Unleash KO-CLIP
Browse files
README.md
CHANGED
|
@@ -1,3 +1,139 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- SPRIGHT-T2I/spright_coco
|
| 5 |
+
- zer0int/CLIP-KO-Adversarial-Train-Typo-Attack
|
| 6 |
+
base_model:
|
| 7 |
+
- openai/clip-vit-base-patch32
|
| 8 |
+
---
|
| 9 |
+
# CLIP-KO: Knocking Out Typographic Attacks in CLIP πͺπ€
|
| 10 |
+
### Less vulnerability, much better performance! π€
|
| 11 |
+
β€οΈ this CLIP? [Donate](https://ko-fi.com/zer0int) if you can / want. TY!
|
| 12 |
+
|
| 13 |
+
# π₯ CLIP-KO ViT-B/32 (vit-base-patch32)
|
| 14 |
+
- π Read the [paper](https://github.com/zer0int/CLIP-fine-tune/blob/CLIP-vision/KO-CLIP-teaser/KO-CLIP-paper-final.pdf) (PDF) here.
|
| 15 |
+
- π€ Wanna fine-tune yourself? Get the [code](https://github.com/zer0int/CLIP-fine-tune) on my GitHub.
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
----
|
| 19 |
+
<details>
|
| 20 |
+
<summary>π CLICK ME to expand example benchmark code β‘π»</summary>
|
| 21 |
+
|
| 22 |
+
```
|
| 23 |
+
from datasets import load_dataset
|
| 24 |
+
from transformers import CLIPModel, CLIPProcessor
|
| 25 |
+
import torch
|
| 26 |
+
from PIL import Image
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
import pandas as pd
|
| 29 |
+
|
| 30 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
+
|
| 32 |
+
# BLISS / SCAM Typographic Attack Dataset
|
| 33 |
+
# https://huggingface.co/datasets/BLISS-e-V/SCAM
|
| 34 |
+
ds = load_dataset("BLISS-e-V/SCAM", split="train")
|
| 35 |
+
|
| 36 |
+
# Benchmark pre-trained model against my fine-tune
|
| 37 |
+
model_variants = [
|
| 38 |
+
("OpenAI ", "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"),
|
| 39 |
+
("KO-CLIP", "zer0int/CLIP-KO-ViT-B-32-TypoAttack", "zer0int/CLIP-KO-ViT-B-32-TypoAttack"),
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
models = {}
|
| 43 |
+
for name, model_path, processor_path in model_variants:
|
| 44 |
+
model = CLIPModel.from_pretrained(model_path).to(device).float()
|
| 45 |
+
processor = CLIPProcessor.from_pretrained(processor_path)
|
| 46 |
+
models[name] = (model, processor)
|
| 47 |
+
|
| 48 |
+
for variant in ["NoSCAM", "SCAM", "SynthSCAM"]:
|
| 49 |
+
print(f"\n=== Evaluating var.: {variant} ===")
|
| 50 |
+
idxs = [i for i, v in enumerate(ds['id']) if v.startswith(variant)]
|
| 51 |
+
if not idxs:
|
| 52 |
+
print(f" No samples for {variant}")
|
| 53 |
+
continue
|
| 54 |
+
subset = [ds[i] for i in idxs]
|
| 55 |
+
|
| 56 |
+
for model_name, (model, processor) in models.items():
|
| 57 |
+
results = []
|
| 58 |
+
for entry in tqdm(subset, desc=f"{model_name}", ncols=30, bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt} |"):
|
| 59 |
+
img = entry['image']
|
| 60 |
+
object_label = entry['object_label']
|
| 61 |
+
attack_word = entry['attack_word']
|
| 62 |
+
|
| 63 |
+
texts = [f"a photo of a {object_label}", f"a photo of a {attack_word}"]
|
| 64 |
+
inputs = processor(
|
| 65 |
+
text=texts,
|
| 66 |
+
images=img,
|
| 67 |
+
return_tensors="pt",
|
| 68 |
+
padding=True
|
| 69 |
+
)
|
| 70 |
+
for k in inputs:
|
| 71 |
+
if isinstance(inputs[k], torch.Tensor):
|
| 72 |
+
inputs[k] = inputs[k].to(device)
|
| 73 |
+
|
| 74 |
+
with torch.no_grad():
|
| 75 |
+
outputs = model(**inputs)
|
| 76 |
+
image_features = outputs.image_embeds
|
| 77 |
+
text_features = outputs.text_embeds
|
| 78 |
+
|
| 79 |
+
logits = image_features @ text_features.T
|
| 80 |
+
probs = logits.softmax(dim=-1).cpu().numpy().flatten()
|
| 81 |
+
pred_idx = probs.argmax()
|
| 82 |
+
pred_label = [object_label, attack_word][pred_idx]
|
| 83 |
+
is_correct = (pred_label == object_label)
|
| 84 |
+
|
| 85 |
+
results.append({
|
| 86 |
+
"id": entry['id'],
|
| 87 |
+
"object_label": object_label,
|
| 88 |
+
"attack_word": attack_word,
|
| 89 |
+
"pred_label": pred_label,
|
| 90 |
+
"is_correct": is_correct,
|
| 91 |
+
"type": entry['type'],
|
| 92 |
+
"model": model_name
|
| 93 |
+
})
|
| 94 |
+
|
| 95 |
+
n_total = len(results)
|
| 96 |
+
n_correct = sum(r['is_correct'] for r in results)
|
| 97 |
+
acc = n_correct / n_total if n_total else float('nan')
|
| 98 |
+
print(f"| > > > > Zero-shot accuracy for {variant}, {model_name}: {n_correct}/{n_total} = {acc:.4f}")
|
| 99 |
+
```
|
| 100 |
+
</details>
|
| 101 |
+
|
| 102 |
+
----
|
| 103 |
+
Better attention heatmaps!
|
| 104 |
+
|
| 105 |
+

|
| 106 |
+
|
| 107 |
+
----
|
| 108 |
+
|
| 109 |
+
## π Benchmark Results π
|
| 110 |
+
|
| 111 |
+
| Benchmark / Metric | Pre-Trained | Fine-Tuned |
|
| 112 |
+
|------------------------------------|-------------|------------|
|
| 113 |
+
| **Typographic Attack** | | |
|
| 114 |
+
| RTA-100 zero-shot acc. | 0.5560 | **0.7740**ποΈ |
|
| 115 |
+
| BLISS / SCAM NoSCAM acc. | 0.9682 | **0.9759** |
|
| 116 |
+
| BLISS / SCAM SCAM acc. | 0.6627 | **0.7926**ποΈ |
|
| 117 |
+
| BLISS / SCAM SynthSCAM acc. | 0.4320 | **0.6386**ποΈ |
|
| 118 |
+
| **LAION/CLIP_Benchmark** | | |
|
| 119 |
+
| VoC-2007-multilabel mAP | 0.7231 | **0.8335**ποΈ |
|
| 120 |
+
| MSCOCO retrieval image recall@5 | 0.1724 | **0.2523** |
|
| 121 |
+
| MSCOCO retrieval text recall@ | 0.2440 | **0.3569** |
|
| 122 |
+
| xm3600 retrieval image recall@5 | 0.2867 | **0.3874** |
|
| 123 |
+
| xm3600 retrieval text recall@ | 0.2523 | **0.3783** |
|
| 124 |
+
| **ImageNet-1k** | | |
|
| 125 |
+
| zero-shot acc1 | 0.2234 | **0.3193** |
|
| 126 |
+
| zero-shot acc5 | 0.4169 | **0.5555** |
|
| 127 |
+
| mAP | 0.2230 | **0.3185** |
|
| 128 |
+
| **MISC** | | |
|
| 129 |
+
| ImageNet-1k linear probe Top-1 | **53.14%** | 52.65% |
|
| 130 |
+
| ImageNet-1k linear probe Top-5 | 83.41% | **83.48%** |
|
| 131 |
+
| MVT ImageNet/ObjectNet acc. | 0.6492 | **0.7506**ποΈ |
|
| 132 |
+
| Flickr8k Modality Gap: β | 0.8301 | **0.7902** |
|
| 133 |
+
| Flickr8k JSD: β | 0.5225 | **0.2983** |
|
| 134 |
+
| Flickr8k Wasserstein Dist.: β | 0.4573 | **0.4039** |
|
| 135 |
+
| Flickr8k Img-Text Cos Sim (mean): β| 0.3164 | **0.3522** |
|
| 136 |
+
| Flickr8k Img-Text Cos Sim (std) | 0.0325 | 0.0537 |
|
| 137 |
+
| Flickr8k Text-Text Cos Sim (mean) | 0.7737 | 0.7561 |
|
| 138 |
+
| Flickr8k Text-Text Cos Sim (std) | 0.1036 | 0.1300 |
|
| 139 |
+
|