|  | """wandb logger with add image interface.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from typing import TYPE_CHECKING, Literal | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | from lightning.fabric.utilities.types import _PATH | 
					
						
						|  | from lightning.pytorch.loggers.wandb import WandbLogger | 
					
						
						|  | from lightning.pytorch.utilities import rank_zero_only | 
					
						
						|  | from matplotlib.figure import Figure | 
					
						
						|  |  | 
					
						
						|  | from anomalib.utils.exceptions import try_import | 
					
						
						|  |  | 
					
						
						|  | from .base import ImageLoggerBase | 
					
						
						|  |  | 
					
						
						|  | if try_import("wandb"): | 
					
						
						|  | import wandb | 
					
						
						|  |  | 
					
						
						|  | if TYPE_CHECKING: | 
					
						
						|  | from wandb.sdk.lib import RunDisabled | 
					
						
						|  | from wandb.sdk.wandb_run import Run | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AnomalibWandbLogger(ImageLoggerBase, WandbLogger): | 
					
						
						|  | """Logger for wandb. | 
					
						
						|  |  | 
					
						
						|  | Adds interface for `add_image` in the logger rather than calling the experiment object. | 
					
						
						|  |  | 
					
						
						|  | .. note:: | 
					
						
						|  | Same as the wandb Logger provided by PyTorch Lightning and the doc string is reproduced below. | 
					
						
						|  |  | 
					
						
						|  | Log using `Weights and Biases <https://www.wandb.com/>`_. | 
					
						
						|  |  | 
					
						
						|  | Install it with pip: | 
					
						
						|  |  | 
					
						
						|  | .. code-block:: bash | 
					
						
						|  |  | 
					
						
						|  | $ pip install wandb | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | name: Display name for the run. | 
					
						
						|  | Defaults to ``None``. | 
					
						
						|  | save_dir: Path where data is saved (wandb dir by default). | 
					
						
						|  | Defaults to ``None``. | 
					
						
						|  | version: Sets the version, mainly used to resume a previous run. | 
					
						
						|  | offline: Run offline (data can be streamed later to wandb servers). | 
					
						
						|  | Defaults to ``False``. | 
					
						
						|  | dir: Alias for save_dir. | 
					
						
						|  | id: Sets the version, mainly used to resume a previous run. | 
					
						
						|  | Defaults to ``None``. | 
					
						
						|  | anonymous: Enables or explicitly disables anonymous logging. | 
					
						
						|  | Defaults to ``None``. | 
					
						
						|  | version: Same as id. | 
					
						
						|  | Defaults to ``None``. | 
					
						
						|  | project: The name of the project to which this run will belong. | 
					
						
						|  | Defaults to ``None``. | 
					
						
						|  | log_model: Save checkpoints in wandb dir to upload on W&B servers. | 
					
						
						|  | Defaults to ``False``. | 
					
						
						|  | experiment: WandB experiment object. Automatically set when creating a run. | 
					
						
						|  | Defaults to ``None``. | 
					
						
						|  | prefix: A string to put at the beginning of metric keys. | 
					
						
						|  | Defaults to ``''``. | 
					
						
						|  | **kwargs: Arguments passed to :func:`wandb.init` like `entity`, `group`, `tags`, etc. | 
					
						
						|  |  | 
					
						
						|  | Raises: | 
					
						
						|  | ImportError: | 
					
						
						|  | If required WandB package is not installed on the device. | 
					
						
						|  | MisconfigurationException: | 
					
						
						|  | If both ``log_model`` and ``offline``is set to ``True``. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  | >>> from anomalib.loggers import AnomalibWandbLogger | 
					
						
						|  | >>> from anomalib.engine import Engine | 
					
						
						|  | ... | 
					
						
						|  | >>> wandb_logger = AnomalibWandbLogger() | 
					
						
						|  | >>> engine =  Engine(logger=wandb_logger) | 
					
						
						|  |  | 
					
						
						|  | .. note:: | 
					
						
						|  | When logging manually through `wandb.log` or `trainer.logger.experiment.log`, | 
					
						
						|  | make sure to use `commit=False` so the logging step does not increase. | 
					
						
						|  |  | 
					
						
						|  | See Also: | 
					
						
						|  | - `Tutorial <https://colab.research.google.com/drive/16d1uctGaw2y9KhGBlINNTsWpmlXdJwRW?usp=sharing>`__ | 
					
						
						|  | on how to use W&B with PyTorch Lightning | 
					
						
						|  | - `W&B Documentation <https://docs.wandb.ai/integrations/lightning>`__ | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | name: str | None = None, | 
					
						
						|  | save_dir: _PATH = ".", | 
					
						
						|  | version: str | None = None, | 
					
						
						|  | offline: bool = False, | 
					
						
						|  | dir: _PATH | None = None, | 
					
						
						|  | id: str | None = None, | 
					
						
						|  | anonymous: bool | None = None, | 
					
						
						|  | project: str | None = None, | 
					
						
						|  | log_model: Literal["all"] | bool = False, | 
					
						
						|  | experiment: "Run | RunDisabled | None" = None, | 
					
						
						|  | prefix: str = "", | 
					
						
						|  | checkpoint_name: str | None = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__( | 
					
						
						|  | name=name, | 
					
						
						|  | save_dir=save_dir, | 
					
						
						|  | version=version, | 
					
						
						|  | offline=offline, | 
					
						
						|  | dir=dir, | 
					
						
						|  | id=id, | 
					
						
						|  | anonymous=anonymous, | 
					
						
						|  | project=project, | 
					
						
						|  | log_model=log_model, | 
					
						
						|  | experiment=experiment, | 
					
						
						|  | prefix=prefix, | 
					
						
						|  | checkpoint_name=checkpoint_name, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | self.image_list: list[wandb.Image] = [] | 
					
						
						|  |  | 
					
						
						|  | @rank_zero_only | 
					
						
						|  | def add_image(self, image: np.ndarray | Figure, name: str | None = None, **kwargs) -> None: | 
					
						
						|  | """Interface to add image to wandb logger. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | image (np.ndarray | Figure): Image to log | 
					
						
						|  | name (str | None): The tag of the image | 
					
						
						|  | Defaults to ``None``. | 
					
						
						|  | kwargs: Additional arguments to `wandb.Image` | 
					
						
						|  | """ | 
					
						
						|  | del kwargs | 
					
						
						|  |  | 
					
						
						|  | image = wandb.Image(image, caption=name) | 
					
						
						|  | self.image_list.append(image) | 
					
						
						|  |  | 
					
						
						|  | @rank_zero_only | 
					
						
						|  | def save(self) -> None: | 
					
						
						|  | """Upload images to wandb server. | 
					
						
						|  |  | 
					
						
						|  | .. note:: | 
					
						
						|  | There is a limit on the number of images that can be logged together to the `wandb` server. | 
					
						
						|  | """ | 
					
						
						|  | super().save() | 
					
						
						|  | if len(self.image_list) > 1: | 
					
						
						|  | wandb.log({"Predictions": self.image_list}) | 
					
						
						|  | self.image_list = [] | 
					
						
						|  | self.image_list = [] | 
					
						
						|  |  |