zklee98 commited on
Commit
ca0598f
·
1 Parent(s): 7a1c38f

Upload 4 files

Browse files
Files changed (4) hide show
  1. README.md +101 -0
  2. config.json +78 -0
  3. pytorch_model.bin +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - vision
5
+ - image-segmentation
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: segformer-b1-solarModuleAnomaly-v0.1
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # segformer-b1-solarModuleAnomaly-v0.1
16
+
17
+ This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the zklee98/solarModuleAnomaly dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1547
20
+ - Mean Iou: 0.3822
21
+ - Mean Accuracy: 0.7643
22
+ - Overall Accuracy: 0.7643
23
+ - Accuracy Unlabelled: nan
24
+ - Accuracy Anomaly: 0.7643
25
+ - Iou Unlabelled: 0.0
26
+ - Iou Anomaly: 0.7643
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 6e-05
46
+ - train_batch_size: 2
47
+ - eval_batch_size: 2
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabelled | Accuracy Anomaly | Iou Unlabelled | Iou Anomaly |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
57
+ | 0.4699 | 0.4 | 20 | 0.6337 | 0.4581 | 0.9162 | 0.9162 | nan | 0.9162 | 0.0 | 0.9162 |
58
+ | 0.3129 | 0.8 | 40 | 0.4636 | 0.3704 | 0.7407 | 0.7407 | nan | 0.7407 | 0.0 | 0.7407 |
59
+ | 0.2732 | 1.2 | 60 | 0.3164 | 0.3867 | 0.7734 | 0.7734 | nan | 0.7734 | 0.0 | 0.7734 |
60
+ | 0.2653 | 1.6 | 80 | 0.3769 | 0.4090 | 0.8180 | 0.8180 | nan | 0.8180 | 0.0 | 0.8180 |
61
+ | 0.2232 | 2.0 | 100 | 0.2976 | 0.2479 | 0.4958 | 0.4958 | nan | 0.4958 | 0.0 | 0.4958 |
62
+ | 0.5305 | 2.4 | 120 | 0.3151 | 0.3807 | 0.7613 | 0.7613 | nan | 0.7613 | 0.0 | 0.7613 |
63
+ | 0.2423 | 2.8 | 140 | 0.3189 | 0.4152 | 0.8305 | 0.8305 | nan | 0.8305 | 0.0 | 0.8305 |
64
+ | 0.3341 | 3.2 | 160 | 0.2384 | 0.3861 | 0.7723 | 0.7723 | nan | 0.7723 | 0.0 | 0.7723 |
65
+ | 0.2146 | 3.6 | 180 | 0.3200 | 0.4621 | 0.9243 | 0.9243 | nan | 0.9243 | 0.0 | 0.9243 |
66
+ | 0.1866 | 4.0 | 200 | 0.2510 | 0.3646 | 0.7291 | 0.7291 | nan | 0.7291 | 0.0 | 0.7291 |
67
+ | 0.2861 | 4.4 | 220 | 0.2736 | 0.4202 | 0.8404 | 0.8404 | nan | 0.8404 | 0.0 | 0.8404 |
68
+ | 0.2048 | 4.8 | 240 | 0.2410 | 0.3912 | 0.7823 | 0.7823 | nan | 0.7823 | 0.0 | 0.7823 |
69
+ | 0.1604 | 5.2 | 260 | 0.2233 | 0.3672 | 0.7344 | 0.7344 | nan | 0.7344 | 0.0 | 0.7344 |
70
+ | 0.2756 | 5.6 | 280 | 0.2705 | 0.4494 | 0.8987 | 0.8987 | nan | 0.8987 | 0.0 | 0.8987 |
71
+ | 0.1859 | 6.0 | 300 | 0.2211 | 0.4045 | 0.8089 | 0.8089 | nan | 0.8089 | 0.0 | 0.8089 |
72
+ | 0.1306 | 6.4 | 320 | 0.2140 | 0.3763 | 0.7525 | 0.7525 | nan | 0.7525 | 0.0 | 0.7525 |
73
+ | 0.5508 | 6.8 | 340 | 0.2231 | 0.4185 | 0.8371 | 0.8371 | nan | 0.8371 | 0.0 | 0.8371 |
74
+ | 0.1446 | 7.2 | 360 | 0.2139 | 0.3666 | 0.7332 | 0.7332 | nan | 0.7332 | 0.0 | 0.7332 |
75
+ | 0.3275 | 7.6 | 380 | 0.2470 | 0.3964 | 0.7928 | 0.7928 | nan | 0.7928 | 0.0 | 0.7928 |
76
+ | 0.164 | 8.0 | 400 | 0.2017 | 0.3910 | 0.7819 | 0.7819 | nan | 0.7819 | 0.0 | 0.7819 |
77
+ | 0.1864 | 8.4 | 420 | 0.2307 | 0.4408 | 0.8816 | 0.8816 | nan | 0.8816 | 0.0 | 0.8816 |
78
+ | 0.1578 | 8.8 | 440 | 0.1869 | 0.3707 | 0.7414 | 0.7414 | nan | 0.7414 | 0.0 | 0.7414 |
79
+ | 0.1201 | 9.2 | 460 | 0.2115 | 0.3834 | 0.7667 | 0.7667 | nan | 0.7667 | 0.0 | 0.7667 |
80
+ | 0.1783 | 9.6 | 480 | 0.2009 | 0.3747 | 0.7495 | 0.7495 | nan | 0.7495 | 0.0 | 0.7495 |
81
+ | 0.1232 | 10.0 | 500 | 0.1797 | 0.3865 | 0.7729 | 0.7729 | nan | 0.7729 | 0.0 | 0.7729 |
82
+ | 0.2572 | 10.4 | 520 | 0.1983 | 0.4057 | 0.8115 | 0.8115 | nan | 0.8115 | 0.0 | 0.8115 |
83
+ | 0.1209 | 10.8 | 540 | 0.1607 | 0.4274 | 0.8547 | 0.8547 | nan | 0.8547 | 0.0 | 0.8547 |
84
+ | 0.1234 | 11.2 | 560 | 0.2260 | 0.4066 | 0.8133 | 0.8133 | nan | 0.8133 | 0.0 | 0.8133 |
85
+ | 0.145 | 11.6 | 580 | 0.1963 | 0.3939 | 0.7878 | 0.7878 | nan | 0.7878 | 0.0 | 0.7878 |
86
+ | 0.0665 | 12.0 | 600 | 0.1912 | 0.3873 | 0.7747 | 0.7747 | nan | 0.7747 | 0.0 | 0.7747 |
87
+ | 0.0826 | 12.4 | 620 | 0.2095 | 0.4186 | 0.8373 | 0.8373 | nan | 0.8373 | 0.0 | 0.8373 |
88
+ | 0.1212 | 12.8 | 640 | 0.1732 | 0.4059 | 0.8118 | 0.8118 | nan | 0.8118 | 0.0 | 0.8118 |
89
+ | 0.142 | 13.2 | 660 | 0.2086 | 0.4007 | 0.8013 | 0.8013 | nan | 0.8013 | 0.0 | 0.8013 |
90
+ | 0.0899 | 13.6 | 680 | 0.1838 | 0.3928 | 0.7856 | 0.7856 | nan | 0.7856 | 0.0 | 0.7856 |
91
+ | 0.1857 | 14.0 | 700 | 0.1638 | 0.4157 | 0.8315 | 0.8315 | nan | 0.8315 | 0.0 | 0.8315 |
92
+ | 0.0788 | 14.4 | 720 | 0.1736 | 0.4112 | 0.8223 | 0.8223 | nan | 0.8223 | 0.0 | 0.8223 |
93
+ | 0.2543 | 14.8 | 740 | 0.1547 | 0.3822 | 0.7643 | 0.7643 | nan | 0.7643 | 0.0 | 0.7643 |
94
+
95
+
96
+ ### Framework versions
97
+
98
+ - Transformers 4.28.0
99
+ - Pytorch 2.0.0+cu118
100
+ - Datasets 2.11.0
101
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b1",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabelled",
32
+ "1": "anomaly"
33
+ },
34
+ "image_size": 224,
35
+ "initializer_range": 0.02,
36
+ "label2id": {
37
+ "anomaly": 1,
38
+ "unlabelled": 0
39
+ },
40
+ "layer_norm_eps": 1e-06,
41
+ "mlp_ratios": [
42
+ 4,
43
+ 4,
44
+ 4,
45
+ 4
46
+ ],
47
+ "model_type": "segformer",
48
+ "num_attention_heads": [
49
+ 1,
50
+ 2,
51
+ 5,
52
+ 8
53
+ ],
54
+ "num_channels": 3,
55
+ "num_encoder_blocks": 4,
56
+ "patch_sizes": [
57
+ 7,
58
+ 3,
59
+ 3,
60
+ 3
61
+ ],
62
+ "reshape_last_stage": true,
63
+ "semantic_loss_ignore_index": 255,
64
+ "sr_ratios": [
65
+ 8,
66
+ 4,
67
+ 2,
68
+ 1
69
+ ],
70
+ "strides": [
71
+ 4,
72
+ 2,
73
+ 2,
74
+ 2
75
+ ],
76
+ "torch_dtype": "float32",
77
+ "transformers_version": "4.28.0"
78
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ee399c6e720d86c4b860d4576cc4d768f35474f0dc631de71592e9fb0723f7a
3
+ size 54784333
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:803f3902350fd4df7f79b5bfe37b6635de4a7c79fdec0601f87711b109b7674c
3
+ size 3643