
|
602 |
+
Au=Au,
|
603 |
+
dw=dw,
|
604 |
+
du=du,
|
605 |
+
dk=dk,
|
606 |
+
dv=dv,
|
607 |
+
dbeta=dbeta,
|
608 |
+
dg=dg,
|
609 |
+
offsets=offsets,
|
610 |
+
indices=indices,
|
611 |
+
T=T,
|
612 |
+
H=H,
|
613 |
+
K=K,
|
614 |
+
V=V,
|
615 |
+
BT=BT,
|
616 |
+
BK=BK,
|
617 |
+
BV=BV,
|
618 |
+
HEAD_FIRST=head_first
|
619 |
+
)
|
620 |
+
return dk, dv, dbeta, dg
|
fla/ops/gla/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .chunk import chunk_gla
|
4 |
+
from .fused_chunk import fused_chunk_gla
|
5 |
+
from .fused_recurrent import fused_recurrent_gla
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
'chunk_gla',
|
9 |
+
'fused_chunk_gla',
|
10 |
+
'fused_recurrent_gla'
|
11 |
+
]
|
fla/ops/gla/fused_chunk.py
ADDED
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import triton
|
9 |
+
import triton.language as tl
|
10 |
+
from einops import rearrange
|
11 |
+
from packaging import version
|
12 |
+
|
13 |
+
from fla.ops.utils import chunk_local_cumsum
|
14 |
+
from fla.ops.utils.op import exp, safe_exp
|
15 |
+
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, input_guard
|
16 |
+
|
17 |
+
|
18 |
+
@triton.jit(do_not_specialize=['T'])
|
19 |
+
def prepare_qg_kg(
|
20 |
+
q,
|
21 |
+
k,
|
22 |
+
g,
|
23 |
+
qg,
|
24 |
+
kg,
|
25 |
+
scale,
|
26 |
+
T,
|
27 |
+
K: tl.constexpr,
|
28 |
+
BT: tl.constexpr,
|
29 |
+
BK: tl.constexpr
|
30 |
+
):
|
31 |
+
i_k, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
32 |
+
p_q = q + i_bh * T*K + i_c * BT * K + i_k * BK + tl.arange(0, BK)
|
33 |
+
p_g = g + i_bh * T*K + i_c * BT * K + i_k * BK + tl.arange(0, BK)
|
34 |
+
p_k = k + i_bh * T*K + i_c * BT * K + i_k * BK + tl.arange(0, BK)
|
35 |
+
p_qg = qg + i_bh * T*K + i_c * BT * K + i_k * BK + tl.arange(0, BK)
|
36 |
+
p_kg = kg + i_bh * T*K + i_c * BT * K + i_k * BK + tl.arange(0, BK)
|
37 |
+
|
38 |
+
mask = (i_k * BK + tl.arange(0, BK)) < K
|
39 |
+
|
40 |
+
last_decay = tl.load(g + i_bh * T*K + (i_c * BT + BT - 1) * K + i_k * BK + tl.arange(0, BK))
|
41 |
+
|
42 |
+
for _ in range(BT):
|
43 |
+
b_q = tl.load(p_q, mask=mask, other=0)
|
44 |
+
b_k = tl.load(p_k, mask=mask, other=0)
|
45 |
+
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
|
46 |
+
b_q *= exp(b_g) * scale
|
47 |
+
b_k *= exp(last_decay - b_g)
|
48 |
+
tl.store(p_kg, b_k.to(p_kg.dtype.element_ty), mask=mask)
|
49 |
+
tl.store(p_qg, b_q.to(p_qg.dtype.element_ty), mask=mask)
|
50 |
+
p_q += K
|
51 |
+
p_g += K
|
52 |
+
p_k += K
|
53 |
+
p_kg += K
|
54 |
+
p_qg += K
|
55 |
+
|
56 |
+
|
57 |
+
@triton.jit(do_not_specialize=['T'])
|
58 |
+
def bwd_decay_global_cumsum(
|
59 |
+
dq_inner,
|
60 |
+
dq_inter,
|
61 |
+
dk_inner,
|
62 |
+
dk_inter,
|
63 |
+
q,
|
64 |
+
k,
|
65 |
+
g,
|
66 |
+
dg,
|
67 |
+
T,
|
68 |
+
K: tl.constexpr,
|
69 |
+
BT: tl.constexpr,
|
70 |
+
BK: tl.constexpr
|
71 |
+
):
|
72 |
+
i_k, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
73 |
+
p_q = q + i_bh * T*K + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K
|
74 |
+
p_k = k + i_bh * T*K + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K
|
75 |
+
p_g = g + i_bh * T*K + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K
|
76 |
+
p_dg = dg + i_bh * T*K + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K
|
77 |
+
p_dq_inner = dq_inner + i_bh * T*K + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K
|
78 |
+
p_dk_inner = dk_inner + i_bh * T*K + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K
|
79 |
+
p_dq_inter = dq_inter + i_bh * T*K + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K
|
80 |
+
p_dk_inter = dk_inter + i_bh * T*K + i_k * BK + tl.arange(0, BK) + (i_c * BT + BT - 1) * K
|
81 |
+
cum_grad_dg = tl.zeros([BK], dtype=tl.float32)
|
82 |
+
mask = (i_k * BK + tl.arange(0, BK)) < K
|
83 |
+
last_g = tl.zeros([BK], dtype=tl.float32)
|
84 |
+
for j in range(BT-1, -1, -1):
|
85 |
+
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
|
86 |
+
if j == (BT-1):
|
87 |
+
last_g = b_g
|
88 |
+
b_dq1 = tl.load(p_dq_inner, mask=mask, other=0)
|
89 |
+
b_dq2 = tl.load(p_dq_inter, mask=mask, other=0)
|
90 |
+
b_dq2 *= exp(b_g)
|
91 |
+
b_dq = b_dq1 + b_dq2
|
92 |
+
tl.store(p_dq_inter, b_dq, mask=mask)
|
93 |
+
b_dk1 = tl.load(p_dk_inner, mask=mask, other=0)
|
94 |
+
b_dk2 = tl.load(p_dk_inter, mask=mask, other=0)
|
95 |
+
b_dk2 *= safe_exp(last_g - b_g)
|
96 |
+
b_dk = b_dk1 + b_dk2
|
97 |
+
tl.store(p_dk_inter, b_dk, mask=mask)
|
98 |
+
b_q = tl.load(p_q, mask=mask, other=0)
|
99 |
+
b_k = tl.load(p_k, mask=mask, other=0)
|
100 |
+
b_dg = b_dq * b_q - b_dk * b_k
|
101 |
+
cum_grad_dg += b_dg
|
102 |
+
tl.store(p_dg, cum_grad_dg.to(p_dg.dtype.element_ty), mask=mask)
|
103 |
+
p_g -= K
|
104 |
+
p_k -= K
|
105 |
+
p_q -= K
|
106 |
+
p_dq_inner -= K
|
107 |
+
p_dk_inner -= K
|
108 |
+
p_dq_inter -= K
|
109 |
+
p_dk_inter -= K
|
110 |
+
p_dg -= K
|
111 |
+
|
112 |
+
|
113 |
+
@triton.jit(do_not_specialize=['T'])
|
114 |
+
def fused_chunk_gla_fwd_kernel(
|
115 |
+
q,
|
116 |
+
k,
|
117 |
+
v,
|
118 |
+
g,
|
119 |
+
o,
|
120 |
+
h0,
|
121 |
+
ht,
|
122 |
+
T,
|
123 |
+
B: tl.constexpr,
|
124 |
+
H: tl.constexpr,
|
125 |
+
K: tl.constexpr,
|
126 |
+
V: tl.constexpr,
|
127 |
+
BT: tl.constexpr,
|
128 |
+
BK: tl.constexpr,
|
129 |
+
BV: tl.constexpr,
|
130 |
+
USE_INITIAL_STATE: tl.constexpr,
|
131 |
+
STORE_FINAL_STATE: tl.constexpr,
|
132 |
+
CHECK: tl.constexpr
|
133 |
+
):
|
134 |
+
# indices
|
135 |
+
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
136 |
+
|
137 |
+
b_h = tl.zeros([BK, BV], dtype=tl.float32)
|
138 |
+
|
139 |
+
# make block pointers
|
140 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (0, i_k * BK), (BT, BK), (1, 0))
|
141 |
+
p_gn = g + i_bh * T*K + (BT - 1) * K + i_k * BK + tl.arange(0, BK)
|
142 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (K, T), (1, K), (i_k * BK, 0), (BK, BT), (0, 1))
|
143 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (0, i_v * BV), (BT, BV), (1, 0))
|
144 |
+
p_o = tl.make_block_ptr(o + (i_bh + i_k * B * H) * T*V, (T, V), (V, 1), (0, i_v * BV), (BT, BV), (1, 0))
|
145 |
+
|
146 |
+
if USE_INITIAL_STATE:
|
147 |
+
p_h = tl.make_block_ptr(h0 + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
148 |
+
b_h += tl.load(p_h, boundary_check=(0, 1)).to(tl.float32)
|
149 |
+
|
150 |
+
mask = (i_k * BK + tl.arange(0, BK)) < K
|
151 |
+
|
152 |
+
for i in range(0, tl.cdiv(T, BT)):
|
153 |
+
# [BK, BT]
|
154 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
155 |
+
# [BT, BV]
|
156 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
157 |
+
# [BT, BK]
|
158 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
159 |
+
b_gn = tl.load(p_gn, mask=mask, other=0).to(tl.float32)
|
160 |
+
if CHECK and i == 0:
|
161 |
+
b_o = tl.dot(b_q.to(b_v.dtype), b_h.to(b_v.dtype), allow_tf32=False)
|
162 |
+
b_h = b_h * exp(b_gn)[:, None] + tl.dot(b_k.to(b_v.dtype), b_v, allow_tf32=False)
|
163 |
+
else:
|
164 |
+
b_o = tl.dot(b_q.to(b_v.dtype), b_h.to(b_v.dtype), allow_tf32=False)
|
165 |
+
b_h = b_h * exp(b_gn)[:, None] + tl.dot(b_k.to(b_v.dtype), b_v, allow_tf32=False)
|
166 |
+
|
167 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
168 |
+
p_q = tl.advance(p_q, (BT, 0))
|
169 |
+
p_k = tl.advance(p_k, (0, BT))
|
170 |
+
p_v = tl.advance(p_v, (BT, 0))
|
171 |
+
p_o = tl.advance(p_o, (BT, 0))
|
172 |
+
p_gn += BT * K
|
173 |
+
|
174 |
+
if STORE_FINAL_STATE:
|
175 |
+
p_final = tl.make_block_ptr(ht + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
176 |
+
tl.store(p_final, b_h.to(p_final.dtype.element_ty), boundary_check=(0, 1))
|
177 |
+
|
178 |
+
|
179 |
+
# Similar to Algorithm1 of https://arxiv.org/abs/2006.16236
|
180 |
+
@triton.jit(do_not_specialize=['T'])
|
181 |
+
def fused_chunk_gla_bwd_kernel(
|
182 |
+
q, k, v, g,
|
183 |
+
do,
|
184 |
+
dq,
|
185 |
+
dk,
|
186 |
+
dv,
|
187 |
+
h0,
|
188 |
+
scale,
|
189 |
+
T,
|
190 |
+
B: tl.constexpr,
|
191 |
+
H: tl.constexpr,
|
192 |
+
K: tl.constexpr,
|
193 |
+
V: tl.constexpr,
|
194 |
+
# clamp_min, # minimum log value of the gate for numerical stability. default: -5
|
195 |
+
BT: tl.constexpr,
|
196 |
+
BK: tl.constexpr,
|
197 |
+
BV: tl.constexpr,
|
198 |
+
USE_INITIAL_STATE: tl.constexpr,
|
199 |
+
CHECK: tl.constexpr
|
200 |
+
):
|
201 |
+
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
202 |
+
# [BV, BK]
|
203 |
+
b_h = tl.zeros([BV, BK], dtype=tl.float32)
|
204 |
+
|
205 |
+
if USE_INITIAL_STATE:
|
206 |
+
p_h = tl.make_block_ptr(h0 + i_bh * K * V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
|
207 |
+
b_h += tl.load(p_h, boundary_check=(0, 1)).to(tl.float32)
|
208 |
+
|
209 |
+
mask = (i_k * BK + tl.arange(0, BK)) < K
|
210 |
+
for i in range(0, tl.cdiv(T, BT)):
|
211 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i * BT, i_k * BK), (BT, BK), (1, 0))
|
212 |
+
p_gn = g + i_bh * T*K + ((i+1) * BT - 1) * K + i_k * BK + tl.arange(0, BK)
|
213 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (V, T), (1, V), (i_v * BV, i * BT), (BV, BT), (0, 1))
|
214 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i * BT, i_v * BV), (BT, BV), (1, 0))
|
215 |
+
p_dq = tl.make_block_ptr(dq + (i_bh+i_v*B*H)*T*K, (T, K), (K, 1), (i * BT, i_k * BK), (BT, BK), (1, 0))
|
216 |
+
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
|
217 |
+
# [BT, K]
|
218 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
219 |
+
b_gn = tl.load(p_gn, mask=mask, other=0).to(tl.float32)
|
220 |
+
|
221 |
+
# [V, BT]
|
222 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
223 |
+
# [BT, V]
|
224 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
225 |
+
# [V, K]
|
226 |
+
if CHECK and i == 0:
|
227 |
+
b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False)
|
228 |
+
b_h = b_h * exp(b_gn)[None, :] + tl.dot(b_v, b_k.to(b_v.dtype), allow_tf32=False)
|
229 |
+
else:
|
230 |
+
b_dq += tl.dot(b_do, b_h.to(b_do.dtype), allow_tf32=False)
|
231 |
+
b_h = b_h * exp(b_gn)[None, :] + tl.dot(b_v, b_k.to(b_v.dtype), allow_tf32=False)
|
232 |
+
b_dq *= scale
|
233 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
234 |
+
|
235 |
+
# sync threads
|
236 |
+
b_h = None
|
237 |
+
tl.debug_barrier()
|
238 |
+
# [BK, BV]
|
239 |
+
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
240 |
+
|
241 |
+
# cum = tl.zeros([BK], dtype=tl.float32)
|
242 |
+
for i in range(1, tl.cdiv(T, BT) + 1):
|
243 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (K, T), (1, K), (i_k * BK, T - i * BT), (BK, BT), (0, 1))
|
244 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (T - i * BT, i_k * BK), (BT, BK), (1, 0))
|
245 |
+
p_gn = g + i_bh * T*K + (T - (i-1) * BT - 1) * K + i_k * BK + tl.arange(0, BK)
|
246 |
+
p_v = tl.make_block_ptr(v + i_bh * T*V, (T, V), (V, 1), (T - i * BT, i_v * BV), (BT, BV), (1, 0))
|
247 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (T - i * BT, i_v * BV), (BT, BV), (1, 0))
|
248 |
+
p_dk = tl.make_block_ptr(dk + (i_bh + i_v * B * H) * T*K, (T, K),
|
249 |
+
(K, 1), (T - i * BT, i_k * BK), (BT, BK), (1, 0))
|
250 |
+
p_dv = tl.make_block_ptr(dv + (i_bh + i_k * B * H) * T*V, (T, V),
|
251 |
+
(V, 1), (T - i * BT, i_v * BV), (BT, BV), (1, 0))
|
252 |
+
# [K, BT]
|
253 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
254 |
+
# [BT, K]
|
255 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
256 |
+
# [BT, V]
|
257 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
258 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
259 |
+
b_db = tl.load(p_gn, mask=mask, other=0).to(tl.float32)
|
260 |
+
|
261 |
+
# inter-chunk
|
262 |
+
# [K, V]
|
263 |
+
if CHECK and i == 1:
|
264 |
+
b_dk = tl.trans(tl.dot(b_dh.to(b_v.dtype), tl.trans(b_v), allow_tf32=False))
|
265 |
+
b_dv = tl.dot((b_k).to(b_v.dtype), b_dh.to(b_v.dtype), allow_tf32=False)
|
266 |
+
b_dh = b_dh * exp(b_db)[:, None] + tl.dot(b_q.to(b_do.dtype), b_do, allow_tf32=False)
|
267 |
+
else:
|
268 |
+
b_dk = tl.trans(tl.dot(b_dh.to(b_v.dtype), tl.trans(b_v), allow_tf32=False))
|
269 |
+
b_dv = tl.dot((b_k).to(b_v.dtype), b_dh.to(b_v.dtype), allow_tf32=False)
|
270 |
+
b_dh = b_dh * exp(b_db)[:, None] + tl.dot(b_q.to(b_do.dtype), b_do, allow_tf32=False)
|
271 |
+
|
272 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
273 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
274 |
+
|
275 |
+
|
276 |
+
@triton.jit
|
277 |
+
def fwd_inner_chunk(
|
278 |
+
q, k, g, A,
|
279 |
+
scale, # K ** -0.5
|
280 |
+
B: tl.constexpr, # B
|
281 |
+
H: tl.constexpr, # H
|
282 |
+
T, # T
|
283 |
+
K: tl.constexpr, # K
|
284 |
+
BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size
|
285 |
+
BK: tl.constexpr # BLOCK SIZE along the K dimension
|
286 |
+
):
|
287 |
+
|
288 |
+
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
289 |
+
|
290 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
291 |
+
p_g = tl.make_block_ptr(g + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
292 |
+
|
293 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
294 |
+
b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32)
|
295 |
+
|
296 |
+
mask = (i_k * BK + tl.arange(0, BK)) < K
|
297 |
+
o_i = tl.arange(0, BT)
|
298 |
+
|
299 |
+
p_q = q + i_bh * T*K + i_k * BK + i_t * BT * K + tl.arange(0, BK)
|
300 |
+
p_gq = g + i_bh * T*K + i_k * BK + i_t * BT * K + tl.arange(0, BK)
|
301 |
+
p_A = A + (i_bh + (i_k * B * H)) * (tl.cdiv(T, BT) * BT * BT) + i_t * BT * BT + tl.arange(0, BT)
|
302 |
+
|
303 |
+
for i in range(BT):
|
304 |
+
b_q = tl.load(p_q, mask=mask, other=0) * scale
|
305 |
+
b_gq = tl.load(p_gq, mask=mask, other=0).to(tl.float32)
|
306 |
+
s = b_q[None, :] * b_k * safe_exp(b_gq[None, :] - b_g)
|
307 |
+
score = tl.sum(s, axis=1)
|
308 |
+
score = tl.where(o_i <= i, score, 0)
|
309 |
+
tl.store(p_A, score.to(p_A.dtype.element_ty))
|
310 |
+
p_q += K
|
311 |
+
p_gq += K
|
312 |
+
p_A += BT
|
313 |
+
|
314 |
+
|
315 |
+
@triton.jit
|
316 |
+
def bwd_inner_chunk(
|
317 |
+
q,
|
318 |
+
k,
|
319 |
+
g,
|
320 |
+
dA,
|
321 |
+
dq,
|
322 |
+
dk,
|
323 |
+
T, # T
|
324 |
+
K: tl.constexpr, # K
|
325 |
+
# clamp_min, # minimum log value of the gate for numerical stability. default: -5
|
326 |
+
BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size
|
327 |
+
BK: tl.constexpr, # BLOCK SIZE along the K dimension
|
328 |
+
):
|
329 |
+
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
330 |
+
p_k = tl.make_block_ptr(k + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
331 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
332 |
+
p_g = tl.make_block_ptr(g + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
333 |
+
b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32)
|
334 |
+
|
335 |
+
mask = (i_k * BK + tl.arange(0, BK)) < K
|
336 |
+
o_i = tl.arange(0, BT)
|
337 |
+
|
338 |
+
p_q = q + i_bh * T*K + i_k * BK + i_t * BT * K + tl.arange(0, BK)
|
339 |
+
p_dq = dq + (i_bh) * T*K + i_k * BK + i_t * BT * K + tl.arange(0, BK)
|
340 |
+
p_gq = g + i_bh * T*K + i_k * BK + i_t * BT * K + tl.arange(0, BK)
|
341 |
+
p_dA = dA + i_bh * (tl.cdiv(T, BT) * BT * BT) + i_t * BT * BT + tl.arange(0, BT)
|
342 |
+
|
343 |
+
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
|
344 |
+
|
345 |
+
for i in range(BT):
|
346 |
+
b_q = tl.load(p_q, mask=mask, other=0)
|
347 |
+
b_gq = tl.load(p_gq, mask=mask, other=0).to(tl.float32)
|
348 |
+
score = safe_exp(b_gq[None, :] - b_g)
|
349 |
+
score = tl.where(o_i[:, None] <= i, score, 0)
|
350 |
+
b_dA = tl.load(p_dA)
|
351 |
+
b_dA = tl.where(o_i <= i, b_dA, 0)
|
352 |
+
b_dk += (b_dA[:, None] * score * b_q[None, :])
|
353 |
+
b_dq = tl.sum(b_dA[:, None] * score * b_k, axis=0)
|
354 |
+
tl.store(p_dq, b_dq, mask=mask)
|
355 |
+
p_q += K
|
356 |
+
p_dq += K
|
357 |
+
p_gq += K
|
358 |
+
p_dA += BT
|
359 |
+
|
360 |
+
p_dk = tl.make_block_ptr(dk + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
361 |
+
tl.store(p_dk, b_dk.to(dk.dtype.element_ty), boundary_check=(0, 1))
|
362 |
+
|
363 |
+
|
364 |
+
class FusedChunkGLAFunction(torch.autograd.Function):
|
365 |
+
|
366 |
+
@staticmethod
|
367 |
+
@input_guard
|
368 |
+
@autocast_custom_fwd
|
369 |
+
def forward(ctx, q, k, v, g, scale, initial_state, output_final_state):
|
370 |
+
ctx.g_dtype = g.dtype
|
371 |
+
ctx.scale = scale
|
372 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
373 |
+
BT = 16 # chunk_size
|
374 |
+
BK, BV = min(K, 64), min(V, 64)
|
375 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
376 |
+
num_stages = 1
|
377 |
+
num_warps = 2
|
378 |
+
|
379 |
+
g_org = g
|
380 |
+
# cumulative decay should be in float32, otherwise the err will be accumulated and amplified.
|
381 |
+
g = chunk_local_cumsum(g_org, chunk_size=BT)
|
382 |
+
o = q.new_empty(NK, B, H, T, V)
|
383 |
+
q_g = torch.empty_like(q)
|
384 |
+
k_g = torch.empty_like(k)
|
385 |
+
|
386 |
+
grid = (NK, triton.cdiv(T, BT), B * H)
|
387 |
+
prepare_qg_kg[grid](
|
388 |
+
q,
|
389 |
+
k,
|
390 |
+
g,
|
391 |
+
q_g,
|
392 |
+
k_g,
|
393 |
+
scale,
|
394 |
+
T=T,
|
395 |
+
K=K,
|
396 |
+
BT=BT,
|
397 |
+
BK=BK,
|
398 |
+
num_warps=1
|
399 |
+
)
|
400 |
+
|
401 |
+
if output_final_state:
|
402 |
+
final_state = q.new_empty(B, H, K, V, dtype=torch.float, requires_grad=False)
|
403 |
+
else:
|
404 |
+
final_state = None
|
405 |
+
# the bug still exists even for Triton 2.2 on H100 GPUs
|
406 |
+
# so we always enable initial checks
|
407 |
+
CHECK = True
|
408 |
+
if version.parse(triton.__version__) < version.parse('2.2.0'):
|
409 |
+
import warnings
|
410 |
+
warnings.warn(
|
411 |
+
"Triton<2.2.0 detected for running this kernel, "
|
412 |
+
"which is known to have some weird compiler issues (refer to https://github.com/openai/triton/issues/2852) "
|
413 |
+
"that lead to significant precision loss. "
|
414 |
+
"We've add some initial condition checks to resolve this, sadly at the sacrifice of the speed. "
|
415 |
+
"For optimal performance, it is recommended to install Triton>=2.2.0 (if possible)."
|
416 |
+
)
|
417 |
+
CHECK = True
|
418 |
+
|
419 |
+
grid = (NV, NK, B * H)
|
420 |
+
fused_chunk_gla_fwd_kernel[grid](
|
421 |
+
q_g, k_g, v, g, o, initial_state, final_state,
|
422 |
+
T=T,
|
423 |
+
B=B,
|
424 |
+
H=H,
|
425 |
+
K=K,
|
426 |
+
V=V,
|
427 |
+
BT=BT,
|
428 |
+
BK=BK,
|
429 |
+
BV=BV,
|
430 |
+
USE_INITIAL_STATE=initial_state is not None,
|
431 |
+
STORE_FINAL_STATE=output_final_state,
|
432 |
+
CHECK=CHECK,
|
433 |
+
num_warps=num_warps,
|
434 |
+
num_stages=num_stages
|
435 |
+
)
|
436 |
+
|
437 |
+
o = o.sum(0)
|
438 |
+
|
439 |
+
# intra-chunk
|
440 |
+
chunk_size = 16
|
441 |
+
num_chunk = T // chunk_size
|
442 |
+
v2 = rearrange(v, 'b h (n c) d -> b h n c d', n=num_chunk)
|
443 |
+
BK = min(K, 64)
|
444 |
+
NK = triton.cdiv(K, BK)
|
445 |
+
A = q.new_empty(NK, B, H, triton.cdiv(T, BT), BT, BT)
|
446 |
+
grid = (NK, triton.cdiv(T, BT), B * H)
|
447 |
+
fwd_inner_chunk[grid](
|
448 |
+
q, k, g, A,
|
449 |
+
scale,
|
450 |
+
B=B,
|
451 |
+
H=H,
|
452 |
+
T=T,
|
453 |
+
K=K,
|
454 |
+
BT=BT,
|
455 |
+
BK=BK,
|
456 |
+
num_stages=3,
|
457 |
+
num_warps=4
|
458 |
+
)
|
459 |
+
A = A.sum(0)
|
460 |
+
o2 = A @ v2
|
461 |
+
o2 = rearrange(o2, 'b h n c d -> b h (n c) d')
|
462 |
+
# combine inner and inter
|
463 |
+
o.add_(o2)
|
464 |
+
ctx.save_for_backward(q, k, v, g_org, A, initial_state)
|
465 |
+
ctx.CHECK = CHECK
|
466 |
+
return o.to(v), final_state
|
467 |
+
|
468 |
+
@staticmethod
|
469 |
+
@input_guard
|
470 |
+
@autocast_custom_bwd
|
471 |
+
def backward(ctx, do, dht=None):
|
472 |
+
q, k, v, g_org, A, initial_state = ctx.saved_tensors
|
473 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
474 |
+
scale = ctx.scale
|
475 |
+
|
476 |
+
# recomputation
|
477 |
+
# inter-chunk
|
478 |
+
BT = 16 # chunk_size
|
479 |
+
g = chunk_local_cumsum(g_org, chunk_size=BT)
|
480 |
+
BK, BV = min(K, 64), min(V, 64)
|
481 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
482 |
+
q_g = torch.empty_like(q)
|
483 |
+
k_g = torch.empty_like(k)
|
484 |
+
grid = (NK, triton.cdiv(T, BT), B * H)
|
485 |
+
prepare_qg_kg[grid](
|
486 |
+
q,
|
487 |
+
k,
|
488 |
+
g,
|
489 |
+
q_g,
|
490 |
+
k_g,
|
491 |
+
scale,
|
492 |
+
T=T,
|
493 |
+
K=K,
|
494 |
+
BT=BT,
|
495 |
+
BK=BK,
|
496 |
+
num_warps=1
|
497 |
+
)
|
498 |
+
|
499 |
+
BK, BV = min(triton.next_power_of_2(K), 64), min(triton.next_power_of_2(V), 64)
|
500 |
+
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
|
501 |
+
num_stages = 1
|
502 |
+
num_warps = 2
|
503 |
+
dq = q.new_empty(NV, B, H, T, K)
|
504 |
+
dk = q.new_empty(NV, B, H, T, K)
|
505 |
+
dv = q.new_empty(NK, B, H, T, V)
|
506 |
+
|
507 |
+
grid = (NV, NK, B * H)
|
508 |
+
|
509 |
+
fused_chunk_gla_bwd_kernel[grid](
|
510 |
+
q_g,
|
511 |
+
k_g,
|
512 |
+
v,
|
513 |
+
g,
|
514 |
+
do,
|
515 |
+
dq,
|
516 |
+
dk,
|
517 |
+
dv,
|
518 |
+
initial_state,
|
519 |
+
scale,
|
520 |
+
T=T,
|
521 |
+
B=B,
|
522 |
+
H=H,
|
523 |
+
K=K,
|
524 |
+
V=V,
|
525 |
+
BT=BT,
|
526 |
+
BK=BK,
|
527 |
+
BV=BV,
|
528 |
+
USE_INITIAL_STATE=initial_state is not None,
|
529 |
+
CHECK=ctx.CHECK,
|
530 |
+
num_warps=num_warps,
|
531 |
+
num_stages=num_stages,
|
532 |
+
)
|
533 |
+
dq = dq.sum(0)
|
534 |
+
dk = dk.sum(0)
|
535 |
+
dv = dv.sum(0)
|
536 |
+
|
537 |
+
# intra chunk
|
538 |
+
NT = T // BT
|
539 |
+
v2 = rearrange(v, 'b h (n c) d -> b h n c d', n=NT)
|
540 |
+
do2 = rearrange(do, 'b h (n c) d -> b h n c d', n=NT)
|
541 |
+
dA2 = (do2 @ v2.transpose(-2, -1)) * scale
|
542 |
+
dv2 = A.transpose(-1, -2) @ do2
|
543 |
+
dv2 = rearrange(dv2, 'b h n c d -> b h (n c) d', n=NT)
|
544 |
+
|
545 |
+
BK = min(triton.next_power_of_2(K), 16)
|
546 |
+
NK = triton.cdiv(K, BK)
|
547 |
+
dk2 = torch.empty_like(k)
|
548 |
+
dq2 = torch.empty_like(q)
|
549 |
+
|
550 |
+
grid = (NK, NT, B * H)
|
551 |
+
bwd_inner_chunk[grid](
|
552 |
+
q, k, g,
|
553 |
+
dA2,
|
554 |
+
dq2,
|
555 |
+
dk2,
|
556 |
+
T=T,
|
557 |
+
K=K,
|
558 |
+
BT=BT,
|
559 |
+
BK=BK,
|
560 |
+
num_warps=1,
|
561 |
+
num_stages=3
|
562 |
+
)
|
563 |
+
|
564 |
+
BK = min(triton.next_power_of_2(K), 32)
|
565 |
+
NK = triton.cdiv(K, BK)
|
566 |
+
dg = torch.empty_like(g, dtype=torch.float32)
|
567 |
+
grid = (NK, triton.cdiv(T, BT), B * H)
|
568 |
+
bwd_decay_global_cumsum[grid](
|
569 |
+
dq2,
|
570 |
+
dq,
|
571 |
+
dk2,
|
572 |
+
dk,
|
573 |
+
q,
|
574 |
+
k,
|
575 |
+
g,
|
576 |
+
dg,
|
577 |
+
T=T,
|
578 |
+
K=K,
|
579 |
+
BT=BT,
|
580 |
+
BK=BK,
|
581 |
+
num_warps=1,
|
582 |
+
num_stages=1
|
583 |
+
)
|
584 |
+
dg = rearrange(dg, 'b h (n c) d -> b h n c d', c=BT)
|
585 |
+
|
586 |
+
def rev_cumsum_exclusive(x):
|
587 |
+
cumsum_x = x.cumsum(-2)
|
588 |
+
rev_cumsum_x = cumsum_x[..., -1, None, :] - cumsum_x
|
589 |
+
return rev_cumsum_x
|
590 |
+
|
591 |
+
rev_cumsum_dg = rev_cumsum_exclusive(dg[..., 0, :])
|
592 |
+
dg.add_(rev_cumsum_dg.unsqueeze(-2))
|
593 |
+
dv.add_(dv2)
|
594 |
+
dg = rearrange(dg, 'b h n c d -> b h (n c) d')
|
595 |
+
|
596 |
+
return dq.to(q), dk.to(k), dv.to(v), dg.to(ctx.g_dtype), None, None, None
|
597 |
+
|
598 |
+
|
599 |
+
def ceildiv(a, b):
|
600 |
+
return -(a // -b)
|
601 |
+
|
602 |
+
|
603 |
+
def pad(x, chunk_size=16):
|
604 |
+
T = x.shape[-2]
|
605 |
+
padded_seq_len = ceildiv(T, chunk_size) * chunk_size
|
606 |
+
if x.shape[-2] % chunk_size != 0:
|
607 |
+
x = F.pad(x, (0, 0, 0, padded_seq_len - T))
|
608 |
+
return x
|
609 |
+
|
610 |
+
|
611 |
+
def fused_chunk_gla(
|
612 |
+
q: torch.Tensor,
|
613 |
+
k: torch.Tensor,
|
614 |
+
v: torch.Tensor,
|
615 |
+
g: torch.Tensor,
|
616 |
+
scale: int = -1,
|
617 |
+
initial_state: torch.Tensor = None,
|
618 |
+
output_final_state: bool = False,
|
619 |
+
head_first: bool = True
|
620 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
621 |
+
if scale == -1:
|
622 |
+
scale = q.shape[-1] ** -0.5
|
623 |
+
if not head_first:
|
624 |
+
q, k, v, g = map(lambda x: x.transpose(1, 2), (q, k, v, g))
|
625 |
+
seq_len = q.shape[-2]
|
626 |
+
q, k, v, g = map(lambda x: pad(x), [q, k, v, g])
|
627 |
+
o, final_state = FusedChunkGLAFunction.apply(q, k, v, g, scale, initial_state, output_final_state)
|
628 |
+
o = o[..., :seq_len, :].contiguous()
|
629 |
+
if not head_first:
|
630 |
+
o = o.transpose(1, 2)
|
631 |
+
return o, final_state
|
fla/ops/gsa/chunk.py
ADDED
@@ -0,0 +1,1264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
from einops import reduce
|
10 |
+
|
11 |
+
from fla.ops.common.chunk_h import chunk_bwd_dh, chunk_fwd_h
|
12 |
+
from fla.ops.gla.chunk import chunk_gla_bwd, chunk_gla_fwd
|
13 |
+
from fla.ops.utils import chunk_local_cumsum, softmax_bwd, softmax_fwd
|
14 |
+
from fla.ops.utils.op import exp, safe_exp
|
15 |
+
from fla.utils import input_guard
|
16 |
+
|
17 |
+
|
18 |
+
@triton.heuristics({
|
19 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
20 |
+
})
|
21 |
+
@triton.autotune(
|
22 |
+
configs=[
|
23 |
+
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps, num_stages=num_stages)
|
24 |
+
for BK in [32, 64]
|
25 |
+
for BV in [32, 64]
|
26 |
+
for num_warps in [2, 4, 8]
|
27 |
+
for num_stages in [2, 3, 4]
|
28 |
+
],
|
29 |
+
key=['BT']
|
30 |
+
)
|
31 |
+
@triton.jit(do_not_specialize=['T'])
|
32 |
+
def chunk_gsa_fwd_k_kernel_inter(
|
33 |
+
q,
|
34 |
+
k,
|
35 |
+
h,
|
36 |
+
g,
|
37 |
+
o,
|
38 |
+
A,
|
39 |
+
offsets,
|
40 |
+
indices,
|
41 |
+
scale,
|
42 |
+
T,
|
43 |
+
HQ: tl.constexpr,
|
44 |
+
H: tl.constexpr,
|
45 |
+
K: tl.constexpr,
|
46 |
+
V: tl.constexpr,
|
47 |
+
BT: tl.constexpr,
|
48 |
+
BK: tl.constexpr,
|
49 |
+
BV: tl.constexpr,
|
50 |
+
NG: tl.constexpr,
|
51 |
+
USE_OFFSETS: tl.constexpr,
|
52 |
+
HEAD_FIRST: tl.constexpr
|
53 |
+
):
|
54 |
+
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
55 |
+
i_bg = i_bh // NG
|
56 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
57 |
+
i_h = i_hq // NG
|
58 |
+
if USE_OFFSETS:
|
59 |
+
i_tg = i_t
|
60 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
61 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
62 |
+
T = eos - bos
|
63 |
+
NT = tl.cdiv(T, BT)
|
64 |
+
else:
|
65 |
+
NT = tl.cdiv(T, BT)
|
66 |
+
i_tg = i_b * NT + i_t
|
67 |
+
bos, eos = i_b * T, i_b * T + T
|
68 |
+
|
69 |
+
o_i = tl.arange(0, BT)
|
70 |
+
m_s = o_i[:, None] >= o_i[None, :]
|
71 |
+
|
72 |
+
b_o = tl.zeros([BT, BV], dtype=tl.float32)
|
73 |
+
b_A = tl.zeros([BT, BT], dtype=tl.float32)
|
74 |
+
for i_k in range(tl.cdiv(K, BK)):
|
75 |
+
if HEAD_FIRST:
|
76 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
77 |
+
p_k = tl.make_block_ptr(k + i_bg * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
78 |
+
p_h = tl.make_block_ptr(h + (i_bg * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
79 |
+
else:
|
80 |
+
p_q = tl.make_block_ptr(q + (bos * HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
81 |
+
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
|
82 |
+
p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
83 |
+
|
84 |
+
# [BT, BK]
|
85 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
86 |
+
b_q = (b_q * scale).to(b_q.dtype)
|
87 |
+
# [BK, BT]
|
88 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
89 |
+
# [BK, BV]
|
90 |
+
b_h = tl.load(p_h, boundary_check=(0, 1))
|
91 |
+
# [BT, BV]
|
92 |
+
b_o += tl.dot(b_q, b_h)
|
93 |
+
# [BT, BT]
|
94 |
+
b_A += tl.dot(b_q, b_k)
|
95 |
+
if HEAD_FIRST:
|
96 |
+
p_g = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
97 |
+
p_o = tl.make_block_ptr(o + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
98 |
+
p_A = tl.make_block_ptr(A + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
99 |
+
else:
|
100 |
+
p_g = tl.make_block_ptr(g + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
101 |
+
p_o = tl.make_block_ptr(o + (bos * HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
102 |
+
p_A = tl.make_block_ptr(A + (bos * HQ + i_hq) * BT, (T, BT), (HQ*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
103 |
+
# [BT, BV]
|
104 |
+
b_g = tl.load(p_g, boundary_check=(0, 1))
|
105 |
+
b_o = b_o * exp(b_g)
|
106 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
107 |
+
|
108 |
+
# [BT, BT]
|
109 |
+
b_A = tl.where(m_s, b_A, 0.)
|
110 |
+
if i_v == 0:
|
111 |
+
tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1))
|
112 |
+
|
113 |
+
|
114 |
+
@triton.heuristics({
|
115 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
116 |
+
})
|
117 |
+
@triton.jit(do_not_specialize=['T'])
|
118 |
+
def chunk_gsa_fwd_k_kernel_intra(
|
119 |
+
v,
|
120 |
+
g,
|
121 |
+
o,
|
122 |
+
A,
|
123 |
+
offsets,
|
124 |
+
indices,
|
125 |
+
T,
|
126 |
+
HQ: tl.constexpr,
|
127 |
+
H: tl.constexpr,
|
128 |
+
V: tl.constexpr,
|
129 |
+
BT: tl.constexpr,
|
130 |
+
BC: tl.constexpr,
|
131 |
+
BV: tl.constexpr,
|
132 |
+
NC: tl.constexpr,
|
133 |
+
NG: tl.constexpr,
|
134 |
+
USE_OFFSETS: tl.constexpr,
|
135 |
+
HEAD_FIRST: tl.constexpr
|
136 |
+
):
|
137 |
+
i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
138 |
+
i_bg = i_bh // NG
|
139 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
140 |
+
i_h = i_hq // NG
|
141 |
+
i_t, i_i = i_c // NC, i_c % NC
|
142 |
+
if USE_OFFSETS:
|
143 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
144 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
145 |
+
T = eos - bos
|
146 |
+
else:
|
147 |
+
bos, eos = i_b * T, i_b * T + T
|
148 |
+
|
149 |
+
o_v = i_v * BV + tl.arange(0, BV)
|
150 |
+
m_v = o_v < V
|
151 |
+
|
152 |
+
if i_t * BT + i_i * BC > T:
|
153 |
+
return
|
154 |
+
|
155 |
+
if HEAD_FIRST:
|
156 |
+
p_g = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
157 |
+
p_gn = tl.max_contiguous(tl.multiple_of(g + i_bg * T*V + min(i_t * BT + i_i * BC, T) * V + o_v, BV), BV)
|
158 |
+
else:
|
159 |
+
p_g = tl.make_block_ptr(g + (bos * H + i_h) * V, (T, V), (H*V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
160 |
+
p_gn = g + (bos + min(i_t * BT + i_i * BC, T)) * H*V + i_h * V + o_v
|
161 |
+
# [BV,]
|
162 |
+
b_gn = tl.load(p_gn, mask=m_v, other=0)
|
163 |
+
# [BC, BV]
|
164 |
+
b_o = tl.zeros([BC, BV], dtype=tl.float32)
|
165 |
+
for i_j in range(0, i_i):
|
166 |
+
if HEAD_FIRST:
|
167 |
+
p_A = tl.make_block_ptr(A + i_bh * T*BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
168 |
+
p_v = tl.make_block_ptr(v + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
169 |
+
p_gv = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
170 |
+
else:
|
171 |
+
p_A = tl.make_block_ptr(A + (bos*HQ+i_hq) * BT, (T, BT), (HQ*BT, 1), (i_t*BT+i_i*BC, i_j * BC), (BC, BC), (1, 0))
|
172 |
+
p_v = tl.make_block_ptr(v + (bos*H+i_h) * V, (T, V), (H*V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
173 |
+
p_gv = tl.make_block_ptr(g + (bos*H+i_h) * V, (T, V), (H*V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
174 |
+
# [BC, BV]
|
175 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
176 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
177 |
+
b_vg = (b_v * exp(b_gn[None, :] - b_gv)).to(b_v.dtype)
|
178 |
+
# [BC, BC]
|
179 |
+
b_A = tl.load(p_A, boundary_check=(0, 1))
|
180 |
+
b_o += tl.dot(b_A, b_vg)
|
181 |
+
# [BC, BV]
|
182 |
+
b_g = tl.load(p_g, boundary_check=(0, 1))
|
183 |
+
b_o *= exp(b_g - b_gn[None, :])
|
184 |
+
|
185 |
+
o_i = tl.arange(0, BC)
|
186 |
+
if HEAD_FIRST:
|
187 |
+
o_A = i_bh * T*BT + (i_t * BT + i_i * BC + tl.arange(0, BC)) * BT + i_i * BC
|
188 |
+
else:
|
189 |
+
o_A = (bos + i_t * BT + i_i * BC + tl.arange(0, BC)) * HQ*BT + i_hq * BT + i_i * BC
|
190 |
+
m_A = (i_t * BT + i_i * BC + tl.arange(0, BC)) < T
|
191 |
+
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
|
192 |
+
if HEAD_FIRST:
|
193 |
+
p_v = tl.max_contiguous(tl.multiple_of(v + i_bg * T*V + (i_t * BT + i_i * BC + j) * V + o_v, BV), BV)
|
194 |
+
p_gv = tl.max_contiguous(tl.multiple_of(g + i_bg * T*V + (i_t * BT + i_i * BC + j) * V + o_v, BV), BV)
|
195 |
+
else:
|
196 |
+
p_v = v + (bos + i_t * BT + i_i * BC + j) * H*V + i_h * V + o_v
|
197 |
+
p_gv = g + (bos + i_t * BT + i_i * BC + j) * H*V + i_h * V + o_v
|
198 |
+
# [BC,]
|
199 |
+
b_A = tl.load(A + o_A + j, mask=m_A, other=0)
|
200 |
+
# [BV,]
|
201 |
+
b_v = tl.load(p_v, mask=m_v, other=0).to(tl.float32)
|
202 |
+
b_gv = tl.load(p_gv, mask=m_v, other=0).to(tl.float32)
|
203 |
+
# [BC, BV]
|
204 |
+
b_vg = b_v[None, :] * exp(b_g - b_gv[None, :])
|
205 |
+
# avoid 0 * inf = inf
|
206 |
+
b_o += tl.where(o_i[:, None] >= j, b_A[:, None] * b_vg, 0.)
|
207 |
+
if HEAD_FIRST:
|
208 |
+
p_o = tl.make_block_ptr(o + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
209 |
+
else:
|
210 |
+
p_o = tl.make_block_ptr(o + (bos*HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
211 |
+
b_o += tl.load(p_o, boundary_check=(0, 1))
|
212 |
+
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
|
213 |
+
|
214 |
+
|
215 |
+
@triton.heuristics({
|
216 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
217 |
+
})
|
218 |
+
@triton.autotune(
|
219 |
+
configs=[
|
220 |
+
triton.Config({}, num_warps=num_warps)
|
221 |
+
for num_warps in [2, 4, 8]
|
222 |
+
],
|
223 |
+
key=["BT"]
|
224 |
+
)
|
225 |
+
@triton.jit(do_not_specialize=['T'])
|
226 |
+
def chunk_gsa_bwd_k_kernel_dA(
|
227 |
+
v,
|
228 |
+
g,
|
229 |
+
do,
|
230 |
+
dA,
|
231 |
+
indices,
|
232 |
+
offsets,
|
233 |
+
scale,
|
234 |
+
T,
|
235 |
+
B: tl.constexpr,
|
236 |
+
HQ: tl.constexpr,
|
237 |
+
H: tl.constexpr,
|
238 |
+
V: tl.constexpr,
|
239 |
+
BT: tl.constexpr,
|
240 |
+
BC: tl.constexpr,
|
241 |
+
BV: tl.constexpr,
|
242 |
+
NC: tl.constexpr,
|
243 |
+
NG: tl.constexpr,
|
244 |
+
USE_OFFSETS: tl.constexpr,
|
245 |
+
HEAD_FIRST: tl.constexpr
|
246 |
+
):
|
247 |
+
i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
248 |
+
i_bg = i_bh // NG
|
249 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
250 |
+
i_h = i_hq // NG
|
251 |
+
i_t, i_i, i_j = i_c // (NC * NC), (i_c % (NC * NC)) // NC, (i_c % (NC * NC)) % NC
|
252 |
+
if USE_OFFSETS:
|
253 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
254 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
255 |
+
all = T
|
256 |
+
T = eos - bos
|
257 |
+
else:
|
258 |
+
bos, eos = i_b * T, i_b * T + T
|
259 |
+
all = B * T
|
260 |
+
|
261 |
+
o_v = i_v * BV + tl.arange(0, BV)
|
262 |
+
m_v = o_v < V
|
263 |
+
|
264 |
+
if i_t * BT + i_i * BC > T:
|
265 |
+
return
|
266 |
+
|
267 |
+
if HEAD_FIRST:
|
268 |
+
p_dA = tl.make_block_ptr(dA+(i_v*B*H+i_bh)*T*BT, (T, BT), (BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
|
269 |
+
else:
|
270 |
+
p_dA = tl.make_block_ptr(dA+((i_v*all+bos)*HQ+i_hq)*BT, (T, BT), (HQ*BT, 1), (i_t*BT+i_i*BC, i_j*BC), (BC, BC), (1, 0))
|
271 |
+
|
272 |
+
# [BC, BC]
|
273 |
+
b_dA = tl.zeros([BC, BC], dtype=tl.float32)
|
274 |
+
if i_i > i_j:
|
275 |
+
if HEAD_FIRST:
|
276 |
+
p_v = tl.make_block_ptr(v + i_bg * T*V, (V, T), (1, V), (i_v * BV, i_t * BT + i_j * BC), (BV, BC), (0, 1))
|
277 |
+
p_gv = tl.make_block_ptr(g + i_bg * T*V, (V, T), (1, V), (i_v * BV, i_t * BT + i_j * BC), (BV, BC), (0, 1))
|
278 |
+
p_gn = tl.max_contiguous(tl.multiple_of(g + i_bg * T*V + (i_t * BT + i_i * BC) * V + o_v, BV), BV)
|
279 |
+
p_g = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
280 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
281 |
+
else:
|
282 |
+
p_v = tl.make_block_ptr(v + (bos*H+i_h) * V, (V, T), (1, H*V), (i_v * BV, i_t*BT + i_j*BC), (BV, BC), (0, 1))
|
283 |
+
p_gv = tl.make_block_ptr(g + (bos*H+i_h) * V, (V, T), (1, H*V), (i_v * BV, i_t*BT + i_j*BC), (BV, BC), (0, 1))
|
284 |
+
p_gn = g + (bos + i_t*BT + i_i*BC) * H*V + i_h * V + o_v
|
285 |
+
p_g = tl.make_block_ptr(g + (bos*H+i_h) * V, (T, V), (H*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
286 |
+
p_do = tl.make_block_ptr(do + (bos*HQ+i_hq) * V, (T, V), (HQ*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
287 |
+
# [BV,]
|
288 |
+
b_gn = tl.load(p_gn, mask=m_v, other=0.)
|
289 |
+
# [BC, BV]
|
290 |
+
b_g = tl.load(p_g, boundary_check=(0, 1))
|
291 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
292 |
+
b_do = (b_do * exp(b_g - b_gn[None, :]) * scale).to(b_do.dtype)
|
293 |
+
# [BV, BC]
|
294 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
295 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
296 |
+
b_vg = (b_v * exp(b_gn[:, None] - b_gv)).to(b_v.dtype)
|
297 |
+
# [BC, BC]
|
298 |
+
b_dA = tl.dot(b_do, b_vg)
|
299 |
+
elif i_i == i_j:
|
300 |
+
if HEAD_FIRST:
|
301 |
+
p_g = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
302 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
303 |
+
p_v = tl.max_contiguous(tl.multiple_of(v + i_bg * T*V + (i_t * BT + i_j * BC) * V + o_v, BV), BV)
|
304 |
+
p_gv = tl.max_contiguous(tl.multiple_of(g + i_bg * T*V + (i_t * BT + i_j * BC) * V + o_v, BV), BV)
|
305 |
+
else:
|
306 |
+
p_g = tl.make_block_ptr(g + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
307 |
+
p_do = tl.make_block_ptr(do + (bos*HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
308 |
+
p_v = v + (bos + i_t*BT + i_j*BC) * H*V + i_h * V + o_v
|
309 |
+
p_gv = g + (bos + i_t*BT + i_j*BC) * H*V + i_h * V + o_v
|
310 |
+
# [BC, BV]
|
311 |
+
b_g = tl.load(p_g, boundary_check=(0, 1))
|
312 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)) * scale
|
313 |
+
m_v = o_v < V
|
314 |
+
|
315 |
+
o_i = tl.arange(0, BC)
|
316 |
+
# [BC, BC]
|
317 |
+
m_dA = o_i[:, None] >= o_i[None, :]
|
318 |
+
for j in range(0, min(BC, T - i_t * BT - i_j * BC)):
|
319 |
+
# [BV,]
|
320 |
+
b_v = tl.load(p_v, mask=m_v, other=0).to(tl.float32)
|
321 |
+
b_gv = tl.load(p_gv, mask=m_v, other=0).to(tl.float32)
|
322 |
+
# [BC,]
|
323 |
+
b_dAj = tl.sum(b_do * b_v[None, :] * exp(b_g - b_gv[None, :]), 1)
|
324 |
+
b_dA = tl.where((o_i == j)[None, :], b_dAj[:, None], b_dA)
|
325 |
+
|
326 |
+
p_v += (1 if HEAD_FIRST else H) * V
|
327 |
+
p_gv += (1 if HEAD_FIRST else H) * V
|
328 |
+
b_dA = tl.where(m_dA, b_dA, 0.)
|
329 |
+
tl.store(p_dA, b_dA.to(dA.dtype.element_ty), boundary_check=(0, 1))
|
330 |
+
|
331 |
+
|
332 |
+
@triton.heuristics({
|
333 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
334 |
+
})
|
335 |
+
@triton.autotune(
|
336 |
+
configs=[
|
337 |
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
338 |
+
for num_warps in [2, 4]
|
339 |
+
for num_stages in [2, 3, 4]
|
340 |
+
],
|
341 |
+
key=['BT']
|
342 |
+
)
|
343 |
+
@triton.jit(do_not_specialize=['T'])
|
344 |
+
def chunk_gsa_bwd_k_kernel_dqkvg(
|
345 |
+
q,
|
346 |
+
k,
|
347 |
+
v,
|
348 |
+
h,
|
349 |
+
g,
|
350 |
+
A,
|
351 |
+
do,
|
352 |
+
dh,
|
353 |
+
dq,
|
354 |
+
dk,
|
355 |
+
dv,
|
356 |
+
dg,
|
357 |
+
dgv,
|
358 |
+
dA,
|
359 |
+
offsets,
|
360 |
+
indices,
|
361 |
+
scale,
|
362 |
+
T,
|
363 |
+
B: tl.constexpr,
|
364 |
+
HQ: tl.constexpr,
|
365 |
+
H: tl.constexpr,
|
366 |
+
K: tl.constexpr,
|
367 |
+
V: tl.constexpr,
|
368 |
+
BT: tl.constexpr,
|
369 |
+
BK: tl.constexpr,
|
370 |
+
BV: tl.constexpr,
|
371 |
+
NG: tl.constexpr,
|
372 |
+
USE_OFFSETS: tl.constexpr,
|
373 |
+
HEAD_FIRST: tl.constexpr
|
374 |
+
):
|
375 |
+
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
376 |
+
i_bg = i_bh // NG
|
377 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
378 |
+
i_h = i_hq // NG
|
379 |
+
if USE_OFFSETS:
|
380 |
+
i_tg = i_t
|
381 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
382 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
383 |
+
all = T
|
384 |
+
T = eos - bos
|
385 |
+
NT = tl.cdiv(T, BT)
|
386 |
+
else:
|
387 |
+
NT = tl.cdiv(T, BT)
|
388 |
+
i_tg = i_b * NT + i_t
|
389 |
+
bos, eos = i_b * T, i_b * T + T
|
390 |
+
all = B * T
|
391 |
+
|
392 |
+
o_i = tl.arange(0, BT)
|
393 |
+
o_t = min(i_t * BT + BT, T)
|
394 |
+
m_s = o_i[:, None] >= o_i[None, :]
|
395 |
+
|
396 |
+
if HEAD_FIRST:
|
397 |
+
p_q = tl.make_block_ptr(q + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
398 |
+
p_k = tl.make_block_ptr(k + i_bg * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
399 |
+
p_A = tl.make_block_ptr(A + (i_k*B*H+i_bh) * T*BT, (T, BT), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
400 |
+
else:
|
401 |
+
p_q = tl.make_block_ptr(q + (bos*HQ+i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
402 |
+
p_k = tl.make_block_ptr(k + (bos*H+i_h) * K, (T, K), (H*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
403 |
+
p_A = tl.make_block_ptr(A + ((i_k*all+bos)*HQ+i_hq)*BT, (T, BT), (HQ*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
404 |
+
|
405 |
+
# [BT, BK]
|
406 |
+
b_q = tl.load(p_q, boundary_check=(0, 1))
|
407 |
+
b_k = tl.load(p_k, boundary_check=(0, 1))
|
408 |
+
# [BT, BT]
|
409 |
+
b_A = tl.dot((b_q * scale).to(b_q.dtype), tl.trans(b_k))
|
410 |
+
b_A = tl.where(m_s, b_A, 0.)
|
411 |
+
tl.store(p_A, b_A.to(p_A.dtype.element_ty), boundary_check=(0, 1))
|
412 |
+
|
413 |
+
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
|
414 |
+
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
|
415 |
+
for i_v in range(tl.cdiv(V, BV)):
|
416 |
+
o_v = i_v * BV + tl.arange(0, BV)
|
417 |
+
if HEAD_FIRST:
|
418 |
+
p_v = tl.make_block_ptr(v + i_bg * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
419 |
+
p_g = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
420 |
+
p_gn = tl.max_contiguous(tl.multiple_of(g + i_bg * T*V + (o_t - 1) * V + o_v, BV), BV)
|
421 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
422 |
+
p_dv = tl.make_block_ptr(dv + (i_k*B*H+i_bh) * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
423 |
+
p_dg = tl.make_block_ptr(dg + i_bh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
424 |
+
p_dgv = tl.make_block_ptr(dgv + (i_k*B*H+i_bh) * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
425 |
+
p_h = tl.make_block_ptr(h + i_bg * NT*K*V + i_t * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
|
426 |
+
p_dh = tl.make_block_ptr(dh + i_bh * NT*K*V + i_t * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
427 |
+
else:
|
428 |
+
p_v = tl.make_block_ptr(v + (bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
429 |
+
p_g = tl.make_block_ptr(g + (bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
430 |
+
p_gn = g + (bos + o_t - 1) * H*V + i_h * V + o_v
|
431 |
+
p_do = tl.make_block_ptr(do + (bos*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
432 |
+
p_dv = tl.make_block_ptr(dv + ((i_k*all+bos)*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
433 |
+
p_dg = tl.make_block_ptr(dg + (bos*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
434 |
+
p_dgv = tl.make_block_ptr(dgv+((i_k*all+bos)*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
|
435 |
+
p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K*V, (V, K), (1, V), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
|
436 |
+
p_dh = tl.make_block_ptr(dh + (i_tg * HQ + i_hq) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
|
437 |
+
m_v = o_v < V
|
438 |
+
|
439 |
+
# [BV,]
|
440 |
+
b_gn = tl.load(p_gn, mask=m_v, other=0)
|
441 |
+
# [BT, BV]
|
442 |
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
443 |
+
b_g = tl.load(p_g, boundary_check=(0, 1))
|
444 |
+
b_gv = exp(b_gn[None, :] - b_g)
|
445 |
+
# [BV, BK]
|
446 |
+
b_h = tl.load(p_h, boundary_check=(0, 1))
|
447 |
+
# [BT, BV]
|
448 |
+
b_do = tl.load(p_do, boundary_check=(0, 1))
|
449 |
+
b_do = (b_do * exp(b_g) * scale).to(b_do.dtype)
|
450 |
+
# [BK, BV]
|
451 |
+
b_dh = tl.load(p_dh, boundary_check=(0, 1))
|
452 |
+
# [BV]
|
453 |
+
b_dg = tl.sum(tl.trans(b_h) * b_dh, 0) * exp(b_gn)
|
454 |
+
|
455 |
+
b_dh = b_dh.to(b_k.dtype)
|
456 |
+
# [BT, BK]
|
457 |
+
b_dq += tl.dot(b_do, b_h.to(b_k.dtype))
|
458 |
+
b_dk += tl.dot((b_v * b_gv).to(b_v.dtype), tl.trans(b_dh))
|
459 |
+
# [BT, BV]
|
460 |
+
b_dv = tl.dot(b_k, b_dh) * b_gv
|
461 |
+
# [BV]
|
462 |
+
b_dg += tl.sum(b_dv * b_v, 0)
|
463 |
+
|
464 |
+
if i_k == 0:
|
465 |
+
b_dgv = tl.load(p_dg, boundary_check=(0, 1)) + b_dg[None, :]
|
466 |
+
else:
|
467 |
+
b_dgv = tl.zeros([BT, BV], dtype=tl.float32) + b_dg[None, :]
|
468 |
+
|
469 |
+
tl.store(p_dgv, b_dgv.to(p_dgv.dtype.element_ty), boundary_check=(0, 1))
|
470 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
471 |
+
if HEAD_FIRST:
|
472 |
+
p_dA = tl.make_block_ptr(dA + i_bh * T*BT, (T, BT, ), (BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
473 |
+
p_dq = tl.make_block_ptr(dq + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
474 |
+
p_dk = tl.make_block_ptr(dk + i_bh * T*K, (T, K), (K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
475 |
+
else:
|
476 |
+
p_dA = tl.make_block_ptr(dA + (bos*HQ + i_hq) * BT, (T, BT), (HQ*BT, 1), (i_t * BT, 0), (BT, BT), (1, 0))
|
477 |
+
p_dq = tl.make_block_ptr(dq + (bos*HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
478 |
+
p_dk = tl.make_block_ptr(dk + (bos*HQ + i_hq) * K, (T, K), (HQ*K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
|
479 |
+
# [BT, BT]
|
480 |
+
b_dA = tl.load(p_dA, boundary_check=(0, 1))
|
481 |
+
# [BT, BK]
|
482 |
+
b_dq += tl.dot(b_dA, b_k)
|
483 |
+
b_dk += tl.dot(tl.trans(b_dA).to(b_k.dtype), b_q)
|
484 |
+
|
485 |
+
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
|
486 |
+
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
|
487 |
+
|
488 |
+
|
489 |
+
@triton.heuristics({
|
490 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
491 |
+
})
|
492 |
+
@triton.jit(do_not_specialize=['T'])
|
493 |
+
def chunk_gsa_bwd_k_kernel_intra_dvg(
|
494 |
+
v,
|
495 |
+
g,
|
496 |
+
o,
|
497 |
+
A,
|
498 |
+
do,
|
499 |
+
dv,
|
500 |
+
dg,
|
501 |
+
offsets,
|
502 |
+
indices,
|
503 |
+
T,
|
504 |
+
HQ: tl.constexpr,
|
505 |
+
H: tl.constexpr,
|
506 |
+
V: tl.constexpr,
|
507 |
+
BT: tl.constexpr,
|
508 |
+
BC: tl.constexpr,
|
509 |
+
BV: tl.constexpr,
|
510 |
+
NC: tl.constexpr,
|
511 |
+
NG: tl.constexpr,
|
512 |
+
USE_OFFSETS: tl.constexpr,
|
513 |
+
HEAD_FIRST: tl.constexpr
|
514 |
+
):
|
515 |
+
i_v, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
516 |
+
i_bg = i_bh // NG
|
517 |
+
i_b, i_hq = i_bh // HQ, i_bh % HQ
|
518 |
+
i_h = i_hq // NG
|
519 |
+
i_t, i_i = i_c // NC, i_c % NC
|
520 |
+
if USE_OFFSETS:
|
521 |
+
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices + i_t * 2 + 1).to(tl.int32)
|
522 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
|
523 |
+
T = eos - bos
|
524 |
+
else:
|
525 |
+
bos, eos = i_b * T, i_b * T + T
|
526 |
+
|
527 |
+
o_v = i_v * BV + tl.arange(0, BV)
|
528 |
+
m_v = o_v < V
|
529 |
+
|
530 |
+
if i_t * BT + i_i * BC > T:
|
531 |
+
return
|
532 |
+
|
533 |
+
if HEAD_FIRST:
|
534 |
+
p_gv = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
535 |
+
p_gn = tl.max_contiguous(tl.multiple_of(g + i_bg * T*V + (min(i_t * BT + i_i * BC + BC, T) - 1) * V + o_v, BV), BV)
|
536 |
+
else:
|
537 |
+
p_gv = tl.make_block_ptr(g + (bos*H+i_h)*V, (T, V), (H*V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
538 |
+
p_gn = g + (bos + min(i_t * BT + i_i * BC + BC, T)-1)*H*V + i_h*V + o_v
|
539 |
+
# [BV,]
|
540 |
+
b_gn = tl.load(p_gn, mask=m_v, other=0)
|
541 |
+
# [BC, BV]
|
542 |
+
b_gv = tl.load(p_gv, boundary_check=(0, 1))
|
543 |
+
b_dv = tl.zeros([BC, BV], dtype=tl.float32)
|
544 |
+
for i_j in range(i_i + 1, NC):
|
545 |
+
if HEAD_FIRST:
|
546 |
+
p_g = tl.make_block_ptr(g + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
547 |
+
p_A = tl.make_block_ptr(A + i_bh * T*BT, (BT, T), (1, BT), (i_i * BC, i_t * BT + i_j * BC), (BC, BC), (0, 1))
|
548 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
549 |
+
else:
|
550 |
+
p_g = tl.make_block_ptr(g + (bos*H+i_h) * V, (T, V), (H*V, 1), (i_t * BT + i_j * BC, i_v * BV), (BC, BV), (1, 0))
|
551 |
+
p_A = tl.make_block_ptr(A + (bos*HQ+i_hq) * BT, (BT, T), (1, HQ*BT), (i_i*BC, i_t*BT + i_j*BC), (BC, BC), (0, 1))
|
552 |
+
p_do = tl.make_block_ptr(do + (bos*HQ+i_hq) * V, (T, V), (HQ*V, 1), (i_t*BT + i_j*BC, i_v*BV), (BC, BV), (1, 0))
|
553 |
+
# [BC, BV]
|
554 |
+
b_g = tl.load(p_g, boundary_check=(0, 1))
|
555 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)) * safe_exp(b_g - b_gn[None, :])
|
556 |
+
# [BC, BC]
|
557 |
+
b_A = tl.load(p_A, boundary_check=(0, 1))
|
558 |
+
# [BC, BV]
|
559 |
+
b_dv += tl.dot(b_A, b_do.to(b_A.dtype))
|
560 |
+
b_dv *= exp(b_gn[None, :] - b_gv)
|
561 |
+
|
562 |
+
o_i = tl.arange(0, BC)
|
563 |
+
o_c = i_i * BC + tl.arange(0, BC)
|
564 |
+
|
565 |
+
if HEAD_FIRST:
|
566 |
+
p_g = tl.max_contiguous(tl.multiple_of(g + i_bg * T*V + (i_t * BT + i_i * BC) * V + o_v, BV), BV)
|
567 |
+
p_A = tl.max_contiguous(tl.multiple_of(A + i_bh * T*BT + (i_t * BT + i_i * BC) * BT + o_c, BC), BC)
|
568 |
+
p_do = tl.max_contiguous(tl.multiple_of(do + i_bh * T*V + (i_t * BT + i_i * BC) * V + o_v, BV), BV)
|
569 |
+
else:
|
570 |
+
p_g = g + (bos + i_t * BT + i_i * BC) * H*V + i_h * V + o_v
|
571 |
+
p_A = A + (bos + i_t*BT + i_i*BC) * HQ*BT + i_hq * BT + o_c
|
572 |
+
p_do = do + (bos + i_t*BT + i_i*BC) * HQ*V + i_hq * V + o_v
|
573 |
+
|
574 |
+
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
|
575 |
+
# [BC,]
|
576 |
+
b_A = tl.load(p_A)
|
577 |
+
# [BV,]
|
578 |
+
b_g = tl.load(p_g, mask=m_v, other=0)
|
579 |
+
b_do = tl.load(p_do, mask=m_v, other=0)
|
580 |
+
# [BC, BV]
|
581 |
+
m_i = o_i[:, None] <= j
|
582 |
+
b_dv += tl.where(m_i, exp(b_g[None, :] - b_gv) * b_A[:, None] * b_do[None, :], 0.)
|
583 |
+
|
584 |
+
p_g += (1 if HEAD_FIRST else H) * V
|
585 |
+
p_A += (1 if HEAD_FIRST else HQ) * BT
|
586 |
+
p_do += (1 if HEAD_FIRST else HQ) * V
|
587 |
+
if HEAD_FIRST:
|
588 |
+
p_o = tl.make_block_ptr(o + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
589 |
+
p_v = tl.make_block_ptr(v + i_bg * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
590 |
+
p_do = tl.make_block_ptr(do + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
591 |
+
p_dv = tl.make_block_ptr(dv + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
592 |
+
p_dg = tl.make_block_ptr(dg + i_bh * T*V, (T, V), (V, 1), (i_t * BT + i_i * BC, i_v * BV), (BC, BV), (1, 0))
|
593 |
+
else:
|
594 |
+
p_o = tl.make_block_ptr(o + (bos*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
595 |
+
p_v = tl.make_block_ptr(v + (bos*H+i_h)*V, (T, V), (H*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
596 |
+
p_do = tl.make_block_ptr(do + (bos*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
597 |
+
p_dv = tl.make_block_ptr(dv + (bos*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
598 |
+
p_dg = tl.make_block_ptr(dg + (bos*HQ+i_hq)*V, (T, V), (HQ*V, 1), (i_t*BT + i_i*BC, i_v*BV), (BC, BV), (1, 0))
|
599 |
+
|
600 |
+
b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
|
601 |
+
b_v = tl.load(p_v, boundary_check=(0, 1)).to(tl.float32)
|
602 |
+
b_do = tl.load(p_do, boundary_check=(0, 1)).to(tl.float32)
|
603 |
+
b_dv = b_dv + tl.load(p_dv, boundary_check=(0, 1)).to(tl.float32)
|
604 |
+
b_dg = b_o * b_do - b_v * b_dv
|
605 |
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
606 |
+
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1))
|
607 |
+
|
608 |
+
|
609 |
+
def chunk_gsa_fwd_v(
|
610 |
+
q: torch.Tensor,
|
611 |
+
k: torch.Tensor,
|
612 |
+
v: torch.Tensor,
|
613 |
+
g: torch.Tensor,
|
614 |
+
scale: float = 1.,
|
615 |
+
initial_state: Optional[torch.Tensor] = None,
|
616 |
+
output_final_state: bool = False,
|
617 |
+
offsets: Optional[torch.LongTensor] = None,
|
618 |
+
indices: Optional[torch.LongTensor] = None,
|
619 |
+
head_first: bool = True,
|
620 |
+
chunk_size: int = 64
|
621 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
622 |
+
_, A, h, ht, o = chunk_gla_fwd(
|
623 |
+
q=q,
|
624 |
+
k=k,
|
625 |
+
v=v,
|
626 |
+
g=None,
|
627 |
+
g_cumsum=g,
|
628 |
+
scale=scale,
|
629 |
+
initial_state=initial_state,
|
630 |
+
output_final_state=output_final_state,
|
631 |
+
offsets=offsets,
|
632 |
+
indices=indices,
|
633 |
+
head_first=head_first,
|
634 |
+
chunk_size=chunk_size
|
635 |
+
)
|
636 |
+
return A, h, ht, o
|
637 |
+
|
638 |
+
|
639 |
+
def chunk_gsa_fwd_k(
|
640 |
+
q: torch.Tensor,
|
641 |
+
k: torch.Tensor,
|
642 |
+
v: torch.Tensor,
|
643 |
+
g: torch.Tensor,
|
644 |
+
h0: Optional[torch.Tensor] = None,
|
645 |
+
output_final_state: bool = False,
|
646 |
+
scale: float = 1.,
|
647 |
+
offsets: Optional[torch.LongTensor] = None,
|
648 |
+
indices: Optional[torch.LongTensor] = None,
|
649 |
+
head_first: bool = True,
|
650 |
+
chunk_size: int = 64
|
651 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
652 |
+
if head_first:
|
653 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
654 |
+
else:
|
655 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
656 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
657 |
+
BC = min(16, BT)
|
658 |
+
BV = min(64, triton.next_power_of_2(V))
|
659 |
+
HQ = q.shape[1] if head_first else q.shape[2]
|
660 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
661 |
+
NC = triton.cdiv(BT, BC)
|
662 |
+
NG = HQ // H
|
663 |
+
|
664 |
+
h, ht = chunk_fwd_h(
|
665 |
+
k=k,
|
666 |
+
v=v,
|
667 |
+
g=None,
|
668 |
+
gk=None,
|
669 |
+
gv=g,
|
670 |
+
h0=h0,
|
671 |
+
output_final_state=output_final_state,
|
672 |
+
offsets=offsets,
|
673 |
+
head_first=head_first,
|
674 |
+
chunk_size=BT,
|
675 |
+
states_in_fp32=False
|
676 |
+
)
|
677 |
+
o = v.new_empty(B, *((HQ, T) if head_first else (T, HQ)), V)
|
678 |
+
A = q.new_empty(B, *((HQ, T) if head_first else (T, HQ)), BT)
|
679 |
+
def grid(meta): return (triton.cdiv(V, meta['BV']), NT, B * HQ)
|
680 |
+
chunk_gsa_fwd_k_kernel_inter[grid](
|
681 |
+
q,
|
682 |
+
k,
|
683 |
+
h,
|
684 |
+
g,
|
685 |
+
o,
|
686 |
+
A,
|
687 |
+
offsets=offsets,
|
688 |
+
indices=indices,
|
689 |
+
scale=scale,
|
690 |
+
T=T,
|
691 |
+
HQ=HQ,
|
692 |
+
H=H,
|
693 |
+
K=K,
|
694 |
+
V=V,
|
695 |
+
BT=BT,
|
696 |
+
NG=NG,
|
697 |
+
HEAD_FIRST=head_first
|
698 |
+
)
|
699 |
+
|
700 |
+
def grid(meta): return (triton.cdiv(V, meta['BV']), NT * NC, B * HQ)
|
701 |
+
chunk_gsa_fwd_k_kernel_intra[grid](
|
702 |
+
v,
|
703 |
+
g,
|
704 |
+
o,
|
705 |
+
A,
|
706 |
+
offsets=offsets,
|
707 |
+
indices=indices,
|
708 |
+
T=T,
|
709 |
+
HQ=HQ,
|
710 |
+
H=H,
|
711 |
+
V=V,
|
712 |
+
BT=BT,
|
713 |
+
BC=BC,
|
714 |
+
BV=BV,
|
715 |
+
NC=NC,
|
716 |
+
NG=NG,
|
717 |
+
HEAD_FIRST=head_first,
|
718 |
+
num_warps=4,
|
719 |
+
num_stages=2
|
720 |
+
)
|
721 |
+
return A, h, ht, o
|
722 |
+
|
723 |
+
|
724 |
+
def chunk_gsa_bwd_v(
|
725 |
+
q: torch.Tensor,
|
726 |
+
k: torch.Tensor,
|
727 |
+
v: torch.Tensor,
|
728 |
+
g: torch.Tensor,
|
729 |
+
h0: torch.Tensor,
|
730 |
+
h: torch.Tensor,
|
731 |
+
A: torch.Tensor,
|
732 |
+
do: torch.Tensor,
|
733 |
+
dht: torch.Tensor,
|
734 |
+
dg: torch.Tensor,
|
735 |
+
scale: float = 1.,
|
736 |
+
offsets: Optional[torch.LongTensor] = None,
|
737 |
+
indices: Optional[torch.LongTensor] = None,
|
738 |
+
head_first: bool = True,
|
739 |
+
chunk_size: int = 64
|
740 |
+
):
|
741 |
+
dq, dk, dv, dg, dh0 = chunk_gla_bwd(
|
742 |
+
q=q,
|
743 |
+
k=k,
|
744 |
+
v=v,
|
745 |
+
g=None,
|
746 |
+
g_cumsum=g,
|
747 |
+
scale=scale,
|
748 |
+
initial_state=h0,
|
749 |
+
h=h,
|
750 |
+
A=A,
|
751 |
+
do=do,
|
752 |
+
dht=dht,
|
753 |
+
offsets=offsets,
|
754 |
+
indices=indices,
|
755 |
+
head_first=head_first,
|
756 |
+
chunk_size=chunk_size
|
757 |
+
)
|
758 |
+
return dq, dk, dv, dg, dh0
|
759 |
+
|
760 |
+
|
761 |
+
def chunk_gsa_bwd_k(
|
762 |
+
q: torch.Tensor,
|
763 |
+
k: torch.Tensor,
|
764 |
+
v: torch.Tensor,
|
765 |
+
g: torch.Tensor,
|
766 |
+
h: torch.Tensor,
|
767 |
+
h0: torch.Tensor,
|
768 |
+
o: torch.Tensor,
|
769 |
+
do: torch.Tensor,
|
770 |
+
dht: torch.Tensor,
|
771 |
+
dg: torch.Tensor,
|
772 |
+
scale: float = 1.,
|
773 |
+
offsets: Optional[torch.LongTensor] = None,
|
774 |
+
indices: Optional[torch.LongTensor] = None,
|
775 |
+
head_first: bool = True,
|
776 |
+
chunk_size: int = 64
|
777 |
+
):
|
778 |
+
if head_first:
|
779 |
+
B, H, T, K, V = *k.shape, v.shape[-1]
|
780 |
+
else:
|
781 |
+
B, T, H, K, V = *k.shape, v.shape[-1]
|
782 |
+
BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
|
783 |
+
BC = min(16, BT)
|
784 |
+
BK = min(64, triton.next_power_of_2(K))
|
785 |
+
BV = min(64, triton.next_power_of_2(V))
|
786 |
+
HQ = q.shape[1] if head_first else q.shape[2]
|
787 |
+
NT = triton.cdiv(T, BT) if offsets is None else len(indices)
|
788 |
+
NC = triton.cdiv(BT, BC)
|
789 |
+
NK = triton.cdiv(K, BK)
|
790 |
+
NV = triton.cdiv(V, BV)
|
791 |
+
NG = HQ // H
|
792 |
+
|
793 |
+
if h is None:
|
794 |
+
h, _ = chunk_fwd_h(
|
795 |
+
k=k,
|
796 |
+
v=v,
|
797 |
+
g=None,
|
798 |
+
gk=None,
|
799 |
+
gv=g,
|
800 |
+
h0=h0,
|
801 |
+
output_final_state=False,
|
802 |
+
offsets=offsets,
|
803 |
+
head_first=head_first,
|
804 |
+
chunk_size=BT,
|
805 |
+
states_in_fp32=False
|
806 |
+
)
|
807 |
+
dh, dh0 = chunk_bwd_dh(
|
808 |
+
q=q,
|
809 |
+
k=k,
|
810 |
+
v=v,
|
811 |
+
g=None,
|
812 |
+
gk=None,
|
813 |
+
gv=g,
|
814 |
+
do=do,
|
815 |
+
h0=h0,
|
816 |
+
dht=dht,
|
817 |
+
scale=scale,
|
818 |
+
offsets=offsets,
|
819 |
+
head_first=head_first,
|
820 |
+
chunk_size=BT,
|
821 |
+
states_in_fp32=True
|
822 |
+
)
|
823 |
+
dA = q.new_empty(NV, B, *((HQ, T) if head_first else (T, HQ)), BT)
|
824 |
+
grid = (NV, NT * NC * NC, B * HQ)
|
825 |
+
chunk_gsa_bwd_k_kernel_dA[grid](
|
826 |
+
v,
|
827 |
+
g,
|
828 |
+
do,
|
829 |
+
dA,
|
830 |
+
offsets=offsets,
|
831 |
+
indices=indices,
|
832 |
+
scale=scale,
|
833 |
+
T=T,
|
834 |
+
B=B,
|
835 |
+
HQ=HQ,
|
836 |
+
H=H,
|
837 |
+
V=V,
|
838 |
+
BT=BT,
|
839 |
+
BC=BC,
|
840 |
+
BV=BV,
|
841 |
+
NC=NC,
|
842 |
+
NG=NG,
|
843 |
+
HEAD_FIRST=head_first
|
844 |
+
)
|
845 |
+
dA = dA.sum(0, dtype=dA.dtype)
|
846 |
+
|
847 |
+
A = do.new_empty(NK, B, *((HQ, T) if head_first else (T, HQ)), BT)
|
848 |
+
dq = torch.empty_like(q)
|
849 |
+
dk = k.new_empty(B, *((HQ, T) if head_first else (T, HQ)), K)
|
850 |
+
dv = v.new_empty(NK, B, *((HQ, T) if head_first else (T, HQ)), V)
|
851 |
+
dgv = g.new_empty(NK, B, *((HQ, T) if head_first else (T, HQ)), V, dtype=torch.float)
|
852 |
+
grid = (NK, NT, B * HQ)
|
853 |
+
chunk_gsa_bwd_k_kernel_dqkvg[grid](
|
854 |
+
q,
|
855 |
+
k,
|
856 |
+
v,
|
857 |
+
h,
|
858 |
+
g,
|
859 |
+
A,
|
860 |
+
do,
|
861 |
+
dh,
|
862 |
+
dq,
|
863 |
+
dk,
|
864 |
+
dv,
|
865 |
+
dg,
|
866 |
+
dgv,
|
867 |
+
dA,
|
868 |
+
offsets=offsets,
|
869 |
+
indices=indices,
|
870 |
+
scale=scale,
|
871 |
+
T=T,
|
872 |
+
B=B,
|
873 |
+
HQ=HQ,
|
874 |
+
H=H,
|
875 |
+
K=K,
|
876 |
+
V=V,
|
877 |
+
BT=BT,
|
878 |
+
BK=BK,
|
879 |
+
BV=BV,
|
880 |
+
NG=NG,
|
881 |
+
HEAD_FIRST=head_first
|
882 |
+
)
|
883 |
+
A = A.sum(0, dtype=A.dtype)
|
884 |
+
dv = dv.sum(0, dtype=dv.dtype)
|
885 |
+
dgv = dgv.sum(0, dtype=dgv.dtype)
|
886 |
+
|
887 |
+
def grid(meta): return (triton.cdiv(V, meta['BV']), NT * NC, B * HQ)
|
888 |
+
chunk_gsa_bwd_k_kernel_intra_dvg[grid](
|
889 |
+
v,
|
890 |
+
g,
|
891 |
+
o,
|
892 |
+
A,
|
893 |
+
do,
|
894 |
+
dv,
|
895 |
+
dg,
|
896 |
+
offsets=offsets,
|
897 |
+
indices=indices,
|
898 |
+
T=T,
|
899 |
+
HQ=HQ,
|
900 |
+
H=H,
|
901 |
+
V=V,
|
902 |
+
BT=BT,
|
903 |
+
BC=BC,
|
904 |
+
BV=BV,
|
905 |
+
NC=NC,
|
906 |
+
NG=NG,
|
907 |
+
HEAD_FIRST=head_first,
|
908 |
+
num_warps=4,
|
909 |
+
num_stages=2
|
910 |
+
)
|
911 |
+
dg = dgv.add_(chunk_local_cumsum(dg, chunk_size=BT, reverse=True, offsets=offsets, indices=indices, head_first=head_first))
|
912 |
+
|
913 |
+
return dq, dk, dv, dg, dh0
|
914 |
+
|
915 |
+
|
916 |
+
def chunk_gsa_fwd(
|
917 |
+
q: torch.Tensor,
|
918 |
+
k: torch.Tensor,
|
919 |
+
v: torch.Tensor,
|
920 |
+
s: torch.Tensor,
|
921 |
+
g: torch.Tensor,
|
922 |
+
initial_state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
923 |
+
output_final_state: bool = False,
|
924 |
+
scale: float = 1.,
|
925 |
+
offsets: Optional[torch.LongTensor] = None,
|
926 |
+
indices: Optional[torch.LongTensor] = None,
|
927 |
+
head_first: bool = True,
|
928 |
+
chunk_size: int = 64
|
929 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
930 |
+
hk0, hv0 = None, None
|
931 |
+
if initial_state is not None:
|
932 |
+
hk0, hv0 = initial_state
|
933 |
+
Ak, hk, hkt, ok = chunk_gsa_fwd_k(
|
934 |
+
q=q,
|
935 |
+
k=k,
|
936 |
+
v=s,
|
937 |
+
g=g,
|
938 |
+
h0=hk0,
|
939 |
+
output_final_state=output_final_state,
|
940 |
+
scale=scale,
|
941 |
+
offsets=offsets,
|
942 |
+
indices=indices,
|
943 |
+
head_first=head_first,
|
944 |
+
chunk_size=chunk_size
|
945 |
+
)
|
946 |
+
|
947 |
+
# p is kept in fp32 for safe softmax backward
|
948 |
+
p = softmax_fwd(ok, dtype=torch.float)
|
949 |
+
|
950 |
+
qv = p.to(q.dtype)
|
951 |
+
Av, hv, hvt, ov = chunk_gsa_fwd_v(
|
952 |
+
q=qv,
|
953 |
+
k=s,
|
954 |
+
v=v,
|
955 |
+
g=g,
|
956 |
+
scale=1.,
|
957 |
+
initial_state=hv0,
|
958 |
+
output_final_state=output_final_state,
|
959 |
+
offsets=offsets,
|
960 |
+
indices=indices,
|
961 |
+
head_first=head_first,
|
962 |
+
chunk_size=chunk_size
|
963 |
+
)
|
964 |
+
return Ak, hk, hkt, ok, p, Av, hv, hvt, ov
|
965 |
+
|
966 |
+
|
967 |
+
def chunk_gsa_bwd(
|
968 |
+
q: torch.Tensor,
|
969 |
+
k: torch.Tensor,
|
970 |
+
v: torch.Tensor,
|
971 |
+
s: torch.Tensor,
|
972 |
+
g: torch.Tensor,
|
973 |
+
ok: torch.Tensor,
|
974 |
+
p: torch.Tensor,
|
975 |
+
A: Tuple[torch.Tensor, torch.Tensor],
|
976 |
+
h: Tuple[torch.Tensor, torch.Tensor],
|
977 |
+
initial_state: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
978 |
+
scale: float,
|
979 |
+
do: torch.Tensor,
|
980 |
+
dht: Tuple[torch.Tensor, torch.Tensor],
|
981 |
+
offsets: Optional[torch.LongTensor] = None,
|
982 |
+
indices: Optional[torch.LongTensor] = None,
|
983 |
+
head_first: bool = True,
|
984 |
+
chunk_size: int = 64
|
985 |
+
):
|
986 |
+
hk0, hv0 = None, None
|
987 |
+
if initial_state is not None:
|
988 |
+
hk0, hv0 = initial_state
|
989 |
+
|
990 |
+
_, Av = A
|
991 |
+
hk, hv = h
|
992 |
+
dhkt, dhvt = dht
|
993 |
+
|
994 |
+
qv = p.to(q.dtype)
|
995 |
+
dqv, dsv, dv, dg, dhv0 = chunk_gsa_bwd_v(
|
996 |
+
q=qv,
|
997 |
+
k=s,
|
998 |
+
v=v,
|
999 |
+
g=g,
|
1000 |
+
h0=hv0,
|
1001 |
+
h=hv,
|
1002 |
+
A=Av,
|
1003 |
+
do=do,
|
1004 |
+
dht=dhvt,
|
1005 |
+
dg=None,
|
1006 |
+
scale=1.,
|
1007 |
+
offsets=offsets,
|
1008 |
+
indices=indices,
|
1009 |
+
head_first=head_first,
|
1010 |
+
chunk_size=chunk_size
|
1011 |
+
)
|
1012 |
+
|
1013 |
+
# softmax gradient, equivalent to:
|
1014 |
+
# dok = qv * (dqv - (qv * dqv).sum(-1, True))
|
1015 |
+
dok = softmax_bwd(p, dqv, dtype=ok.dtype)
|
1016 |
+
|
1017 |
+
dq, dk, dsk, dg, dhk0 = chunk_gsa_bwd_k(
|
1018 |
+
q=q,
|
1019 |
+
k=k,
|
1020 |
+
v=s,
|
1021 |
+
g=g,
|
1022 |
+
h0=hk0,
|
1023 |
+
h=hk,
|
1024 |
+
o=ok,
|
1025 |
+
do=dok,
|
1026 |
+
dht=dhkt,
|
1027 |
+
dg=dg,
|
1028 |
+
scale=scale,
|
1029 |
+
offsets=offsets,
|
1030 |
+
indices=indices,
|
1031 |
+
head_first=head_first,
|
1032 |
+
chunk_size=chunk_size
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
ds = dsv.add_(dsk)
|
1036 |
+
if q.shape[1] != k.shape[1]:
|
1037 |
+
dk, dv, ds, dg = map(lambda x: reduce(x, 'b (h g) ... -> b h ...', 'sum', h=k.shape[1]), (dk, dv, ds, dg))
|
1038 |
+
dg = dg.to(s.dtype)
|
1039 |
+
return dq, dk, dv, ds, dg, dhk0, dhv0
|
1040 |
+
|
1041 |
+
|
1042 |
+
class ChunkGSAFunction(torch.autograd.Function):
|
1043 |
+
|
1044 |
+
@staticmethod
|
1045 |
+
@input_guard
|
1046 |
+
def forward(
|
1047 |
+
ctx,
|
1048 |
+
q: torch.Tensor,
|
1049 |
+
k: torch.Tensor,
|
1050 |
+
v: torch.Tensor,
|
1051 |
+
s: torch.Tensor,
|
1052 |
+
g: torch.Tensor,
|
1053 |
+
scale: float,
|
1054 |
+
hk0: Optional[torch.Tensor],
|
1055 |
+
hv0: Optional[torch.Tensor],
|
1056 |
+
output_final_state: bool,
|
1057 |
+
checkpoint_level: int,
|
1058 |
+
offsets: Optional[torch.LongTensor],
|
1059 |
+
head_first: bool = True
|
1060 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
1061 |
+
T = q.shape[2] if head_first else q.shape[1]
|
1062 |
+
chunk_size = min(64, max(16, triton.next_power_of_2(T)))
|
1063 |
+
|
1064 |
+
# 2-d indices denoting the offsets of chunks in each sequence
|
1065 |
+
# for example, if the passed `offsets` is [0, 100, 356] and `chunk_size` is 64,
|
1066 |
+
# then there are 2 and 4 chunks in the 1st and 2nd sequences respectively, and `indices` will be
|
1067 |
+
# [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [1, 3]]
|
1068 |
+
indices = None
|
1069 |
+
if offsets is not None:
|
1070 |
+
indices = torch.cat([torch.arange(n) for n in triton.cdiv(offsets[1:] - offsets[:-1], chunk_size).tolist()])
|
1071 |
+
indices = torch.stack([indices.eq(0).cumsum(0) - 1, indices], 1).to(offsets)
|
1072 |
+
g_org, g = g, chunk_local_cumsum(g, chunk_size, offsets=offsets, indices=indices, head_first=head_first)
|
1073 |
+
Ak, hk, hkt, ok, p, Av, hv, hvt, ov = chunk_gsa_fwd(
|
1074 |
+
q=q,
|
1075 |
+
k=k,
|
1076 |
+
v=v,
|
1077 |
+
s=s,
|
1078 |
+
g=g,
|
1079 |
+
initial_state=(hk0, hv0),
|
1080 |
+
output_final_state=output_final_state,
|
1081 |
+
scale=scale,
|
1082 |
+
offsets=offsets,
|
1083 |
+
indices=indices,
|
1084 |
+
head_first=head_first,
|
1085 |
+
chunk_size=chunk_size
|
1086 |
+
)
|
1087 |
+
|
1088 |
+
if checkpoint_level >= 1:
|
1089 |
+
del g
|
1090 |
+
g = g_org
|
1091 |
+
if checkpoint_level > 1:
|
1092 |
+
del hk
|
1093 |
+
del hv
|
1094 |
+
hk, hv = None, None
|
1095 |
+
else:
|
1096 |
+
hk0, hv0 = None, None
|
1097 |
+
|
1098 |
+
ctx.save_for_backward(q, k, v, s, g, ok, p, Av, hk0, hv0, hk, hv)
|
1099 |
+
ctx.checkpoint_level = checkpoint_level
|
1100 |
+
ctx.scale = scale
|
1101 |
+
ctx.offsets = offsets
|
1102 |
+
ctx.indices = indices
|
1103 |
+
ctx.head_first = head_first
|
1104 |
+
ctx.chunk_size = chunk_size
|
1105 |
+
return ov, hkt, hvt
|
1106 |
+
|
1107 |
+
@staticmethod
|
1108 |
+
@input_guard
|
1109 |
+
def backward(ctx, dov, dhkt=None, dhvt=None):
|
1110 |
+
q, k, v, s, g, ok, p, Av, hk0, hv0, hk, hv = ctx.saved_tensors
|
1111 |
+
scale = ctx.scale
|
1112 |
+
offsets = ctx.offsets
|
1113 |
+
indices = ctx.indices
|
1114 |
+
head_first = ctx.head_first
|
1115 |
+
chunk_size = ctx.chunk_size
|
1116 |
+
|
1117 |
+
if ctx.checkpoint_level >= 1:
|
1118 |
+
g = chunk_local_cumsum(g, chunk_size, offsets=offsets, indices=indices, head_first=head_first)
|
1119 |
+
dq, dk, dv, ds, dg, dhk0, dhv0 = chunk_gsa_bwd(
|
1120 |
+
q=q,
|
1121 |
+
k=k,
|
1122 |
+
v=v,
|
1123 |
+
s=s,
|
1124 |
+
g=g,
|
1125 |
+
ok=ok,
|
1126 |
+
p=p,
|
1127 |
+
A=(None, Av),
|
1128 |
+
h=(hk, hv),
|
1129 |
+
initial_state=(hk0, hv0),
|
1130 |
+
scale=scale,
|
1131 |
+
do=dov,
|
1132 |
+
dht=(dhkt, dhvt),
|
1133 |
+
offsets=offsets,
|
1134 |
+
indices=indices,
|
1135 |
+
head_first=head_first,
|
1136 |
+
chunk_size=chunk_size
|
1137 |
+
)
|
1138 |
+
return dq, dk, dv, ds, dg, None, dhk0, dhv0, None, None, None, None
|
1139 |
+
|
1140 |
+
|
1141 |
+
@torch.compiler.disable
|
1142 |
+
def chunk_gsa(
|
1143 |
+
q: torch.Tensor,
|
1144 |
+
k: torch.Tensor,
|
1145 |
+
v: torch.Tensor,
|
1146 |
+
s: torch.Tensor,
|
1147 |
+
g: Optional[torch.Tensor] = None,
|
1148 |
+
scale: Optional[int] = None,
|
1149 |
+
initial_state: Optional[Tuple[torch.Tensor]] = None,
|
1150 |
+
output_final_state: Optional[bool] = False,
|
1151 |
+
checkpoint_level: Optional[int] = 2,
|
1152 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
1153 |
+
head_first: Optional[bool] = True
|
1154 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
1155 |
+
r"""
|
1156 |
+
Args:
|
1157 |
+
q (torch.Tensor):
|
1158 |
+
queries of shape `[B, HQ, T, K]` if `head_first=True` else `[B, T, HQ, K]`.
|
1159 |
+
k (torch.Tensor):
|
1160 |
+
keys of shape `[B, H, T, K]` if `head_first=True` else `[B, T, H, K]`.
|
1161 |
+
GQA is performed if `H` is not equal to `HQ`.
|
1162 |
+
v (torch.Tensor):
|
1163 |
+
values of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
1164 |
+
s (torch.Tensor):
|
1165 |
+
slot representations of shape `[B, H, T, M]` if `head_first=True` else `[B, T, H, M]`.
|
1166 |
+
g (torch.Tensor):
|
1167 |
+
Forget gates of shape `[B, H, T, M]` applied to keys.
|
1168 |
+
If not provided, this function is equivalent to vanilla ABC.
|
1169 |
+
scale (Optional[int]):
|
1170 |
+
Scale factor for attention scores.
|
1171 |
+
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
1172 |
+
initial_state (Optional[Tuple[torch.Tensor]]):
|
1173 |
+
Initial state tuple having tensors of shape `[N, H, K, M]` and `[N, H, M, V]` for `N` input sequences.
|
1174 |
+
For equal-length input sequences, `N` equals the batch size `B`.
|
1175 |
+
Default: `None`.
|
1176 |
+
output_final_state (Optional[bool]):
|
1177 |
+
Whether to output the final state tuple, having tensors of shape `[N, H, K, M]` and `[N, H, M, V]`.
|
1178 |
+
Default: `False`.
|
1179 |
+
checkpoint_level (Optional[int]):
|
1180 |
+
Checkpointing level; higher values will save more memories and do more recomputations during backward.
|
1181 |
+
Default: `2`:
|
1182 |
+
- Level `0`: no memory saved, no recomputation.
|
1183 |
+
- Level `1`: recompute the fp32 cumulative values during backward.
|
1184 |
+
- Level `2`: recompute the fp32 cumulative values and forward hidden states during backward.
|
1185 |
+
cu_seqlens (torch.LongTensor):
|
1186 |
+
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
1187 |
+
consistent with the FlashAttention API.
|
1188 |
+
head_first (Optional[bool]):
|
1189 |
+
Whether the inputs are in the head-first format, which is not supported for variable-length inputs.
|
1190 |
+
Default: `True`.
|
1191 |
+
|
1192 |
+
Returns:
|
1193 |
+
o (torch.Tensor):
|
1194 |
+
Outputs of shape `[B, H, T, V]` if `head_first=True` else `[B, T, H, V]`.
|
1195 |
+
final_state (Tuple[torch.Tensor]):
|
1196 |
+
Final state tuple having tensors of shape `[N, H, K, M]` and `[N, H, M, V]` if `output_final_state=True`.
|
1197 |
+
`None` otherwise.
|
1198 |
+
|
1199 |
+
Examples::
|
1200 |
+
>>> import torch
|
1201 |
+
>>> import torch.nn.functional as F
|
1202 |
+
>>> from einops import rearrange
|
1203 |
+
>>> from fla.ops.gsa import fused_recurrent_gsa
|
1204 |
+
# inputs with equal lengths
|
1205 |
+
>>> B, T, H, K, V, M = 4, 2048, 4, 512, 512, 64
|
1206 |
+
>>> q = torch.randn(B, T, H, K, device='cuda')
|
1207 |
+
>>> k = torch.randn(B, T, H, K, device='cuda')
|
1208 |
+
>>> v = torch.randn(B, T, H, V, device='cuda')
|
1209 |
+
>>> s = torch.randn(B, T, H, M, device='cuda')
|
1210 |
+
>>> g = F.logsigmoid(torch.randn(B, T, H, M, device='cuda'))
|
1211 |
+
>>> h0 = (torch.randn(B, H, K, M, device='cuda'), torch.randn(B, H, M, V, device='cuda'))
|
1212 |
+
>>> o, (hk, hv) = chunk_gsa(q, k, v, s, g,
|
1213 |
+
initial_state=h0,
|
1214 |
+
output_final_state=True,
|
1215 |
+
head_first=False)
|
1216 |
+
# for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required
|
1217 |
+
>>> q, k, v, s, g = map(lambda x: rearrange(x, 'b t h d -> 1 (b t) h d'), (q, k, v, s, g))
|
1218 |
+
# for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected
|
1219 |
+
>>> cu_seqlens = q.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long)
|
1220 |
+
>>> o_var, (hk_var, hv_var) = chunk_gsa(q, k, v, s, g,
|
1221 |
+
initial_state=h0,
|
1222 |
+
output_final_state=True,
|
1223 |
+
cu_seqlens=cu_seqlens,
|
1224 |
+
head_first=False)
|
1225 |
+
>>> assert o.allclose(o_var.view(o.shape))
|
1226 |
+
>>> assert hk.allclose(hk_var)
|
1227 |
+
>>> assert hv.allclose(hv_var)
|
1228 |
+
"""
|
1229 |
+
if cu_seqlens is not None:
|
1230 |
+
if q.shape[0] != 1:
|
1231 |
+
raise ValueError(f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`."
|
1232 |
+
f"Please flatten variable-length inputs before processing.")
|
1233 |
+
if head_first:
|
1234 |
+
raise RuntimeError("Sequences with variable lengths are not supported for head-first mode")
|
1235 |
+
if initial_state is not None and initial_state[0].shape[0] != len(cu_seqlens) - 1:
|
1236 |
+
raise ValueError(f"The number of initial states is expected to be equal to the number of input sequences, "
|
1237 |
+
f"i.e., {len(cu_seqlens) - 1} rather than {initial_state[0].shape[0]}.")
|
1238 |
+
assert checkpoint_level in [0, 1, 2]
|
1239 |
+
if g is None:
|
1240 |
+
# TODO: this 3 steps took huge amount of time, ought to be optimized
|
1241 |
+
z = s.float().logcumsumexp(2)
|
1242 |
+
g = torch.cat((z[:, :, :1], z[:, :, :-1]), 2) - z
|
1243 |
+
s = torch.exp(s - z).to(k.dtype)
|
1244 |
+
if scale is None:
|
1245 |
+
scale = q.shape[-1] ** -0.5
|
1246 |
+
|
1247 |
+
hk0, hv0 = None, None
|
1248 |
+
if initial_state is not None:
|
1249 |
+
hk0, hv0 = initial_state
|
1250 |
+
o, *final_state = ChunkGSAFunction.apply(
|
1251 |
+
q,
|
1252 |
+
k,
|
1253 |
+
v,
|
1254 |
+
s,
|
1255 |
+
g,
|
1256 |
+
scale,
|
1257 |
+
hk0,
|
1258 |
+
hv0,
|
1259 |
+
output_final_state,
|
1260 |
+
checkpoint_level,
|
1261 |
+
cu_seqlens,
|
1262 |
+
head_first
|
1263 |
+
)
|
1264 |
+
return o, final_state
|
fla/ops/gsa/naive.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from einops import repeat
|
7 |
+
|
8 |
+
|
9 |
+
def naive_recurrent_gsa(
|
10 |
+
q: torch.Tensor,
|
11 |
+
k: torch.Tensor,
|
12 |
+
v: torch.Tensor,
|
13 |
+
s: torch.Tensor,
|
14 |
+
g: Optional[torch.Tensor] = None,
|
15 |
+
scale: Optional[int] = None,
|
16 |
+
initial_state: Optional[torch.Tensor] = None,
|
17 |
+
output_final_state: Optional[bool] = False
|
18 |
+
) -> torch.Tensor:
|
19 |
+
dtype = q.dtype
|
20 |
+
|
21 |
+
NG = q.shape[1]//k.shape[1]
|
22 |
+
# [batch_size, n_heads, seq_len, n_slots]
|
23 |
+
if g is None:
|
24 |
+
z = s.float().logcumsumexp(2)
|
25 |
+
g = torch.cat((z[:, :, :1], z[:, :, :-1]), 2) - z
|
26 |
+
s = torch.exp(s - z)
|
27 |
+
q, k, v, s, g = map(lambda x: x.float(), (q, k, v, s, g))
|
28 |
+
k, v, s, g = map(lambda x: repeat(x, 'b h t d -> b (h g) t d', g=NG), (k, v, s, g))
|
29 |
+
if initial_state is not None:
|
30 |
+
initial_state = tuple(map(lambda x: repeat(x, 'b h k v -> b (h g) k v', g=NG), initial_state))
|
31 |
+
|
32 |
+
B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1]
|
33 |
+
|
34 |
+
hk = torch.zeros(B, H, K, M, dtype=torch.float, device=q.device)
|
35 |
+
ok = torch.zeros_like(s)
|
36 |
+
|
37 |
+
if scale is None:
|
38 |
+
scale = q.shape[-1] ** -0.5
|
39 |
+
|
40 |
+
final_state = None
|
41 |
+
if initial_state is not None:
|
42 |
+
hk += initial_state[0]
|
43 |
+
|
44 |
+
for i in range(T):
|
45 |
+
q_i = q[:, :, i] * scale
|
46 |
+
k_i = k[:, :, i]
|
47 |
+
v_i = s[:, :, i]
|
48 |
+
g_i = g[:, :, i].exp()
|
49 |
+
hk = hk * g_i[..., None, :] + k_i[..., None] * v_i[..., None, :]
|
50 |
+
ok[:, :, i] = (q_i[..., None] * hk).sum(-2)
|
51 |
+
|
52 |
+
qv = ok.softmax(-1)
|
53 |
+
hv = torch.zeros(B, H, M, V, dtype=torch.float, device=q.device)
|
54 |
+
ov = torch.zeros_like(v)
|
55 |
+
if initial_state is not None:
|
56 |
+
hv += initial_state[1]
|
57 |
+
|
58 |
+
for i in range(T):
|
59 |
+
q_i = qv[:, :, i]
|
60 |
+
k_i = s[:, :, i]
|
61 |
+
v_i = v[:, :, i]
|
62 |
+
g_i = g[:, :, i].exp()
|
63 |
+
hv = hv * g_i[..., :, None] + k_i[..., None] * v_i[..., None, :]
|
64 |
+
ov[:, :, i] = (q_i[..., None] * hv).sum(-2)
|
65 |
+
|
66 |
+
if output_final_state:
|
67 |
+
final_state = (hk.view(B, -1, NG, K, M)[:, :, 0], hv.view(B, -1, NG, M, V)[:, :, 0])
|
68 |
+
return ov.to(dtype), final_state
|
fla/ops/hgrn/fused_recurrent.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
|
10 |
+
from fla.ops.utils.op import exp
|
11 |
+
from fla.utils import input_guard
|
12 |
+
|
13 |
+
|
14 |
+
@triton.heuristics({
|
15 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
16 |
+
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
|
17 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
18 |
+
})
|
19 |
+
@triton.autotune(
|
20 |
+
configs=[
|
21 |
+
triton.Config({'BD': BD}, num_warps=num_warps)
|
22 |
+
for BD in [32, 64, 128]
|
23 |
+
for num_warps in [1, 2, 4, 8]
|
24 |
+
],
|
25 |
+
key=['D']
|
26 |
+
)
|
27 |
+
@triton.jit(do_not_specialize=['T'])
|
28 |
+
def fused_recurrent_hgrn_fwd_kernel(
|
29 |
+
x,
|
30 |
+
g,
|
31 |
+
o,
|
32 |
+
h0,
|
33 |
+
ht,
|
34 |
+
offsets,
|
35 |
+
T,
|
36 |
+
D: tl.constexpr,
|
37 |
+
BD: tl.constexpr,
|
38 |
+
USE_INITIAL_STATE: tl.constexpr,
|
39 |
+
STORE_FINAL_STATE: tl.constexpr,
|
40 |
+
USE_OFFSETS: tl.constexpr
|
41 |
+
):
|
42 |
+
i_d, i_n = tl.program_id(0), tl.program_id(1)
|
43 |
+
if USE_OFFSETS:
|
44 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
|
45 |
+
T = eos - bos
|
46 |
+
else:
|
47 |
+
bos, eos = i_n * T, i_n * T + T
|
48 |
+
|
49 |
+
o_d = i_d * BD + tl.arange(0, BD)
|
50 |
+
mask = o_d < D
|
51 |
+
|
52 |
+
p_x = x + bos * D + o_d
|
53 |
+
p_g = g + bos * D + o_d
|
54 |
+
p_o = o + bos * D + o_d
|
55 |
+
|
56 |
+
b_h = tl.zeros([BD], dtype=tl.float32)
|
57 |
+
if USE_INITIAL_STATE:
|
58 |
+
p_h0 = h0 + i_n * D + o_d
|
59 |
+
b_h += tl.load(p_h0, mask=mask, other=0).to(tl.float32)
|
60 |
+
for _ in range(0, T):
|
61 |
+
b_x = tl.load(p_x, mask=mask, other=0).to(tl.float32)
|
62 |
+
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
|
63 |
+
b_h = exp(b_g) * b_h + b_x
|
64 |
+
tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask)
|
65 |
+
|
66 |
+
p_x += D
|
67 |
+
p_g += D
|
68 |
+
p_o += D
|
69 |
+
|
70 |
+
if STORE_FINAL_STATE:
|
71 |
+
p_ht = ht + i_n * D + o_d
|
72 |
+
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask)
|
73 |
+
|
74 |
+
|
75 |
+
@triton.heuristics({
|
76 |
+
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
|
77 |
+
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
|
78 |
+
'USE_OFFSETS': lambda args: args['offsets'] is not None
|
79 |
+
})
|
80 |
+
@triton.autotune(
|
81 |
+
configs=[
|
82 |
+
triton.Config({'BD': BD}, num_warps=num_warps)
|
83 |
+
for BD in [32, 64, 128]
|
84 |
+
for num_warps in [1, 2, 4, 8]
|
85 |
+
],
|
86 |
+
key=['D']
|
87 |
+
)
|
88 |
+
@triton.jit(do_not_specialize=['T'])
|
89 |
+
def fused_recurrent_hgrn_bwd_kernel(
|
90 |
+
g,
|
91 |
+
o,
|
92 |
+
h0,
|
93 |
+
dx,
|
94 |
+
dg,
|
95 |
+
do,
|
96 |
+
dht,
|
97 |
+
dh0,
|
98 |
+
offsets,
|
99 |
+
T,
|
100 |
+
D: tl.constexpr,
|
101 |
+
BD: tl.constexpr,
|
102 |
+
USE_INITIAL_STATE: tl.constexpr,
|
103 |
+
USE_FINAL_STATE_GRADIENT: tl.constexpr,
|
104 |
+
USE_OFFSETS: tl.constexpr
|
105 |
+
):
|
106 |
+
i_d, i_n = tl.program_id(0), tl.program_id(1)
|
107 |
+
if USE_OFFSETS:
|
108 |
+
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
|
109 |
+
T = eos - bos
|
110 |
+
else:
|
111 |
+
bos, eos = i_n * T, i_n * T + T
|
112 |
+
|
113 |
+
o_d = i_d * BD + tl.arange(0, BD)
|
114 |
+
mask = o_d < D
|
115 |
+
|
116 |
+
p_g = g + (bos + T - 1) * D + o_d
|
117 |
+
p_o = o + (bos + T - 2) * D + o_d
|
118 |
+
p_dx = dx + (bos + T - 1) * D + o_d
|
119 |
+
p_dg = dg + (bos + T - 1) * D + o_d
|
120 |
+
p_do = do + (bos + T - 1) * D + o_d
|
121 |
+
|
122 |
+
b_dh = tl.zeros([BD], dtype=tl.float32)
|
123 |
+
if USE_FINAL_STATE_GRADIENT:
|
124 |
+
p_dht = dht + i_n * D + o_d
|
125 |
+
b_dh += tl.load(p_dht, mask=mask, other=0).to(tl.float32)
|
126 |
+
|
127 |
+
for i in range(T - 1, -1, -1):
|
128 |
+
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
|
129 |
+
b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32)
|
130 |
+
if i > 0:
|
131 |
+
b_o = tl.load(p_o, mask=mask, other=0).to(tl.float32)
|
132 |
+
elif USE_INITIAL_STATE:
|
133 |
+
b_o = tl.load(h0 + i_n * D + o_d, mask=mask, other=0).to(tl.float32)
|
134 |
+
else:
|
135 |
+
b_o = tl.zeros([BD], dtype=tl.float32)
|
136 |
+
|
137 |
+
b_dh = b_dh + b_do
|
138 |
+
b_dx = b_dh
|
139 |
+
b_dh = b_dh * exp(b_g)
|
140 |
+
b_dg = b_dh * b_o
|
141 |
+
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask)
|
142 |
+
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), mask=mask)
|
143 |
+
|
144 |
+
p_g -= D
|
145 |
+
p_o -= D
|
146 |
+
p_dx -= D
|
147 |
+
p_dg -= D
|
148 |
+
p_do -= D
|
149 |
+
|
150 |
+
if USE_INITIAL_STATE:
|
151 |
+
p_dh0 = dh0 + i_n * D + o_d
|
152 |
+
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), mask=mask)
|
153 |
+
|
154 |
+
|
155 |
+
def fused_recurrent_hgrn_fwd(
|
156 |
+
x: torch.Tensor,
|
157 |
+
g: torch.Tensor,
|
158 |
+
initial_state: torch.Tensor = None,
|
159 |
+
output_final_state: bool = False,
|
160 |
+
offsets: Optional[torch.LongTensor] = None,
|
161 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
162 |
+
B, T, D = x.shape
|
163 |
+
N = B if offsets is None else len(offsets) - 1
|
164 |
+
|
165 |
+
o = torch.empty_like(x)
|
166 |
+
final_state = x.new_empty(N, D) if output_final_state else None
|
167 |
+
|
168 |
+
def grid(meta): return (triton.cdiv(D, meta['BD']), N)
|
169 |
+
fused_recurrent_hgrn_fwd_kernel[grid](
|
170 |
+
x=x,
|
171 |
+
g=g,
|
172 |
+
o=o,
|
173 |
+
h0=initial_state,
|
174 |
+
ht=final_state,
|
175 |
+
offsets=offsets,
|
176 |
+
T=T,
|
177 |
+
D=D
|
178 |
+
)
|
179 |
+
return o, final_state
|
180 |
+
|
181 |
+
|
182 |
+
def fused_recurrent_hgrn_bwd(
|
183 |
+
g: torch.Tensor,
|
184 |
+
o: torch.Tensor,
|
185 |
+
do: torch.Tensor,
|
186 |
+
dht: torch.Tensor = None,
|
187 |
+
initial_state: torch.Tensor = None,
|
188 |
+
offsets: Optional[torch.LongTensor] = None
|
189 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
190 |
+
B, T, D = do.shape
|
191 |
+
N = B if offsets is None else len(offsets) - 1
|
192 |
+
|
193 |
+
dx = torch.empty_like(o, dtype=torch.float)
|
194 |
+
dg = torch.empty_like(g, dtype=torch.float)
|
195 |
+
dh0 = torch.empty_like(initial_state, dtype=torch.float) if initial_state is not None else None
|
196 |
+
def grid(meta): return (triton.cdiv(D, meta['BD']), N)
|
197 |
+
fused_recurrent_hgrn_bwd_kernel[grid](
|
198 |
+
g=g,
|
199 |
+
o=o,
|
200 |
+
h0=initial_state,
|
201 |
+
dx=dx,
|
202 |
+
dg=dg,
|
203 |
+
do=do,
|
204 |
+
dht=dht,
|
205 |
+
dh0=dh0,
|
206 |
+
offsets=offsets,
|
207 |
+
T=T,
|
208 |
+
D=D
|
209 |
+
)
|
210 |
+
return dx, dg, dh0
|
211 |
+
|
212 |
+
|
213 |
+
class FusedRecurrentHGRNFunction(torch.autograd.Function):
|
214 |
+
|
215 |
+
@staticmethod
|
216 |
+
@input_guard
|
217 |
+
def forward(
|
218 |
+
ctx,
|
219 |
+
x: torch.Tensor,
|
220 |
+
g: torch.Tensor,
|
221 |
+
initial_state: torch.Tensor = None,
|
222 |
+
output_final_state: bool = False,
|
223 |
+
offsets: Optional[torch.LongTensor] = None
|
224 |
+
):
|
225 |
+
o, ht = fused_recurrent_hgrn_fwd(
|
226 |
+
x=x,
|
227 |
+
g=g,
|
228 |
+
initial_state=initial_state,
|
229 |
+
output_final_state=output_final_state,
|
230 |
+
offsets=offsets
|
231 |
+
)
|
232 |
+
ctx.save_for_backward(g, o, initial_state)
|
233 |
+
ctx.offsets = offsets
|
234 |
+
return o, ht
|
235 |
+
|
236 |
+
@staticmethod
|
237 |
+
@input_guard
|
238 |
+
def backward(ctx, do, dht=None):
|
239 |
+
g, o, initial_state = ctx.saved_tensors
|
240 |
+
offsets = ctx.offsets
|
241 |
+
|
242 |
+
dx, dg, dh0 = fused_recurrent_hgrn_bwd(
|
243 |
+
g=g,
|
244 |
+
o=o,
|
245 |
+
do=do,
|
246 |
+
dht=dht,
|
247 |
+
initial_state=initial_state,
|
248 |
+
offsets=offsets
|
249 |
+
)
|
250 |
+
return dx, dg, dh0, None, None
|
251 |
+
|
252 |
+
|
253 |
+
@torch.compiler.disable
|
254 |
+
def fused_recurrent_hgrn(
|
255 |
+
x: torch.Tensor,
|
256 |
+
g: torch.Tensor,
|
257 |
+
initial_state: torch.Tensor = None,
|
258 |
+
output_final_state: bool = False,
|
259 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
260 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
261 |
+
r"""
|
262 |
+
Args:
|
263 |
+
x (torch.Tensor):
|
264 |
+
inputs of shape `[B, T, D].
|
265 |
+
g (torch.Tensor):
|
266 |
+
Forget gates of shape `[B, T, D]`.
|
267 |
+
initial_state (Optional[torch.Tensor]):
|
268 |
+
Initial state of shape `[N, D]` for `N` input sequences.
|
269 |
+
For equal-length input sequences, `N` equals the batch size `B`.
|
270 |
+
Default: `None`.
|
271 |
+
output_final_state (Optional[bool]):
|
272 |
+
Whether to output the final state of shape `[N, D]`. Default: `False`.
|
273 |
+
cu_seqlens (torch.LongTensor):
|
274 |
+
Cumulative sequence lengths of shape `[N+1]` used for variable-length training,
|
275 |
+
consistent with the FlashAttention API.
|
276 |
+
|
277 |
+
Returns:
|
278 |
+
o (torch.Tensor):
|
279 |
+
Outputs of shape `[B, T, D]`.
|
280 |
+
final_state (torch.Tensor):
|
281 |
+
Final state of shape `[N, D]` if `output_final_state=True` else `None`.
|
282 |
+
|
283 |
+
Examples::
|
284 |
+
>>> import torch
|
285 |
+
>>> import torch.nn.functional as F
|
286 |
+
>>> from einops import rearrange
|
287 |
+
>>> from fla.ops.hgrn import fused_recurrent_hgrn
|
288 |
+
# inputs with equal lengths
|
289 |
+
>>> B, T, D = 4, 2048, 512
|
290 |
+
>>> x = torch.randn(B, T, D, device='cuda')
|
291 |
+
>>> g = F.logsigmoid(torch.randn(B, T, D, device='cuda'))
|
292 |
+
>>> h0 = torch.randn(B, D, device='cuda')
|
293 |
+
>>> o, ht = fused_recurrent_hgrn(x, g, initial_state=h0, output_final_state=True)
|
294 |
+
# for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required
|
295 |
+
>>> x, g = map(lambda x: rearrange(x, 'b t d -> 1 (b t) d'), (x, g))
|
296 |
+
# for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected
|
297 |
+
>>> cu_seqlens = x.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long)
|
298 |
+
>>> o_var, ht_var = fused_recurrent_hgrn(x, g, initial_state=h0, output_final_state=True, cu_seqlens=cu_seqlens)
|
299 |
+
>>> assert o.allclose(o_var.view(o.shape))
|
300 |
+
>>> assert ht.allclose(ht_var)
|
301 |
+
"""
|
302 |
+
return FusedRecurrentHGRNFunction.apply(
|
303 |
+
x,
|
304 |
+
g,
|
305 |
+
initial_state,
|
306 |
+
output_final_state,
|
307 |
+
cu_seqlens
|
308 |
+
)
|
fla/ops/hgrn/naive.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
def naive_recurrent_hgrn(
|
9 |
+
x: torch.Tensor,
|
10 |
+
g: torch.Tensor,
|
11 |
+
initial_state: Optional[torch.Tensor] = None,
|
12 |
+
output_final_state: Optional[bool] = False
|
13 |
+
) -> torch.Tensor:
|
14 |
+
dtype = x.dtype
|
15 |
+
x, g = map(lambda i: i.float(), (x, g))
|
16 |
+
B, T, D = x.shape
|
17 |
+
|
18 |
+
h = torch.zeros(B, D, dtype=torch.float, device=x.device)
|
19 |
+
o = torch.zeros_like(x)
|
20 |
+
|
21 |
+
final_state = None
|
22 |
+
if initial_state is not None:
|
23 |
+
h += initial_state
|
24 |
+
|
25 |
+
for i in range(T):
|
26 |
+
h = g[:, i].exp() * h + x[:, i]
|
27 |
+
o[:, i] = h
|
28 |
+
|
29 |
+
if output_final_state:
|
30 |
+
final_state = h
|
31 |
+
return o.to(dtype), final_state
|
32 |
+
|
33 |
+
|
34 |
+
def naive_chunk_hgrn(
|
35 |
+
x: torch.Tensor,
|
36 |
+
g: torch.Tensor,
|
37 |
+
initial_state: Optional[torch.Tensor] = None,
|
38 |
+
output_final_state: Optional[bool] = False,
|
39 |
+
chunk_size: int = 64
|
40 |
+
) -> torch.Tensor:
|
41 |
+
dtype = x.dtype
|
42 |
+
x, g = map(lambda i: i.float(), (x, g))
|
43 |
+
B, T, D = x.shape
|
44 |
+
|
45 |
+
gc = g.view(B, chunk_size, D).cumsum(-2).view_as(g)
|
46 |
+
h = torch.zeros(B, D, dtype=torch.float, device=x.device)
|
47 |
+
o = torch.zeros_like(x)
|
48 |
+
|
49 |
+
final_state = None
|
50 |
+
if initial_state is not None:
|
51 |
+
h += initial_state
|
52 |
+
|
53 |
+
for i in range(0, T, chunk_size):
|
54 |
+
hp = h
|
55 |
+
h = torch.zeros(B, D, dtype=torch.float, device=x.device)
|
56 |
+
for j in range(i, i + chunk_size):
|
57 |
+
h = g[:, j].exp() * h + x[:, j]
|
58 |
+
o[:, j] = hp * gc[:, j].exp() + h
|
59 |
+
h = o[:, j].clone()
|
60 |
+
|
61 |
+
if output_final_state:
|
62 |
+
final_state = h
|
63 |
+
return o.to(dtype), final_state
|
fla/ops/rwkv4/fused_recurrent.py
ADDED
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Any, cast
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import triton
|
8 |
+
import triton.language as tl
|
9 |
+
from torch import Tensor
|
10 |
+
from torch.autograd.function import Function, FunctionCtx, once_differentiable
|
11 |
+
|
12 |
+
from fla.ops.utils.op import exp
|
13 |
+
|
14 |
+
|
15 |
+
def get_block_size_c(chans: int) -> int:
|
16 |
+
if chans < 32:
|
17 |
+
return 32
|
18 |
+
if chans < 64:
|
19 |
+
return 64
|
20 |
+
return 128
|
21 |
+
|
22 |
+
|
23 |
+
@triton.jit
|
24 |
+
def fused_recurrent_rwkv4_forward_kernel(
|
25 |
+
# W
|
26 |
+
w_ptr,
|
27 |
+
w_s_c,
|
28 |
+
# U
|
29 |
+
u_ptr,
|
30 |
+
u_s_c,
|
31 |
+
# K
|
32 |
+
k_ptr,
|
33 |
+
k_s_b,
|
34 |
+
k_s_t,
|
35 |
+
k_s_c,
|
36 |
+
# V
|
37 |
+
v_ptr,
|
38 |
+
v_s_b,
|
39 |
+
v_s_t,
|
40 |
+
v_s_c,
|
41 |
+
# State
|
42 |
+
state_ptr,
|
43 |
+
state_s_b,
|
44 |
+
state_s_abe,
|
45 |
+
state_s_c,
|
46 |
+
# WKV
|
47 |
+
wkv_ptr,
|
48 |
+
wkv_s_b,
|
49 |
+
wkv_s_t,
|
50 |
+
wkv_s_c,
|
51 |
+
# Output state
|
52 |
+
state_out_ptr,
|
53 |
+
state_out_s_b,
|
54 |
+
state_out_s_abe,
|
55 |
+
state_out_s_t,
|
56 |
+
state_out_s_c,
|
57 |
+
# Params
|
58 |
+
chans,
|
59 |
+
tsz,
|
60 |
+
BLOCK_SIZE_C: tl.constexpr,
|
61 |
+
):
|
62 |
+
# Parallelize over the batch dimension.
|
63 |
+
b_idx = tl.program_id(0)
|
64 |
+
c_idx = tl.program_id(1)
|
65 |
+
|
66 |
+
cs = (c_idx * BLOCK_SIZE_C) + tl.arange(0, BLOCK_SIZE_C)
|
67 |
+
cmask = cs < chans
|
68 |
+
|
69 |
+
# Pointers to the batch (and possibly channel) for the input tensors.
|
70 |
+
k_ptr = k_ptr + b_idx * k_s_b
|
71 |
+
v_ptr = v_ptr + b_idx * v_s_b
|
72 |
+
alpha_ptr = state_ptr + b_idx * state_s_b
|
73 |
+
beta_ptr = state_ptr + b_idx * state_s_b + state_s_abe
|
74 |
+
eps_ptr = state_ptr + b_idx * state_s_b + 2 * state_s_abe
|
75 |
+
|
76 |
+
# Pointers to the batch (and possibly channel) for the output tensors.
|
77 |
+
wkv_ptr = wkv_ptr + b_idx * wkv_s_b
|
78 |
+
alpha_out_ptr = state_out_ptr + b_idx * state_out_s_b
|
79 |
+
beta_out_ptr = state_out_ptr + b_idx * state_out_s_b + state_out_s_abe
|
80 |
+
eps_out_ptr = state_out_ptr + b_idx * state_out_s_b + 2 * state_out_s_abe
|
81 |
+
|
82 |
+
# Loads parameters.
|
83 |
+
alpha = tl.load(alpha_ptr + cs * state_s_c, mask=cmask).to(tl.float32)
|
84 |
+
beta = tl.load(beta_ptr + cs * state_s_c, mask=cmask).to(tl.float32)
|
85 |
+
eps = tl.load(eps_ptr + cs * state_s_c, mask=cmask).to(tl.float32)
|
86 |
+
w = tl.load(w_ptr + cs * w_s_c, mask=cmask).to(tl.float32)
|
87 |
+
u = tl.load(u_ptr + cs * u_s_c, mask=cmask).to(tl.float32)
|
88 |
+
|
89 |
+
for t in range(tsz):
|
90 |
+
kt = tl.load(k_ptr + t * k_s_t + cs * k_s_c, mask=cmask).to(tl.float32)
|
91 |
+
vt = tl.load(v_ptr + t * v_s_t + cs * v_s_c, mask=cmask).to(tl.float32)
|
92 |
+
|
93 |
+
ukt = u + kt
|
94 |
+
tau = tl.maximum(ukt, eps)
|
95 |
+
e1a = exp(eps - tau)
|
96 |
+
e2a = exp(ukt - tau)
|
97 |
+
wkv = (e1a * alpha + e2a * vt) / (e1a * beta + e2a)
|
98 |
+
tl.store(wkv_ptr + t * wkv_s_t + cs * wkv_s_c, wkv, mask=cmask)
|
99 |
+
|
100 |
+
w_eps = w + eps
|
101 |
+
eps = tl.maximum(w_eps, kt)
|
102 |
+
e1b = exp(w_eps - eps)
|
103 |
+
e2b = exp(kt - eps)
|
104 |
+
alpha = e1b * alpha + e2b * vt
|
105 |
+
beta = e1b * beta + e2b
|
106 |
+
tl.store(alpha_out_ptr + t * state_out_s_t + cs * state_out_s_c, alpha, mask=cmask)
|
107 |
+
tl.store(beta_out_ptr + t * state_out_s_t + cs * state_out_s_c, beta, mask=cmask)
|
108 |
+
tl.store(eps_out_ptr + t * state_out_s_t + cs * state_out_s_c, eps, mask=cmask)
|
109 |
+
|
110 |
+
|
111 |
+
def fused_recurrent_rwkv4_forward(
|
112 |
+
w: Tensor,
|
113 |
+
u: Tensor,
|
114 |
+
k: Tensor,
|
115 |
+
v: Tensor,
|
116 |
+
state: Tensor,
|
117 |
+
) -> tuple[Tensor, Tensor]:
|
118 |
+
(bsz, tsz, chans) = k.shape
|
119 |
+
|
120 |
+
# New tensors to output.
|
121 |
+
wkvs = k.new_empty(bsz, tsz, chans)
|
122 |
+
state_out = k.new_empty(bsz, 3, tsz, chans)
|
123 |
+
|
124 |
+
# Constants.
|
125 |
+
block_size_c = get_block_size_c(chans)
|
126 |
+
|
127 |
+
def grid(meta: dict[str, Any]) -> tuple[int, ...]:
|
128 |
+
return (bsz, triton.cdiv(chans, meta["BLOCK_SIZE_C"]))
|
129 |
+
|
130 |
+
fused_recurrent_rwkv4_forward_kernel[grid](
|
131 |
+
# W
|
132 |
+
w,
|
133 |
+
w.stride(0),
|
134 |
+
# U
|
135 |
+
u,
|
136 |
+
u.stride(0),
|
137 |
+
# K
|
138 |
+
k,
|
139 |
+
k.stride(0),
|
140 |
+
k.stride(1),
|
141 |
+
k.stride(2),
|
142 |
+
# V
|
143 |
+
v,
|
144 |
+
v.stride(0),
|
145 |
+
v.stride(1),
|
146 |
+
v.stride(2),
|
147 |
+
# State
|
148 |
+
state,
|
149 |
+
state.stride(0),
|
150 |
+
state.stride(1),
|
151 |
+
state.stride(3),
|
152 |
+
# WKV
|
153 |
+
wkvs,
|
154 |
+
wkvs.stride(0),
|
155 |
+
wkvs.stride(1),
|
156 |
+
wkvs.stride(2),
|
157 |
+
# Output state
|
158 |
+
state_out,
|
159 |
+
state_out.stride(0),
|
160 |
+
state_out.stride(1),
|
161 |
+
state_out.stride(2),
|
162 |
+
state_out.stride(3),
|
163 |
+
# Params
|
164 |
+
chans,
|
165 |
+
tsz,
|
166 |
+
BLOCK_SIZE_C=block_size_c,
|
167 |
+
)
|
168 |
+
|
169 |
+
state_out = torch.cat((state, state_out), dim=2)
|
170 |
+
|
171 |
+
return wkvs, state_out
|
172 |
+
|
173 |
+
|
174 |
+
@triton.jit
|
175 |
+
def fused_recurrent_rwkv4_backward_kernel(
|
176 |
+
# W
|
177 |
+
w_ptr,
|
178 |
+
w_s_c,
|
179 |
+
# U
|
180 |
+
u_ptr,
|
181 |
+
u_s_c,
|
182 |
+
# K
|
183 |
+
k_ptr,
|
184 |
+
k_s_b,
|
185 |
+
k_s_t,
|
186 |
+
k_s_c,
|
187 |
+
# V
|
188 |
+
v_ptr,
|
189 |
+
v_s_b,
|
190 |
+
v_s_t,
|
191 |
+
v_s_c,
|
192 |
+
# State
|
193 |
+
state_ptr,
|
194 |
+
state_s_b,
|
195 |
+
state_s_abe,
|
196 |
+
state_s_t,
|
197 |
+
state_s_c,
|
198 |
+
# WKV grad
|
199 |
+
gwkv_ptr,
|
200 |
+
gwkv_s_b,
|
201 |
+
gwkv_s_t,
|
202 |
+
gwkv_s_c,
|
203 |
+
# Output state grad
|
204 |
+
gstate_out_ptr,
|
205 |
+
gstate_out_s_b,
|
206 |
+
gstate_out_s_abe,
|
207 |
+
gstate_out_s_c,
|
208 |
+
# W grad
|
209 |
+
gw_ptr,
|
210 |
+
gw_s_c,
|
211 |
+
# U grad
|
212 |
+
gu_ptr,
|
213 |
+
gu_s_c,
|
214 |
+
# K grad
|
215 |
+
gk_ptr,
|
216 |
+
gk_s_b,
|
217 |
+
gk_s_t,
|
218 |
+
gk_s_c,
|
219 |
+
# V grad
|
220 |
+
gv_ptr,
|
221 |
+
gv_s_b,
|
222 |
+
gv_s_t,
|
223 |
+
gv_s_c,
|
224 |
+
# State grad
|
225 |
+
gstate_ptr,
|
226 |
+
gstate_s_b,
|
227 |
+
gstate_s_abe,
|
228 |
+
gstate_s_c,
|
229 |
+
# Params
|
230 |
+
tsz,
|
231 |
+
chans,
|
232 |
+
BLOCK_SIZE_C: tl.constexpr,
|
233 |
+
):
|
234 |
+
# Parallelize over the batch dimension.
|
235 |
+
b_idx = tl.program_id(0)
|
236 |
+
c_idx = tl.program_id(1)
|
237 |
+
|
238 |
+
cs = (c_idx * BLOCK_SIZE_C) + tl.arange(0, BLOCK_SIZE_C)
|
239 |
+
cmask = cs < chans
|
240 |
+
|
241 |
+
# Pointers to the batch (and possibly channel) for the input tensors.
|
242 |
+
k_ptr = k_ptr + b_idx * k_s_b
|
243 |
+
v_ptr = v_ptr + b_idx * v_s_b
|
244 |
+
alpha_ptr = state_ptr + b_idx * state_s_b
|
245 |
+
beta_ptr = state_ptr + b_idx * state_s_b + state_s_abe
|
246 |
+
eps_ptr = state_ptr + b_idx * state_s_b + 2 * state_s_abe
|
247 |
+
|
248 |
+
# Pointers to the batch (and possibly channel) for the output tensors.
|
249 |
+
gk_ptr = gk_ptr + b_idx * gk_s_b
|
250 |
+
gv_ptr = gv_ptr + b_idx * gv_s_b
|
251 |
+
|
252 |
+
# Pointers to gradients which were recieved by the function.
|
253 |
+
gwkv_ptr = gwkv_ptr + b_idx * gwkv_s_b
|
254 |
+
galpha_out_ptr = gstate_out_ptr + b_idx * gstate_out_s_b
|
255 |
+
gbeta_out_ptr = gstate_out_ptr + b_idx * gstate_out_s_b + gstate_out_s_abe
|
256 |
+
geps_out_ptr = gstate_out_ptr + b_idx * gstate_out_s_b + 2 * gstate_out_s_abe
|
257 |
+
|
258 |
+
# Loads parameters.
|
259 |
+
galpha = tl.load(galpha_out_ptr + gstate_out_s_c * cs, mask=cmask).to(tl.float32)
|
260 |
+
gbeta = tl.load(gbeta_out_ptr + gstate_out_s_c * cs, mask=cmask).to(tl.float32)
|
261 |
+
geps = tl.load(geps_out_ptr + gstate_out_s_c * cs, mask=cmask).to(tl.float32)
|
262 |
+
w = tl.load(w_ptr + w_s_c * cs, mask=cmask).to(tl.float32)
|
263 |
+
u = tl.load(u_ptr + u_s_c * cs, mask=cmask).to(tl.float32)
|
264 |
+
|
265 |
+
# Gradient accumulators.
|
266 |
+
gw = tl.zeros_like(w)
|
267 |
+
gu = tl.zeros_like(u)
|
268 |
+
|
269 |
+
alpha_prev = tl.load(alpha_ptr + tsz * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32)
|
270 |
+
beta_prev = tl.load(beta_ptr + tsz * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32)
|
271 |
+
eps_prev = tl.load(eps_ptr + tsz * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32)
|
272 |
+
|
273 |
+
for t in range(tsz):
|
274 |
+
tc = tsz - t - 1
|
275 |
+
|
276 |
+
kt = tl.load(k_ptr + tc * k_s_t + k_s_c * cs, mask=cmask).to(tl.float32)
|
277 |
+
vt = tl.load(v_ptr + tc * v_s_t + v_s_c * cs, mask=cmask).to(tl.float32)
|
278 |
+
|
279 |
+
alpha_curr = alpha_prev
|
280 |
+
beta_curr = beta_prev
|
281 |
+
eps_curr = eps_prev
|
282 |
+
|
283 |
+
alpha_prev = tl.load(alpha_ptr + tc * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32)
|
284 |
+
beta_prev = tl.load(beta_ptr + tc * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32)
|
285 |
+
eps_prev = tl.load(eps_ptr + tc * state_s_t + state_s_c * cs, mask=cmask).to(tl.float32)
|
286 |
+
|
287 |
+
ukt = u + kt
|
288 |
+
tau = tl.maximum(ukt, eps_prev)
|
289 |
+
e1 = exp(eps_prev - tau)
|
290 |
+
e2 = exp(ukt - tau)
|
291 |
+
|
292 |
+
euke = exp(ukt + eps_prev - 2 * tau)
|
293 |
+
|
294 |
+
denom = e1 * beta_prev + e2
|
295 |
+
denom_sq = denom * denom
|
296 |
+
|
297 |
+
gwkvt = tl.load(gwkv_ptr + tc * gwkv_s_t + gwkv_s_c * cs, mask=cmask).to(tl.float32)
|
298 |
+
|
299 |
+
# Backpropagates wkv gradients.
|
300 |
+
guk = gwkvt * e2 * (e1 * beta_prev * vt - e1 * alpha_prev) / denom_sq
|
301 |
+
gu += guk
|
302 |
+
gk = guk
|
303 |
+
gv = gwkvt * e2 / denom
|
304 |
+
|
305 |
+
galpha_wkv = gwkvt * e1 / denom
|
306 |
+
gbeta_wkv = -gwkvt * e1 * (e2 * vt + e1 * alpha_prev) / denom_sq
|
307 |
+
geps_wkv_denom = e1 * beta_prev + e2
|
308 |
+
geps_wkv = gwkvt * euke * (alpha_prev - vt * beta_prev) / (geps_wkv_denom * geps_wkv_denom)
|
309 |
+
|
310 |
+
e1 = exp(w + eps_prev - eps_curr)
|
311 |
+
e2 = exp(kt - eps_curr)
|
312 |
+
|
313 |
+
# Backpropagates alpha gradients.
|
314 |
+
galpha_we = galpha * e1 * alpha_prev
|
315 |
+
gw += galpha_we
|
316 |
+
gk += galpha * e2 * vt
|
317 |
+
gv += galpha * e2
|
318 |
+
geps += galpha * -alpha_curr
|
319 |
+
|
320 |
+
# Backpropagates beta gradients.
|
321 |
+
gbeta_we = gbeta * e1 * beta_prev
|
322 |
+
gw += gbeta_we
|
323 |
+
gk += gbeta * e2
|
324 |
+
geps += gbeta * -beta_curr
|
325 |
+
|
326 |
+
# Backpropagates epsilon gradients.
|
327 |
+
geps_mask = w + eps_prev > kt
|
328 |
+
geps_we = tl.where(geps_mask, geps, tl.zeros_like(geps))
|
329 |
+
gw += geps_we
|
330 |
+
gk += tl.where(geps_mask, tl.zeros_like(geps), geps)
|
331 |
+
|
332 |
+
# Stores the gradients for k and v.
|
333 |
+
tl.store(gk_ptr + tc * gk_s_t + gk_s_c * cs, gk, mask=cmask)
|
334 |
+
tl.store(gv_ptr + tc * gv_s_t + gv_s_c * cs, gv, mask=cmask)
|
335 |
+
|
336 |
+
# Computes new gradients for alpha and beta.
|
337 |
+
galpha = galpha * e1 + galpha_wkv
|
338 |
+
gbeta = gbeta * e1 + gbeta_wkv
|
339 |
+
geps = galpha_we + gbeta_we + geps_we + geps_wkv
|
340 |
+
|
341 |
+
# Stores final gradients for alpha and beta.
|
342 |
+
galpha_ptr = gstate_ptr + b_idx * gstate_s_b
|
343 |
+
gbeta_ptr = gstate_ptr + b_idx * gstate_s_b + gstate_s_abe
|
344 |
+
geps_ptr = gstate_ptr + b_idx * gstate_s_b + 2 * gstate_s_abe
|
345 |
+
tl.store(galpha_ptr + gstate_s_c * cs, galpha, mask=cmask)
|
346 |
+
tl.store(gbeta_ptr + gstate_s_c * cs, gbeta, mask=cmask)
|
347 |
+
tl.store(geps_ptr + gstate_s_c * cs, geps, mask=cmask)
|
348 |
+
|
349 |
+
# Stores final gradients for w and u.
|
350 |
+
gw_temp = tl.load(gw_ptr + gw_s_c * cs, mask=cmask).to(tl.float32)
|
351 |
+
gw_temp += gw
|
352 |
+
tl.store(gw_ptr + gw_s_c * cs, gw_temp, mask=cmask)
|
353 |
+
gu_temp = tl.load(gu_ptr + gu_s_c * cs, mask=cmask).to(tl.float32)
|
354 |
+
gu_temp += gu
|
355 |
+
tl.store(gu_ptr + gu_s_c * cs, gu_temp, mask=cmask)
|
356 |
+
|
357 |
+
|
358 |
+
def fused_recurrent_rwkv4_backward(
|
359 |
+
w: Tensor,
|
360 |
+
u: Tensor,
|
361 |
+
k: Tensor,
|
362 |
+
v: Tensor,
|
363 |
+
state: Tensor,
|
364 |
+
grad_wkv: Tensor,
|
365 |
+
grad_state: Tensor,
|
366 |
+
) -> tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
|
367 |
+
bsz, tsz, chans = k.shape
|
368 |
+
|
369 |
+
gw = torch.zeros_like(w) # New tensors to output.
|
370 |
+
gu = torch.zeros_like(u)
|
371 |
+
gk = torch.empty_like(k)
|
372 |
+
gv = torch.empty_like(v)
|
373 |
+
gstate = k.new_empty(bsz, 3, 1, chans)
|
374 |
+
|
375 |
+
block_size_c = get_block_size_c(chans) # Constants.
|
376 |
+
|
377 |
+
def grid(meta: dict[str, Any]) -> tuple[int, ...]:
|
378 |
+
return (bsz, triton.cdiv(chans, meta["BLOCK_SIZE_C"]))
|
379 |
+
|
380 |
+
fused_recurrent_rwkv4_backward_kernel[grid](
|
381 |
+
# W
|
382 |
+
w,
|
383 |
+
w.stride(0),
|
384 |
+
# U
|
385 |
+
u,
|
386 |
+
u.stride(0),
|
387 |
+
# K
|
388 |
+
k,
|
389 |
+
k.stride(0),
|
390 |
+
k.stride(1),
|
391 |
+
k.stride(2),
|
392 |
+
# V
|
393 |
+
v,
|
394 |
+
v.stride(0),
|
395 |
+
v.stride(1),
|
396 |
+
v.stride(2),
|
397 |
+
# State
|
398 |
+
state,
|
399 |
+
state.stride(0),
|
400 |
+
state.stride(1),
|
401 |
+
state.stride(2),
|
402 |
+
state.stride(3),
|
403 |
+
# WKV grad
|
404 |
+
grad_wkv,
|
405 |
+
grad_wkv.stride(0),
|
406 |
+
grad_wkv.stride(1),
|
407 |
+
grad_wkv.stride(2),
|
408 |
+
# Output state grad
|
409 |
+
grad_state,
|
410 |
+
grad_state.stride(0),
|
411 |
+
grad_state.stride(1),
|
412 |
+
grad_state.stride(3),
|
413 |
+
# W grad
|
414 |
+
gw,
|
415 |
+
gw.stride(0),
|
416 |
+
# U grad
|
417 |
+
gu,
|
418 |
+
gu.stride(0),
|
419 |
+
# K grad
|
420 |
+
gk,
|
421 |
+
gk.stride(0),
|
422 |
+
gk.stride(1),
|
423 |
+
gk.stride(2),
|
424 |
+
# V grad
|
425 |
+
gv,
|
426 |
+
gv.stride(0),
|
427 |
+
gv.stride(1),
|
428 |
+
gv.stride(2),
|
429 |
+
# State grad
|
430 |
+
gstate,
|
431 |
+
gstate.stride(0),
|
432 |
+
gstate.stride(1),
|
433 |
+
gstate.stride(3),
|
434 |
+
# Params
|
435 |
+
tsz,
|
436 |
+
chans,
|
437 |
+
BLOCK_SIZE_C=block_size_c,
|
438 |
+
)
|
439 |
+
|
440 |
+
return gw, gu, gk, gv, gstate
|
441 |
+
|
442 |
+
|
443 |
+
class FusedRecurrentRWKV4Function(Function):
|
444 |
+
@staticmethod
|
445 |
+
def forward(
|
446 |
+
ctx: FunctionCtx,
|
447 |
+
w: Tensor,
|
448 |
+
u: Tensor,
|
449 |
+
k: Tensor,
|
450 |
+
v: Tensor,
|
451 |
+
state: Tensor,
|
452 |
+
) -> tuple[Tensor, Tensor]:
|
453 |
+
ctx.input_dtype = k.dtype
|
454 |
+
|
455 |
+
w = -torch.exp(w.float().contiguous())
|
456 |
+
if k.dtype == torch.float16:
|
457 |
+
u = u.float()
|
458 |
+
k = k.float()
|
459 |
+
v = v.float()
|
460 |
+
u = u.contiguous()
|
461 |
+
k = k.contiguous()
|
462 |
+
v = v.contiguous()
|
463 |
+
wkv, state_out = fused_recurrent_rwkv4_forward(w, u, k, v, state)
|
464 |
+
ctx.save_for_backward(w, u, k, v, state_out[:, :, :-1])
|
465 |
+
return wkv, state_out[:, :, -1:]
|
466 |
+
|
467 |
+
@staticmethod
|
468 |
+
@once_differentiable
|
469 |
+
def backward(ctx: FunctionCtx, gwkv: Tensor, gstate: Tensor) -> tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
|
470 |
+
w, u, k, v, state = cast(tuple[Tensor, ...], ctx.saved_tensors)
|
471 |
+
gw, gu, gk, gv, gstate = fused_recurrent_rwkv4_backward(w, u, k, v, state, gwkv, gstate)
|
472 |
+
return gw, gu, gk, gv, gstate
|
473 |
+
|
474 |
+
|
475 |
+
def fused_recurrent_rwkv4(w: Tensor, u: Tensor, k: Tensor, v: Tensor, state: Tensor) -> tuple[Tensor, Tensor]:
|
476 |
+
return FusedRecurrentRWKV4Function.apply(w, u, k, v, state)
|
fla/ops/rwkv6/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .chunk import chunk_rwkv6
|
4 |
+
from .fused_recurrent import fused_recurrent_rwkv6
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
'chunk_rwkv6',
|
8 |
+
'fused_recurrent_rwkv6'
|
9 |
+
]
|